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Abstract
This paper provides a comprehensive overview of Merkle trees and their numerous extensions, which are  
fundamental data structures for ensuring data integrity and authenticity. Beginning with the foundational 
principles  of  k-ary  Merkle  trees,  including  their  construction,  membership  proof  generation,  and 
verification  processes,  the  article  systematically  explores  a  wide  range  of  advanced  variants.  Key 
extensions such as Sparse Merkle Trees (SMT), Indexed Merkle Trees (IMT), Verkle Trees (VT), and Radix 
Merkle Trees (RMT) are detailed,  alongside specialized implementations like the Merkle Patricia  Trie 
(MPT) and Jellyfish Merkle Tree (JMT).  The survey also investigates  various optimization techniques 
aimed at improving storage efficiency, reducing membership proof size, and modifying the underlying 
logic. The paper concludes with a comparative analysis of these structures, evaluating their algorithmic 
complexities, trade-offs, and suitability for different applications, thereby serving as a guide for selecting 
the optimal Merkle-based construction for specific use cases like blockchain, cloud storage, and digital 
signatures.
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1. Introduction

A Merkle tree was first proposed in [1] by Ralph Merkle for Digital Signatures. However, now it is 
used in a wide range of applications, allowing the creation of data authenticity proofs. A Merkle  
tree is a data structure constructed from hashes of various data blocks arranged in layers in a tree.  
The first layer consists of leaves, which are the blocks containing the direct hash of the data blocks.  
Then to get the next layer of the tree, those blocks are concatenated and hashed in pairs. The 
procedure repeats with the obtained hashes, till a single hash is yielded. Merkle tree can be used for 
efficient proofs of data inclusion in the following cases:

 One can aggregate the quorum of public keys into one root value with the ability to prove  
the membership of the particular public key later [2].

 One can check whether a blockchain transaction is included in the block or not [3, 4] (if the 
appropriate accounting system presumes building transaction trees).

 One can confirm the authenticity and the integrity of outsourced data or data block without 
the local copy of data files [3, 5–7].

 Users can be identified and verified on the IoT in the blockchain network [8, 9].
 One can check whether the data is properly stored in a cloud drive [6, 10, 11].
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For the most of the mentioned usages, security is necessary. The tree’s digest computation function 
must be irreversible and collision-resistant to make the forging of a tree node by the owner or 
third-party adversary improbable, preventing money and/or privacy loss [12].

This paper aims to give a comprehensive overview of existing constructions of a Merkle tree  
and its modifications for different usages.

2. Preliminaries

2.1. Trees

The structure of a Merkle tree is based on the structure of a regular tree, so it is better to start with  
general definitions and properties of a tree to feel confident before going to a Merkle tree.

Definition 2.1 (Graph).  A graph G is a tuple G = (V, E), where V is a set whose elements are 
called nodes, and E = V × V is a set of pairs (v1, v2) of nodes, whose elements are called edges. The 
graph G is unordered, if all the edges have no direction, i.e. the existence of edge (v1, v2) implies 
the existence of edge (v2, v1), otherwise, the graph G is called an ordered graph. For the node, v1 
the directed edge  (v1, v2) is called the outgoing edge, and for a node  v2, the edge is called the 
ingoing edge. The graph has an order annotated as |G|, which is the number of nodes in a graph, i.e. 
|G| = |V|. For the node v in an undirected tree, the order of the node v is a number of edges (v, u), 
where u ∈ V. If the tree is ordered, then the order of a node is a number of all edges (v, u) and (w, v), 
where u, w ∈ V.

Definition 2.2 (Tree). A tree T is a connected and acyclic graph, i.e. there is an undirected path 
between any pair of vertices and there is no non-empty path from any node to itself  without  
repeated edges. The leaf in a tree is a node with only one edge, i.e. node of order 1.

Definition 2.3 (Perfect k-ary tree). A perfect k-ary tree is a tree of some height h with kh 
leaves, with non-leaf nodes, which have exactly k child nodes each.

