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Abstract

In multi-agent systems and intelligent environments, agents often rely on symbolic knowledge to reason, interact,
and make decisions in a transparent and trustworthy manner. Ensuring the quality of such symbolic knowledge
is crucial, especially when it is automatically extracted from opaque models through explainable Al techniques.
However, the literature still lacks comprehensive and unbiased evaluation metrics that jointly account for
predictive accuracy, human interpretability, and semantic completeness — three pillars of effective knowledge for
agents. In this work, we introduce WIND, a novel and flexible scoring metric designed to assess the overall quality
of symbolic knowledge in agent-based systems. WIND combines performance, readability, and completeness into
a unified score, and further enables task-oriented customisation through the integration of user feedback. Its
formulation supports automated knowledge tuning and facilitates knowledge sharing and comparison among
agents with diverse goals and perspectives. We present the formal definition of WIND and provide a thorough
comparative analysis against existing, yet limited, metrics. Our findings show that WIND offers a principled
and adaptable framework for evaluating symbolic knowledge quality, paving the way for more autonomous,
collaborative, and cognitively grounded intelligent agents.
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1. Introduction

Nowadays, symbolic knowledge-extraction (SKE) techniques are widely exploited to tackle interpretabil-
ity issues of sub-symbolic artificial intelligence (AI), which despite being prediction-effective, typically
relies on complex models (e.g., deep neural networks) difficult to interpret and explain [1, 2, 3]. SKE
involves the extraction of knowledge out of a black box [4, 5] to create a surrogate symbolic representa-
tion. These techniques are used to improve the interpretability and explainability of machine learning
(ML) models, allowing humans to better understand and trust their decisions, as well as to facilitate
knowledge transfer between domains. In the context of intelligent agents and multi-agent systems,
symbolic knowledge also serves as a fundamental enabler of autonomous reasoning, verifiability, and
communication between agents operating in open and dynamic environments.

The literature on SKE techniques is quite extensive [6, 7, 8, 9, 10, 11, 12, 13, for instance], and there
is no one-size-fits-all solution for every applicative scenario. Each technique has its strengths and
limitations, and the selection of the best one depends on the specific requirements of the application
and the data peculiarities. Indeed, the extracted knowledge quality depends on a variety of factors,
e.g., the input data distribution, the applied pre-processing strategy, and the adopted feature selection
technique. As a result, it is often necessary to experiment with multiple SKE techniques and compare
their performance on the specific combination of (processed) data set and black-box model to identify
the best approach. Selecting the best technique for the case at hand is thus a complex task requiring
careful consideration of the specific application requirements and a deep understanding of the strengths
and limitations of each technique. This challenge becomes even more critical when symbolic knowledge
is intended to support deliberation, norm reasoning, or shared mental models amongst agents, which
demand high-quality and consistent symbolic representations.
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According to the literature, the quality of knowledge obtained through SKE can be assessed upon
several indices [14, 15]: (i) accuracy [16] — evaluable through a comparison between the extracted
knowledge and reference data to highlight how well the extracted knowledge matches the actual one in
the data -, (ii) completeness [17] — extent to which all relevant information is captured -, (iii) clarity or
readability [18]—ease of understanding and interpretation, generally assessed via comprehensibility of
the extracted knowledge. These dimensions are essential not only for human interpretability, but also
to ensure that agent-oriented reasoning over symbolic knowledge remains transparent, tractable, and
semantically rich.

Knowledge extracted via SKE is usually compared manually and by considering these indices sepa-
rately. Manual evaluation can be time-consuming and prone to subjective biases, as different human
evaluators may have different opinions about relevance, completeness, clarity, and other knowledge
aspects. Such limitations hinder the deployment of autonomous agents capable of self-assessing and
improving their own symbolic knowledge bases.

The importance of automating such a process of evaluation should also be considered in the light of
an automated ML (AutoML) perspective [19]. In the context of SKE, AutoML techniques can automate
the quality-evaluation process of extracted knowledge and thus the selection of the most suitable SKE
technique for the task at hand, saving time and reducing the potential introduction of subjective biases.
By automating this process, SKE systems can become more efficient and effective at extracting relevant,
complete, consistent, clear, and readable knowledge from unstructured data sources'. Such automation
also lays the foundation for adaptive agents capable of selecting, refining and integrating symbolic
knowledge dynamically as new data or contexts emerge.