If we have an ordered graph G, we can define the source node v as a node with only outgoing 
edges, and the sink node as a node with only ingoing nodes. For a directed tree T, a sink node is a  
leaf node, and the source node is a root node. There exists only one root in a directed tree. The 
height of the tree T is the maximum length of a path, i.e. the maximum number of edges, from the 
root to any leaf.

The next thing worth mentioning is that there is a hierarchy, sometimes described in levels. We 
will say that the root is located on the 0-th level. Then, we have inner nodes and at the end of each 
branch, we have leaves. If the tree is perfect, then leaves are located on the last layer. One can use 
definitions of the parent node and child node to describe hierarchical relationships between two 
adjacent nodes u and v. Let the node u be located on a n-th level. If the node v is located on level 
(n + 1), then the node v is a child node of u and u is a parent node of v. It is well known that the 
root has no parents, and leaves have no children.

2.2. Digest functions

A Merkle tree is constructed from data digests. These digests must be small enough to be stored  
efficiently while also providing security for the tree's construction. Cryptographic hash functions 
are excellent candidates for this purpose.

Definition 2.4 (Cryptographic Hash Function). For a function to be considered a cryptographic 
hash function H : 0 , 1∗ →0 , 1 n , it must satisfy three fundamental security properties that are critical 
to the integrity of data structures such as Merkle trees.

 Preimage Resistance: This property guarantees that the function is one-sided. For any given 
hash output y, it must be computationally infeasible to find any input message x' for which 
H(x′) = y.
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 Second-Preimage  Resistance:  For  a  given  input  value  x,  it  must  be  computationally 
infeasible to find another, different input value  x' where  x≠ x ′ that generates the same 
hash, i.e. H(x) = H(x′).

 Collision Resistance: This is the strongest property that makes it computationally infeasible 
to find any pair of distinct inputs  x and  x' that result in an identical hash output  H(x) = 
= H(x′).

In the context of Merkle trees, collision resistance is of paramount importance [10]. Although 
resistance to finding a second intro is also an important aspect of security, it is known that collision 
resistance formally implies second intro resistance for hash functions [13]. The robustness of these 
properties  is  critical  because  they  serve  as  the  primary  defense  mechanism  against  attackers 
attempting to falsify nodes and compromise the integrity of the tree.

The hash function can be applied for any string. However, to compute the hash of a set of 
strings s i, i= 1 , k we compute the hash of the concatenation of that strings, i.e. hash = H(s1||s2||...||

sk) or simply hash = H(s1, s2, ..., sk) or even hash = H(s i| i= 1 , k). It is important not to forget that 
the order of concatenation affects the final result.

Hash functions aren't the only method for computing digests. An alternative approach involves 
using  vector  commitment  schemes  [10].  Informally,  vector  commitment  schemes  [14]  can  be 
thought of as a digital sealed envelope. When a party (S) wants to commit to a message  m, she 
places it  in the “envelope”.  Later,  S can open the envelope to publicly reveal the message she 
committed to. In their most basic form, commitment schemes must satisfy two key properties. A  
commitment must be:

1. Hiding: The commitment should not reveal any information about the message it contains. 
Specifically,  an  observer  should  not  be  able  to  distinguish whether  a  commitment  was 
created for a message m or a different message m', where m≠ m′.

2. Binding: The commitment mechanism must prevent the sender (S) from changing her mind 
about the committed message m after the fact.

More precisely, the binding property requires an efficiently verifiable opening procedure. This 
allows anyone to quickly check that the opened message is the one S originally committed to. 
Thus, a commitment scheme typically involves two phases:

1. Commit Phase: A sender (S) creates a commitment (C) for a message (m) using a specific 
algorithm.

2. Decommit Phase: The sender (S) reveals m and “convinces” a receiver (R) that C is the valid 
commitment to m.

A single  commitment can be created for  a  vector  m that  contains several  messages.  Then, 
during the decommit phase, S can open just one element of the vector m at a time. A commitment 
scheme is considered non-interactive if each phase requires only a single message from S to R.

3. Merkle tree

3.1. Definitions and examples

In general, the structure of the Merkle tree (sometimes named the Merkle hash tree) is similar to an  
ordinary tree. Authors and researchers define a Merkle tree differently. That is why the definition 
of  the  Merkle  tree  varies  from article  to  article.  Moreover,  some Merkle  tree  definitions  were 
different enough to have separate names.

78



Here, we define a simple and general Merkle tree using [15] as a reference.
Definition 3.1 (k-ary Merkle tree). An k-ary Merkle tree T = ⟨V, E⟩ is a construction that has 

leaf nodes, internal nodes and a root, which are as follows:

1. Leaf nodes contain the direct hash value of data blocks.
2. Internal nodes contain concatenation of k hash values of its k children.
3. Root node is an internal node that has no parents.

The k-ary Merkle tree T = ⟨V, E⟩ is a tree with the next properties:

1. It is a rooted tree.
2. All the leaves are located on the same level.
3. Each inner node has exactly k children.
4. Duplicated vertices are allowed to meet restrictions.
5. The set of children nodes is ordered set, so digest can be calculated correctly.

Fig. 1 provides an example of a perfect binary Merkle tree. In contrast, Fig. 2 displays a non-
perfect Merkle tree, illustrating how duplicated nodes are used to calculate the final root hash.

Figure 1: Perfect binary Merkle tree [16]

Figure 2: Non-perfect Merkle tree (MT) for 5 transactions [17, 18]. Here D i is ith data block and hi 
is a hash of ith node
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In the Figs. 1 and 2, we can see the main idea of the Merkle tree. Let’s assume that we compute the  
digest  in a  root.  Because the digest  in the root  node depends on all  the digest  in leaves,  any 
slightest change in any leaf digest changes the digest in a root. So, if we have the digest in a root,  
then we can check if any change is done. One can use it to prove that the element is in a tree, i.e.  
there is a leaf node with the element digest in it.

Here is an example of proving data block 2 membership for the tree in Fig. 1. As the hash of the  
searched data block is  stored in node 2,  we can give the proof consisting of two hash values:  
h1= H(D 1) from node 1 and h6 = H(h3||h4) from node 6. To check the proof, we first calculate the 

hash in node 2 as h2 = H(D 2) using data D 2 that we know. It is also an option to store the hash h2 

and not have the data D 2. Then we calculate h5 = H(h1||h2), the hash value of the concatenation of 

node 1 and node 2 hashes, which gives us the hash of node 5, and then calculate h7 = H(h5||h6), the 
hash of the concatenation of node 5 and node 6, which provides us with the hash value in a root.  
To decide if the data is in the tree, we compare the computed hash in the root node h7 with the real 

hash in the root hroot (hroot is the hash we computed previously or get from the trusted source). If 

the computed hash in the root matches the real hash in the root, i.e. h7 = hroot, the hash of the data 
is in the tree, otherwise, it is not. However, with negligible probability, it can match without the 
data inclusion, and the verification procedure will give a false positive result.

If a malicious Prover wants to prove data block 2 inclusion if it is not in the tree, then the  
Prover must find such hashes of block 1 and block 6, that  H(H(h1||h2)||h6) =  hroot. So the Prover 

needs to find a preimage of hroot or H(h1||h2) of the hash function H, but we assumed before that the 
H is preimage-resistant. Another way for a malicious Prover to forge the node is to find a second 
preimage D 2 ′ for D 2, such that H(D 2 ′) = H(D 2). Then the Prover can claim that the data D 2 ′ is in 
the tree, however it is not. The malicious creator of a Merkle tree can forge the node from the start  
by searching any collision D 2 ′ and D 2 ′ ′ with the same hash, and then claim different statements: 

the data  D 2 ′ is in a tree and the data  D 2 ′ ′ is in a tree. Such manipulation of an adversary is a 
reason of using the cryptographic hash functions that have appropriate security properties.