Some recent works have started to highlight these issues and have introduced metrics for automated
evaluation [20, 21, 22]. Nonetheless, the metrics proposed thus far are still limited in scope and fail
to encompass all the necessary evaluation criteria and simultaneously integrate user feedback and
customisation. Therefore, there is still the need of a comprehensive and flexible score to automatically
evaluate the quality of SKE output knowledge, by considering multiple evaluation criteria simultaneously
as well as user customisation. A reliable and customisable metric would not only support more effective
knowledge extraction pipelines, but also promote the emergence of autonomous agents capable of
verifying and refining their own symbolic models in a principled way. Accordingly, in this paper we
propose WIND as a comprehensive scoring metric designed to assess knowledge quality, to the benefit
of automated evaluation and comparison of symbolic knowledge, including the outputs provided by
SKE procedures.

2. Background and Motivations

SKE techniques are currently adopted to face several different real-world problems, especially in
critical areas [23, 24, 25, 26, 27]. They generally provide output knowledge according to a symbolic
representation that can be exploited to obtain interpretable predictions. It is widely acknowledged
in the literature to assess knowledge quality based on its predictive performance, human-readability
extent and completeness [28, 9, 10, 29, 30, 31, for instance]. The observed measurements for these
indices vary depending on the chosen SKE algorithm as well as on the user-defined parameters of the
algorithm itself, but also on the predictive capabilities of the underlying opaque predictor that needs to
be explained. Comparisons may thus be carried out between different extraction procedures, but also
between instances of the same extractor differently parametrised or applied to different black boxes.

In order to identify the best knowledge, the three aforementioned quality indices have to be compared
over a possibly large set of candidates, during a time-consuming task susceptible to being affected by
human biases. Therefore, this task may surely benefit from an automated selection technique, based on
a formal scoring metric.

' A potential approach is to use reinforcement learning techniques to iteratively improve the quality of the extracted knowledge
over time, based on feedback from users or domain experts. This could enable SKE systems to adapt to changing data sources



To achieve high quality, the evaluated knowledge should exhibit at the same time high predictive
performance, high human readability, and high completeness. Predictive performance is related to
the knowledge capability of providing accurate outputs when queried with instances to be predicted.
Readability expresses the human effort required to understand the rationale behind the predictions.
Completeness refers to the rate of predictions that the knowledge can offer in relation to the user
queries (it is not relevant to consider the prediction goodness, but only the presence/absence of output
responses).

The comparison of a knowledge set is trivially performed when it is possible to find a candidate
knowledge maximising all three indices. Such a candidate results being the best knowledge in the
set. Unfortunately, in real-world applications, it is very common to face a fidelity/readability trade-
off, intended as the comparison between knowledge having high predictive performance but small
readability and knowledge with higher human readability but smaller predictive performance [20].
The selection of the best knowledge in this scenario should carefully consider both parameters and be
subject to a rigorous comparison that is not biased by humans. Nonetheless, it is important to let human
users choose an adequate weight for the different quality indices, in order to adapt the comparison
with respect to the sensitivity and the goal of the task at hand. In other words, in the same set of
knowledge, it is possible to have more than a unique best candidate, given that depending on the given
scenario users may want or need to privilege, for instance, the knowledge with the highest predictive
performance despite a suboptimum readability extent, or, vice versa, the knowledge with highest human
readability despite its predictions are not the most effective. A comprehensive and flexible scoring
metric should thus accept some kind of user feedback to be applicable in real-world scenarios without
limitations.

This issue has been debated in [20], where a knowledge quality scoring metric named FIRE is
presented. FIRE is a flexible metric, since it accepts a user-defined parameter to tune the relevance of
the knowledge readability with respect to its predictive performance. However, it is not comprehensive,
given that it neglects the completeness index when calculating the knowledge quality score. FIRE is a
multiplicative scoring function considering predictive performance and human readability expressed
as losses—i.e., predictive loss and readability loss, calculated as predictive error and knowledge size,
respectively. Examples of knowledge sizes may be the number of rules in a list, the number of leaves in
a decision tree, or the number of rows in a decision table, depending on the knowledge representation.
This implies that good knowledge quality is associated with small losses and thus with small FIRE
scores, given that losses are multiplied.

Another quality metric, (), also based on index loss multiplication has been proposed in [21]. The
main differences with respect to FIRE are the inclusion of the knowledge completeness loss in the metric
and the inability to let users tune the relative loss weights. )5 is thus comprehensive, but it offers no
flexibility.

To our knowledge, no other metrics assessing symbolic knowledge quality have been proposed
in the literature. A complete metric, encompassing predictive performance, human readability, and
completeness indices with the possibility to tune their relative importance in the overall score calculation,
is thus still missing. Such a metric is the basic brick for enabling an impartial, standardised, and concise
evaluation of symbolic knowledge quality. It is worth noting that the capability of evaluating symbolic
knowledge quality with these properties is essential for AutoML procedures, as it would enable the
automatic selection of high-quality symbolic knowledge representations, which in turn would lead to
more interpretable and trustable ML models. Without such evaluation metrics, AutoML algorithms may
select suboptimal symbolic knowledge representations that could result in poor model performance
and wasted resources.

This study introduces WIND as a comprehensive and flexible scoring function that addresses the gap
in the literature concerning the assessment of symbolic knowledge. WIND merges the advantages of the
two previously mentioned metrics, i.e., the flexibility of FIRE and the comprehensiveness of (). Indeed,
WIND incorporates all three indices found in the literature as common proxies to evaluate symbolic
knowledge and it accepts a user-defined weighting parameter for each index. As a result, different
symbolic knowledge can be easily compared in terms of predictive performance, human readability



Table 1
Functions involved in the definition of the WIND scoring metric: definition, meaning and parameters.

Function Description Parameters

Accuracy Capability to give ~ p  Predictive performance loss of the knowledge

P(p, ) the correct e.g., misclassification rate, mean absolute error
predictions ¢ Importance of the predictive performance loss

Readability Human-readability Readability loss expressed as knowledge size
R(r, p) extent e.g., number of rules/leaves in a list/tree
p  Importance of the readability loss

<

Completeness  Capability to give ¢ Completeness loss of the knowledge
C(c,§) an output response e.g., rate of unprovided predictions
& Importance of the completeness loss

and completeness by exploiting the WIND metric, providing a quantitative and formal score easily
customised by users according to their needs.

Quality indices. Knowledge quality is generally evaluated through the aforementioned indices, i.e.,
predictive performance, human readability, and completeness [14, 15]. There is no unique method to
compute them.

Predictive performance may be assessed through the same methods adopted for any predictors. It
may be evaluated with respect to the ground truth of a data set or the outputs of an opaque model that
the symbolic knowledge is mimicking. Assessments are task-dependent. For classification tasks, the
accuracy and F; scores are generally adopted. For regression tasks, the most common choices are the
mean absolute/squared error (MAE/MSE) and the R? score.

Readability is usually related to knowledge size, e.g., an SKE algorithm producing a list of n rules
is more readable than another one providing a list(tree) having 2n rules(leaves) [32]. However, we
acknowledge that this simplification does not fully capture the notion of readability, which the internal
complexity of each individual rule or symbolic element can also influence. For instance, a larger set
of individually simple rules may be easier to interpret than a smaller set of structurally complex ones,
involving nested logical constructs, non-linear thresholds, or fuzzy predicates. In this work, we adopt
knowledge size as a proxy for readability due to its objective measurability, ease of interpretation, and
broad applicability across different symbolic representations. Nevertheless, we explicitly recognise that
this is a coarse-grained approximation. A finer-grained assessment of readability — accounting for both
the number and the syntactic/semantic complexity of individual knowledge items — remains an open
challenge. We view the integration of such refined metrics as a natural extension of the WIND metric,
and outline it as a direction for future work. Further readability information can be included, as the
complexity of individual knowledge items. However, there are no available techniques to quantitatively
and formally assess item readability, e.g., a tree leaf describing an M-of-N logic rule with respect to a
decision table entry related to a fuzzy rule [20]. For this reason, the knowledge size is usually considered
sufficient to express readability thanks to its straightforward interpretation, even though any other
more refined readability assessment, also considering the readability of each individual knowledge item,
can be exploited.

Completeness can be measured as the percentage of input feature space that is covered by the
knowledge, equivalent to the input feature subspace where the knowledge is able to draw predictions.
When this measurement requires too much effort, e.g., for data sets with a large number of input
features, it is possible to estimate the completeness by querying the knowledge with a set of instances
and calculating the percentage of provided responses.



3. The WIND Metric for Knowledge Quality

The WIND (Weighted quality Index) score has been designed to provide a concise knowledge quality
evaluation based on predictive performance, human readability and completeness, all expressed as
losses. In the following we refer to these assessments as raw quality indices. Flexibility is ensured by
three weighting parameters that can be tuned by users to influence the metric’s behaviour according to
their application-specific needs. The adoption of parametrised metrics that adapt to end-users’ needs is
an established practice in the ML literature. Examples are the F-measure and the pinball loss, inspiring
this work [33, 34].