The Binary Merkle Tree (BMT) is  one of  the most  commonly used structures among k-ary 
Merkle trees. There are other named k-ary trees. For example, Ethereum’s blockchain utilizes a 
Patricia-Merkle tree with up to 16 child nodes [19,  20]. The next example is the Jellyfish Merkle 
Tree proposed in article [21], which is also a tree of order 16.

The node of a Merkle tree contains references to its children and the digest. The main part of a 
Merkle  tree  that  we need to  remember  is  the  hash in  the  root.  However,  sometimes it’s  also 
important to store hashes of leaves. If the memory isn’t strictly limited, and it is possible to store all  
the nodes, it might be reasonable to append other fields. For example, nodes can have an additional  
field parent, which is undefined for the root node. For even more convenience, every node can have 
a boolean flag that states whether the node is the left child. For the root, the flag is undefined.  
Those fields  can aid  in  constructing algorithms to  make them more readable  and fast.  In  our  
approach, we assume that all the fields are present unless otherwise specified.

Using notation in [2, 22], we can differentiate a node by its level in a tree and its index in a level. 

Let N i
j denote the node on level j, with index i. Then the tree will be similar to a triangular matrix, 

where the next level has twice as many elements as the previous level. This notation is useful 

because, in an k-ary tree, we can easily locate descendants of a node N i
j. For example, all children 

of the node are nodes N k i

j +1, N k i+1
j +1 , ... N k i+ k− 1

j +1 . For a binary tree, two children of N i
j are N 2 i

j +1 and 

N 2 i+1
j +1 . can also use the notation with hashed, i.e. hash hj is a hash on jth level on ith place.
Author of [22] introduces us with “Flat Coordinates”. It is a way to identify every node in a tree 

by a unique number s ∈ N. The author also gives us algorithms for transforming node coordinates 

from  N i
j to the flat index  N s and backward. This approach makes storing the tree in an array 

possible. Unfortunately, there is a problem with updating the tree because the appending algorithm 
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needs to shift the array. However, it can be useful for trees that have fixed sizes. We will  N i
juse 

notation because it is easier and more human-friendly. The author of [22] uses “Flat Coordinates” 
to implement his Flat Trees. They are like ordinary Merkle trees but use “Flat Coordinates”.

3.2. Merkle tree creation

Algorithm (alg. 1) is a pseudocode that creates a k-ary Merkle tree from an array of values. It will 
store the whole tree in the memory. It uses an additional function pad_list(nodes, k) which, for the 
given set of nodes with cardinality divisible by k, returns the given set of nodes, or else, returns the 
given set with a duplicated last node at the end to make the cardinality of the set divisible by k. If 
k= 2, function pad_list(nodes, 2), ensures that the set nodes cardinality is even. It isn’t necessary to 
duplicate all the node’s descendants in the pad list function. We need a divisible by k amount of 
hashes, so we can duplicate only a hash instead of a node.

The most resource-consuming operation in the tree creation is hashing. For a perfect binary tree
with n leaves to compute the first layer of nodes, we will compute n hashes, for the next n , and 

so on.
Therefore, the time complexity of Merkle tree creation is 

T (n)≈ n+
n
2

+
n
22 +...+2 log(n)<2 n (1)

For the perfect k-ary Merkle tree, the claim is similar.

T (n)≈ n+
n
k

+
n
k2 +...+k log k (n)<2 n (2)

Figure 3: Algorithm 1: Create k-ary Merkle tree

Algorithm (alg. 1) is inefficient in terms of memory complexity. To be precise, it stores n leaf nodes, 
which contain one hash each, and O(n) inner nodes, which contain one hash and k + 1 pointers.
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It is useful to know that the height of an k-ary Merkle tree is logk(n). For a binary Merkle tree, the 
height is log2(n). It is quite obvious that trees with a bigger arity are shorter and have fewer nodes.  
Unfortunately, it doesn’t affect the algorithms a lot. The main effects are implementational.