WIND is a multiplicative function of three terms, each one constituted by an exponential function
aimed at weighting a raw quality index with the corresponding user-defined weight and then squashing
the result within the (0, 1] half-open interval. The reason behind the exploitation of a multiplicative
function for WIND rather than other statistical aggregation functions (e.g., minimum or maximum)
descends from the need to avoid the prevalence of a single term over the others, resulting in equivalent
WIND scores even for knowledge pieces with non-equivalent quality. WIND is formally defined as the
following continuous and differentiable function:

WInp : (RT x R x [0,1] x RT x Rt x R") — (0, 1], (1)
WIND(p, e e, 0, f) = P(pa 90) ’ R(Ta p) ’ C(C7 5)) (2)

where p, r and c are the raw indices for the knowledge predictive performance, human-readability
extent and completeness, respectively, expressed as losses. ¢, p and £ are the corresponding user-defined
weights. P(-), R(-) and C(-) are the three exponential functions denoting the accuracy, readability and
completeness scores, respectively, that are multiplied together to obtain the final WIND score. Table 1
resumes the meaning and parameters of the WIND underlying functions. Given the multiplicative
nature of WIND, the scaling introduced by the parametrised exponentials is propagated to the overall
metric score, which shares the same (0, 1] range. The WIND functions are formally defined as follows:

P: o (RY xRY) = (0,1], P(p,p) = e~ (3)
R: (Rt xRT) > (0,1], R(r,p) = e 0017 (4)
C: (0,1 xRY) = (0,1,  C(c,§) =e (5)

The fixed values appearing in Equations (3)-(5) (i.e., 3, 0.01, 8) have been fine-tuned after a thorough
study involving the function properties and the range of admissible values for the raw quality indices.
They were selected following a systematic analysis combining mathematical behaviour, value ranges of
expected inputs, and sensitivity requirements for each index. The value 3 for predictive loss was chosen
to ensure sufficient steepness in penalising moderate to high prediction errors (e.g., misclassification
rates above 0.2), especially under high importance settings (¢ > 1). This allows WIND to strongly
differentiate symbolic knowledge with low accuracy. The constant 0.01 in the readability term accounts
for the much larger numerical range of the readability loss (e.g., knowledge size ranging from 1 to 30 or
more rules/leaves). A smaller multiplier ensures that the readability contribution is not overly dominant
or suppressed in typical symbolic structures. The value 8 for completeness loss was selected to reflect
its bounded domain in [0, 1], where even small losses (e.g., 0.1 coverage loss) may have strong semantic
significance in certain agent-based applications. This setting emphasises responsiveness to even partial
coverage gaps when completeness is weighted heavily (¢ > 1). These values were empirically validated
through grid-based simulations over realistic ranges of losses and weights (see Figure 1 and 2), to
ensure desirable monotonicity, boundedness, and discriminative behaviour. Although these constants
offer reasonable default behaviour, the design remains modular: users may replace or adjust these
constants if domain-specific tuning is required — a feature aligning with wind’s principle of flexibility.
We emphasise here that completeness, readability and predictive performance loss have very different
domains, possibly bounded to the user preferences. Furthermore, the same value for distinct losses may



assume different or even opposite meanings. For instance, a readability loss of 1 is always an optimum
achievement (corresponding to very concise knowledge with a single human-interpretable item) and
a completeness loss of 1 is always the worst case (knowledge incapable of providing predictions for
any input query). Conversely, depending on the specific scenario, a predictive performance loss of 1
may be catastrophic (e.g., when expressed as a misclassification rate it represents 100%) or acceptable
(e.g., when expressed as a mean absolute error with respect to a variable ranging between 100 and 200).
Consequently, we aimed to parametrise Equations (3)—(5) by considering these issues, with the ultimate
goal of designing a versatile and flexible scoring metric imposing no particular constraints on the loss
definitions and enabling users to tune the loss relevance coherently. In other words, users can adopt the
same values to set the importance of all losses, e.g., importance equal to 3, 1 and 0 to represent losses
with high, medium and no relevance in assessing knowledge quality. Although the values of the three
WIND score underlying losses vary in magnitude and meaning, this setting is possible thanks to the
fixed values of the parameters appearing in Equations (3)—(5).

When considered from an analytical standpoint, the rationale behind the optimisation of these values
is to obtain three “well-behaved” exponential functions having some clear characteristics: (i) tend to
1 when associated with desirable knowledge properties (e.g., high predictive performance or human
readability), (ii) tend to O for indices denoting poor quality, and (iii) have a steepness tunable through
an individual user-defined weight parameter. Therefore, each exponential term of WIND has a high
value (close to 1) only when related to a raw index expressing good quality and/or to a low user-defined
importance for that raw index. Otherwise, terms are dragged towards 0 by quality depletions of the
raw indices and/or increases in their weights. Accordingly, the WIND metric assumes values close to 1
for high-quality knowledge and values towards 0 when evaluating poor-quality knowledge.

From the properties of multiplication, it can be also noticed that knowledge is deemed with high
quality via WIND only if all three underlying exponentials have high scores. Conversely, low quality is
associated with a small value of at least one exponential. The WIND score trend is shown in Figure 1 for
varying values of its parameters.