Appending of a new element, i.e. appending of a leaf, can be accomplished by a complete rebuild 
of  the  tree.  Then,  the  complexity  of  appending a  new element  to  the  tree  equals  a  new tree 
creation. In other words, complexity is O(n) hashing. However, there is a solution to the problem. 
We can mark duplicated nodes. If we have a marked leaf, swap it with the new element. If we have 
a duplicated inner node, we must swap it with a new node with the new leaf in its descendants;  
that is more complicated. If the tree is full and no duplicate nodes are left, then we increase the 
tree’s height by changing the root. The root becomes an internal node. In theory, the appending of  
a new element leads to the recalculation of the root. The appended element affects only one node 
on each level, so it should require O(logk(n)) hashing operations.

3.3. Membership proofs

As was said before, it is possible to create a proof of element membership for the Merkle tree.  
There are different ways to prove data inclusion. The first is through some equality verification 
(let’s name it “verifiable proof”), and the second is through the direct search of the element in the 
memory (let’s name it “searching proof”).

The first type of proof that was already mentioned (“verifiable proof”) is a membership proof,  
which is a set of pairs of hash (hashes) and direction ({(hi,  d i)|i= 1 , k}).  It  might be helpful to 
append node parameters or other information to the proof to see what we are proving in more 
detail. For example, it is possible to append a version of a tree to the proof [21] or provide the node 
with  a  number  of  currently  appended leaves  [21],  instead of  the version.  We might  need the 
version of a tree to know what hash version in a root we need to compare our computed hash in  
root with.

The “verifiable proof” is a membership proof for one data block. However, if we combine several 
proofs for some nodes, we will get proof of membership for a set of nodes named ranged existence.  
In [22], we can see a lot of different types of proof derived from the “verifiable proof”. The main  
types worth mentioning are the already mentioned ranged existence, delete proof, proper removal 
proof, update and ranged update proofs, which prove that a single node or a set of nodes was 
updated within a tree, etc. The main idea of the derived types is to prove the existence of the node 
and its neighbor nodes.

Authors of [21] use “searching proofs”. Instead of giving you the set of hashes, it provides you 
with path from the root to the node. Their path is a concatenation of a version of a tree and a  
concatenation of direction, named the radix path [20]. In a binary tree, we can associate 0 with the 
left child and 1 with the right child, so the radix path is a sequence of bits that help you locate the 
node. In [21], trees are 16-ary trees, so every inner node has 16 children. One child is marked as a  
hexadecimal number, i.e., a symbol in {0, 1, ..., 9, A, B, ..., F }. To verify the proof, you need to store  
the whole tree.  Fortunately,  it  makes the proofs smaller  and verification faster because all  the 
hashes are computed, and you only need to find the node in a tree using comparisons instead of 
hashing. It is possible to use “searching proofs” along with the “verifiable proofs” if needed.

Algorithm (alg. 2) is a pseudocode for “verifiable membership proof” generation for a binary 
Merkle tree. Firstly, it searches for the required element by searching over the set of leaves, which, 
unfortunately,  is  unsorted.  The search requires  O(n) comparison operations.  When the node is 
found, the algorithm (alg. 2) searches for the corresponding hash values in O(log2(n)) operations to 
generate membership proof. Because all hash values are already calculated, the last complexity is 
also evaluated in comparison operations.
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Figure 4: Algorithm 2: Generate binary Merkle tree proof

In a binary Merkle tree, a membership proof (per Algorithm 2) consists of a set of pairs. Each pair 
contains  a  hash  value  and  a  positional  indicator  specifying  whether  the  hash  should  be 
concatenated from the left or right.  Consequently,  the size of  such a proof is  on the order of  
O(log2(n)).  For  a  k-ary  Merkle  tree,  proof  construction  methodologies  differ,  primarily  in  the 
structure of the proof elements. Consider a verifier who, at a given step, holds a hash hi and needs 

to compute its parent hash, defined as h = H(h1, h2, ..., hi, ..., hk). The proof must supply all sibling 

hashes of hi.
One efficient approach is to structure the proof element as a pair of concatenated strings:
A left-side string:  l = h1||h2||...||hi−1

A right-side string: r = hi+1||hi+2||...||hk

In this model, if hi is the first element (i=1), the left string l is empty. Likewise, if hi is the last 
element (i=k), the right string r is empty. To proceed, the verifier computes the parent hash using 
the received elements as H(l||hi||r).

The other way is to represent the step of the proof like a whole set of additional hashes and an 
id of position, where the hash from the previous step must be concatenated. The first strategy 
requires less space because there is no id in it, and has less complexity to verify because we don’t 
have to find appropriate places to put the hashes. However, both strategies have the same time 
complexity. The size of the proof for k-ary Merkle tree is  O((m − 1)logm(n)). Algorithm (alg. 3) 
shows the second approach for an k-ary Merkle tree membership proof cration.

Algorithms (alg. 4), (alg. 5) that checks membership proof uses hashing operation. For the k-ary 
tree, algorithms will perform (k − 1) logk(n) hashing operations. So the complexity of verification of 
membership proof is O((k − 1) logk(n)), where n is the number of elements in the tree.

Figure 5: Algorithm 3: Generate k-ary Merkle tree proof
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Figure 6: Algorithm 4: Check binary Merkle tree membership proof

Figure 7: Algorithm 5: Check general membership proof

4. Merkle tree extensions

As previously established, numerous definitions and variations of Merkle trees exist. Merkle trees 
and their extensions can be categorized based on several key characteristics:

1. The tree structure is not necessarily binary. It  can be designed as a generic k-ary tree,  
where each internal node has at most k child nodes. Implementations such as binary (k=2)  
or 16-ary (k=16) trees are common.

2. The  tree's  topology  may  be  perfect  or  imperfect,  as  well  as  balanced  or  unbalanced, 
depending on the specific application and construction algorithm.

3. The overall structure can be either static (constant) or adaptive, dynamically changing in 
response to data modifications.

4. The  digest  function  itself  can  be  customized.  This  includes  variations  in  its  input 
parameters or the computational logic used to produce the hash output.

5. The tree may incorporate specialized node types beyond the standard leaf  and internal 
nodes to support extended features.

6. The  fundamental  tree  can  be  augmented  with  additional  data  substructures  to  provide 
enhanced functionality.

4.1. Sparse Merkle Tree (SMT)

A Sparse Merkle Tree (SMT) [2] is  an authenticated data structure conceptually modeled as  a 
perfect Merkle tree of intractable size. The structure assumes a distinct leaf node for every possible 
output of its underlying cryptographic hash function. Consequently, for a hash function with a 
256-bit output space, such as SHA-256, the tree would conceptually comprise 2256 leaf nodes. To use 
that behavior, we can assume that every leaf has an additional field id. With that field, we can  
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efficiently append new elements. Moreover, because of that field, we don’t have to search for the  
element in the membership proof generation. So we will win in speed, but occasionally, we lose in  
memory. To bind the hash of the leaf to its id, we define the hash of a leaf node as H(id||data).

Remark. Sometimes (like in [21]), a sparse Merkle tree is called an Addressable Merkle Tree 
(AMT). Both names are correct and give some intuitive information about the tree. We will use the  
first name “Sparse Merkle Tree”.

To create an empty k-ary sparse Merkle tree of height h, one can use pseudocode (alg. 6), where 
the input size must be equal to kh, where k, h ∈ N, k ⩾ 2. If we are using SHA-256, We can have  

sizes 2256 (k = 2, h = 256), 4128 (k = 4, h = 128), etc.

Figure 8: Algorithm 6: Generate empty k-ary sparse Merkle tree.

Appending a new leaf here means changing the existing leaf hash because the structure has already 
been created, and updating the tree. The algorithm for appending a new element is much simpler  
than the one for a binary Merkle tree because we know where the new node must be, and there is  
no need to  rebuild  the entire  tree  or  find an empty place.  To find a  leaf  algorithm,  use  O(1)  
operations. To update the tree, we need to update the leaf, the changed leaf’s parent and its parent,  
and so on. If we use pointer parent in all the nodes, then it is a trivial task. If we save all the nodes 

using the mentioned notation, then, if we change leaf, we N i
j know that its parent node is node 

N
[

i
k

]

j− 1 (or in other words children of a node N i
j is node N k i+a

j +1 , a= 0 , k− 1).