3.1. Underlying Functions of WIND

As mentioned above, the WIND metric is based on three functions expressing as many scores for
the knowledge predictive performance, human-readability extent and completeness. Without loss of
generality, only the properties for the accuracy function are discussed here since they also hold for the
readability and completeness functions.

The accuracy function P(p, ) requires as parameters a raw predictive loss (p) and its importance in
the knowledge quality estimation (). WIND imposes no constraints on how the predictive loss should
be expressed. The only requirement is that it should be encoded as a value directly proportional to the
knowledge predictive error. When performing regression it is possible to adopt the mean absolute or
squared errors, whereas for classification tasks the rate of wrong predictions may be a suitable choice.
Losses inversely proportional to the F; and R? scores are also acceptable. It is evident that the domain
of P(-) strictly depends on the adopted loss metric. For instance, the misclassification rate ranges in
[0, 1], whereas there is no upper bound for the mean errors, whose range is [0, +0oc].

The ¢ importance has been designed to be a user-defined non-negative real value. When ¢ = 1, the
predictive loss has a medium impact on the overall WIND score. ¢ < 1 assigns small relevance to the
predictive loss, implying that a good accuracy score is still possible even if the loss is not very close to
0. Conversely, if ¢ > 1 the predictive loss is crucial in the knowledge quality evaluation and thus it
must be as close as possible to 0 to enable a good accuracy score.

As a result of the aforementioned considerations, the domain of P(-) is (RT x R™) and from Equation
(3) its range can be trivially calculated as (0, 1]. The function is thus always positive and bounded from
below by 0 and from above by 1. P(+) is continuous and differentiable and from the same equation, it is
possible to trivially obtain its first partial derivatives with respect to p and ¢, for which the following
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Figure 1: WIND scores (colour) for different values of knowledge predictive loss p (x-axis), readability loss r
(y-axis), completeness loss ¢ (top row), predictive loss importance ¢ (second row), readability loss p (third row),
and completeness loss importance £ (bottom row). Parameter values are increased from left to right. Values for
the raw indices and losses are selected to show the behaviour of WIND with common real use-case configurations.
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Figure 2: WIND accuracy, readability and completeness function trends in their domains. Functions’ input
parameters are reported in the axes, the corresponding value is represented by the colour, as depicted in the
colourbars. The plots highlight that the underlying functions of WIND have been designed to support the different
domains of the raw losses.
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Figure 3: WIND accuracy, readability and completeness functions with respect to predictive performance p,
knowledge size r and knowledge completeness c losses and user-defined weights @, p, £ (top panels). First and
second partial derivatives (middle and bottom panels, respectively) with respect to p, r and c. The plots highlight
that the underlying functions of WIND have been designed to support the different domains of the raw losses.

Consequently, P(-) is a decreasing monotonic function with respect to both p and ¢, i.e., increasing
losses lead to decreasing accuracy scores, and the same happens with increasing values for its user-
defined weights, as expected.

The same properties of continuity, differentiability, boundedness and monotonicity hold for the
readability and completeness functions. The readability function R(r, p) requires as parameters a raw
readability loss 7 and its relevance p. The knowledge size is a suitable proxy for the readability loss, but



any other measurement proportional to the human effort required to understand the knowledge and/or
its predictions is acceptable. The completeness function C'(c, £) requires a raw completeness loss ¢ and
its relevance . Percentages are particularly suited to express completeness losses, for instance via the
number of data points not covered by the knowledge over their total amount, or via the uncovered
input space volume over the whole volume. As for the p and £ weight, they are subject to the same
considerations presented above for (.

The exponential functions of WIND are shown in Figure 2. Figure 3 depicts their first and second
partial derivatives with respect to the knowledge raw losses.

As a final remark on the underlying exponential functions of WIND, it is important to point out that
users may inject surrogates for them, or only for a subset of them, as long as substitute functions with
the properties described here for our proposals are provided. This constitutes an essential source of
flexibility, letting users customise any aspect of the WIND metric, if needed.

3.2. Properties of WIND

From Equation (2) and by considering the properties of the aforementioned exponentials, it is possible
to derive the properties of WIND. The WIND metric is a continuous and differentiable function bounded
from below by 0 and from above by 1. More in detail,

WIND(-) ~ 1 <= P()~1AR()~1AC() =1, (8)

meaning that the WIND score is equal (close) to 1 if all three exponential scores are equal (close) to 1.
The score is exactly 1 only if all knowledge losses are equal to 0 or have an importance equal to 0. On
the other hand,

WIND(:) - 0 < P(-) >0V R(:) = 0VvC()—0, 9)

meaning that the WIND score is dragged towards 0 by at least an exponential score close to 0 (asymptotic
behaviour).

Monotonicity of the WIND metric function descends from the partial derivative analysis reflecting the
scoring behaviour by varying individual parameters. WIND is thus a monotonically decreasing function
with respect to p, 7, ¢, ¢, p and £ for any possible values of these parameters within their domain.

4. Experiments

The effectiveness of the WIND scoring function to assess symbolic knowledge is demonstrated here via
the comparison of several outputs provided by the GrIDEx [35] and CART [7] SKE algorithms applied
to naive Bayes (NB) and k-nearest neighbours (k-NN) classifiers. We relied on the ML models and SKE
techniques implemented within the scikit-learn? and PSYKE® Python libraries [36, 37, 38, 39, 40, 41].
WIND is thus exploited to perform quantitative quality evaluations and its results are compared to
those of the FIRE and Qg scores [20, 21]. Experiments are carried out on the Wisconsin breast cancer
(WBC) data set [42], a binary classification data set having 30 continuous input features and 569
instances. Both the NB and the k-NN classifiers have been trained with half of the whole data set. A
k equal to 15 has been adopted. The same training instances have been fed to SKE models to extract
human-interpretable knowledge. The remaining data samples have been used to assess the quality of
the extracted knowledge. Quality raw indices observed to evaluate the knowledge are the accuracy
score for the predictive performance, the knowledge size as a proxy of the human readability and the
coverage in terms of the amount of provided predictions with respect to the test set cardinality. We
point out here that CART is based on a decision tree and therefore it always produces complete output
knowledge with coverage equal to 1. Conversely, GRIDEX is based on lists of if-then rules that may be
non-exhaustive.

*https://scikit-learn.org/stable/index.html
*https://github.com/psykei/psyke-python
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Table 2

Results for the WBC data set (best values in bold). A stands for leaves.

Black box k-NN NB
Extractor CART GRIDEX CART GRIDEx
Extractor parameters A=3 A=6 | 2splits 3splits | A=3 A=6 | 2splits 3 splits
Classification accuracy | 0.92 0.91 0.91 0.93 0.90 0.93 0.92 0.87
Extracted rules 3 6 5 5 3 6 2 14
Coverage 1.00 1.00 0.94 0.94 1.00 1.00 0.94 0.93
Qs score 0.23 0.55 0.48 0.35 0.31 0.42 0.17 1.91
FIRE, v = 0.5 0.49 0.19 0.97 0.72 0.66 0.92 0.34 4.08
FIRE,y =1 0.24 0.60 0.49 0.36 0.33 0.46 0.17 2.04
FIRE, ) = 3 0.08 0.20 0.19 0.14 0.11 0.15 0.09 0.73
WIND
p=1Lp=1&=1 0.90 0.68 0.74 0.75 0.88 0.69 0.92 0.13
p=3p=L¢&=0 0.87 0.65 0.72 0.75 0.83 0.67 0.91 0.12
p=3,p=05¢=3 0.91 0.78 0.75 0.79 0.97 0.80 0.86 0.29
p=1p=3,¢(=0 0.75 0.33 0.46 0.47 0.74 0.33 0.87 0.01
p=10,p=0.5,£ =3 0.80 0.65 0.63 0.72 0.69 0.72 0.75 0.20
FiRe FiRe
Qs y=0.5 p=1
2 4 2
1 2 1
0 o 0 - 0 m
FiRe WinD, ¢ =1, WInD, ¢ =3,
1.0 1.0
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Figure 4: Quality assessments for the SKE techniques.



Listing 1 Rules extracted with GRIDEx2 applied to the NB for the WBC data set.

output is ’benign’ if
"Mean concave points’ in [0.00, 0.10] and
"Worst concave points’ in [0.00, 0.14].
output is ’‘malignant’ if
"Mean concave points’ in [0.00, 0.20] and
"Worst concave points’ in [0.14, 0.29].

Listing 2 Rules extracted with CART?3 applied to the k-NN for the WBC data set.

output is ’benign’ if *Worst radius’ <= 16.30.
output is ’benign’ if *Worst radius’ <= 16.79.
output is ’malignant’ otherwise.

As for the parameters of SKE algorithms, instances of CART with a maximum amount of 3 and 6
leaves (CART3 and CARTS, henceforth) have been applied to both the k-NN and the NB classifiers.
Analogously, 2 different parametrisations have been adopted for GRIDEx. Hyper-parameters required by
GRIDEX are the maximum depth (fixed to 3), the predictive error threshold (fixed to 0.1), the minimum
amount of data points to consider when building each rule (fixed to 1) and the partitioning strategy
to adopt during the knowledge extraction. We opted for an adaptive partitioning based on the input
feature relevance, and in particular instances of GRIDEX performing 2 or 3 slices only along the most
relevant input feature have been trained (GRIDEx2 and GRIDEx3, henceforth). Examples of extracted
knowledge bases can be found in Listings 1 to 3. To assess the feature relevance we relied on the tools
provided by the scikit-1learn Python library [36].

Quality raw indices measured for each possible association of black-box classifier and SKE algorithm
amongst those mentioned above have been used to calculate the ()5, FIRE and WIND scores. As these
scoring metrics require the expression of raw quality measurements as losses, we conducted the
following calculations. The predictive loss has been calculated as 1 — accuracy. The knowledge size
has been adopted as readability loss. The completeness loss of ()5 has been calculated as suggested by
the authors of the metric as 2 — coverage, in order not to zero the score (regardless of the other losses)
for complete knowledge pieces. Since the completeness loss is handled in WIND by an exponential
function, this workaround is not necessary and it is calculated as 1 — coverage, thus representing the
rate of test samples that are not covered by the knowledge. This enables a more intuitive definition of
the completeness loss, similar to the predictive loss.

The s score accepts no tuning parameters, so it is applied to the raw losses as-is. The FIRE score
accepts a user-defined fidelity/readability trade-off parameter (v). ¢ € {0.5, 1, 3} have been used for the
experiments reported here, denoting high, medium and low predominance of the knowledge readability
over predictive performance, respectively (high values tend to neglect the readability impact).

For WIND, several different parametrisations have been tested. We identified 5 possible values for the
user-defined weights, i.e., 10, 3, 1, 0.5 and 0, corresponding to very high, high, medium, slight and no
importance, respectively. Clearly, this customisation is not univocal, but it is suited to reflect interesting
knowledge configurations. The tested parametrisation of WIND are reported in Table 2. In the same
table, all quality assessments are reported and compared. The best value for each score is highlighted in
bold. We recall here that high-quality knowledge is identified by high accuracy and completeness, small
amounts of extracted rules, low ()5 and FIRE scores and high WIND scores. A visual comparison of SKE
techniques adopted for our experiments is shown in Figure 4, where the hatched bars correspond to the
best instances according to each scoring metric.



Listing 3 Rules extracted with GRIDEx3 applied to the NB for the WBC data set.

output is ’malignant’ if

"Mean concave points’ in [0.13, 0.20] and

Worst concave points’ in [0.19, 0.29].
output is ’‘malignant’ if

"Mean concave points’ in [0.00, 0.13] and

"Worst concave points’ in [0.19, 0.29].
output is ’'malignant’ if

"Mean concave points’ in [0.06, 0.20] and

"Worst concave points’ in [0.09, 0.19].
output is ’benign’ if

"Mean concave points’ in [0.00, 0.04] and

"Worst concave points’ in [0.00, 0.12].
output is ’benign’ if

"Mean concave points’ in [0.02, 0.04] and

"Worst concave points’ in [0.12, 0.15].
output is ’'benign’ if

"Mean concave points’ in [0.05, 0.05] and

Worst concave points’ in [0.08, 0.10].
output is ’benign’ if

"Mean concave points’ in [0.04, 0.05] and

Worst concave points’ in [0.06, 0.10].
output is ’benign’ if

’Mean concave points’ in [0.04, 0.05] and

Worst concave points’ in [0.10, 0.12].
output is ’‘malignant’ if

"Mean concave points’ in [0.05, 0.06] and

"Worst concave points’ in [0.08, 0.12].
output is ’‘malignant’ if

"’Mean concave points’ in [0.04, 0.05] and

"Worst concave points’ in [0.15, 0.17].
output is ’'benign’ if

’Mean concave points’ in [0.05, 0.05] and

"Worst concave points’ in [0.15, 0.17].
output is ’benign’ if

"Mean concave points’ in [0.04, 0.05] and

"Worst concave points’ in [0.12, 0.15].
output is ’‘malignant’ if

"Mean concave points’ in [0.05, 0.06] and

"Worst concave points’ in [0.17, 0.19].
output is ’'malignant’ if

"Mean concave points’ in [0.05, 0.06] and

Worst concave points’ in [0.12, 0.17].

4.1. Result discussion

The presented experiments produced a set of 8 distinct pieces of knowledge. As shown in Table 2,
no single knowledge source exhibits optimum raw quality indices across all aspects. Conversely, it
is possible to identify candidates only maximising the predictive performance or the completeness,
or only minimising the number of extracted rules. The unique exception is an instance of CARTS,



maximising at the same time both completeness and classification accuracy. The identification of the
best knowledge should thus be subject to some kind of trade-off between the raw scores.

Depending on the task at hand, it is possible to select more than one candidate with the best
knowledge. For instance, GRIDEx2 applied to the NB classifier extracts only 2 rules (see Listing 1 in
the supplementary materials), but these rules are not complete (coverage of 94%) and they have a
suboptimum accuracy score (0.92, to be compared with the optimum value of 0.93). If completeness is
not mandatory and the human-readability extent of the knowledge is more important than its predictive
performance, then this knowledge should be picked as the best one in the set. On the other hand, if
completeness is essential, the best knowledge should be selected amongst those provided by CART
instances, and in particular those obtained with CART3 applied to the k-NN classifier (3 rules but
accuracy of 0.92, see Listing 2 in the supplementary materials) or with CART6 applied to the NB classifier
(accuracy of 0.93 but 6 rules). It is reasonable to prefer the CARTS3 instance given that the very slight
worsening in the classification accuracy is balanced with a halving of the knowledge size.

By adopting the ()5 score to compare the knowledge set, the best candidate is GRIDEx2 applied to the
NB model. While this result may be acceptable in some scenarios, the lack of flexibility in ()5 makes
it impossible for users to inject the requirement for having complete knowledge into the comparison
process.

If evaluated with FIRE, the best knowledge is the same if ¥ € {0.5,1}, or the one provided by
CARTS3 applied to the k-NN if 1) = 3, given that in this case the knowledge size is less relevant in
the overall quality scoring. As mentioned above, both results are acceptable depending on the task
at hand, however, when preferring CART, the knowledge completeness is not taken into account by
FIRE, given that it does not consider this raw score. Furthermore, the meaning of v is not intuitive
and tuning its value may be difficult for users. Conversely, WIND appears to be the most flexible,
comprehensive and easy-to-customise scoring metric. Indeed, when all the raw quality indices should
be evaluated with a medium relevance (p = 1, p = 1, £ = 1), the best knowledge is GRIDEx2 applied
to the NB predictor, in agreement with the assessments of ()5 and FIRE with ¢ = 1. The same result
can be obtained by evaluating with medium relevance the accuracy score and with high relevance the
knowledge size, neglecting the contribution of the knowledge completeness (o = 1, p = 3, £ = 0). This
WIND customisation corresponds to FIRE with ¢ = 0.5, indeed they provide the same evaluation, as
expected.

The best knowledge is still the same even by augmenting the accuracy score relevance to high and
diminishing the knowledge size relevance to medium (p = 3, p =1, £ = 0).

When assigning slight relevance to the knowledge size and high importance to completeness and
predictive performance (¢ = 3, p = 0.5, £ = 3), the best knowledge is CART3 applied to the £-NN, as
expected. By augmenting the predictive performance relevance to very high (¢ = 10) the assessment
does not change in favour of the CART instance with optimum classification accuracy because, even
with small relevance for the readability score, the very small predictive performance gain is not balanced
with the huge human-readability loss. It is worth noting that the knowledge provided by GRIDEx3
applied to the NB is unanimously deemed the worst according to all the quality indexes adopted in
the experiments, given its poor human readability, small completeness and sub-optimum predictive
performance.

5. Conclusions

In this paper we introduce the new WIND metric for symbolic knowledge quality assessment. It is
based on a set of raw quality indices (i.e., predictive performance, human-readability extent, and
completeness) and it accepts user-defined customisation in the form of weights for the raw indices.
These characteristics make WIND much more comprehensive and flexible than existing similar scoring
functions. A formal definition of WIND is provided and its algebraic properties are demonstrated.
Furthermore, we show that our metric may be exploited to compare knowledge rigorously and flexibly,
enabling the automated selection of the best knowledge in a set of candidates without renouncing



the capability of tuning the scoring metric according to the task at hand, for instance, by privileging
readable knowledge rather than accurate and/or complete alternatives. The WIND metric is particularly
suited for agent-based systems where symbolic knowledge underpins decision-making, communication,
and coordination. In these contexts, agents benefit from the ability to autonomously assess and prioritise
symbolic knowledge depending on their roles, objectives, or environmental constraints. Moreover,
WIND opens the way to meta-reasoning capabilities within intelligent agents, by supporting the dynamic
selection and refinement of knowledge bases in open and evolving multi-agent environments.

In the future we plan to design a more sophisticated readability function for WIND, enabling the
evaluation of readability for individual knowledge items. We also aim to integrate out metric into agent
reasoning architectures to support adaptive, self-evaluating agents capable of maintaining high-quality
symbolic representations over time.
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