The algorithm of membership proof generation for sparse Merkle tree is similar to (alg. 3) for k-
ary Merkle tree proof generation. The only difference is  the search of a node. The size of the  
membership proof is also the same as for a k-ary tree, i.e.  O((k − 1) logk(n)). Verification of the 
membership proof has no change compared to (alg. 4). However, if the hash of a leaf is computed 
as H(id||data), then it is reasonable to attach the id of a node to the proof and use the right hash  
value for the proof verification at the beginning.

For a sparse Merkle tree, there is also a method of proving element exclusion. The check of the  
exclusion is the same algorithm as the check of inclusion because if the element exists, we know 
the id of the leaf where the hash of the data must be located. Therefore, if the algorithm (alg. 4), for 
the  SMT proof,  returns  True,  then the  element  exists,  and  if  the  algorithm returns  False,  the  
element doesn’t exist.

4.2. Indexed Merkle Tree (IMT)

An Indexed Merkle tree is a Merkle tree, extended with additional structure [23]. To be precise, 
leaves are organized in a linked list. Leaves have four fields: val, nextId, nextVal, and hash. The hash 
field equals  the hash value of  the concatenation of  three previous fields.  Because storing data  
directly in the leaves might be insecure and memory inefficient, it is possible to use val and nextVal 
fields to store data hashes. Internal nodes are the same as the usual Merkle tree internal nodes. Like 
the sparse Merkle tree, the indexed Merkle tee can be an intractable structure, but it is possible to  
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make it more compact because the newly appended leaf will be located in the most left-most free 
position. That is why we can store the biggest left-most nonempty subtree of the tree.

Algorithm (alg. 7) is presented in the form of a pseudocode for creating a new empty k-ary 
indexed Merkle tree with a predefined height. It is pretty much the same as the other tree-creation 
algorithms ((alg. 1), (alg. 6)). The only difference is the arguments for leaf creation are different (like 
with sparse Merkle trees).

Figure 9: Algorithm 7: Generate empty k-ary indexed Merkle tree

Appending a new value requires finding the leaf in O(n) comparison operations in a sorted linked 
list,  and then two updates of the root in  O(log2(n)) operations of finding hash values for each 
update.

Figure 10: Algorithm 8: Append element to indexed Merkle tree

There is an algorithm for appending multiple leaves at once for the indexed Merkle tree. It is the  
most  efficient when we append the sorted set  of  values [23,  24].  For  more,  we can efficiently 
append a Merkle subtree or indexed Merkle subtree to the existing indexed Merkle tree [24].

Algorithm (alg. 9) for the membership proof generation is similar to previous algorithms but has 
some differences. The main difference is the additional return values. We need an algorithm to 
return the set of searched node values because the hash value of a node isn’t only the hash of a  
value but a hash of the concatenation of node values: val, nextId, nextVal. We can’t know the last 
two values beforehand, unlike the id in a space Merkle tree.

Algorithm for generating membership proof (alg. 9) [24], firstly look for a leaf that has the same 
value as the one searched for or as close as possible to its  value.  It  requires  O(n) comparison 
operations. Then, the algorithm searches for the hash values of the required vertices in O(log2(n)) 
comparisons. Because the structure formed by leaves is sorted (the further, the greater the values 
are), we can find exactly where our desired element should be. Therefore, if the verification of the 
membership proof returns True, then our element belongs to the tree, and if the algorithm returns 
False, then the element does not belong to the tree. So, the membership proof is also an exclusion 
proof.  The  proof  verification  algorithm  is  the  same  as  for  other  trees  but  uses  the  proper 
concatenation for the leaf node values.
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4.3. Verkle Trees (VT)

Verkle Tree [10], i.e., Very Short Merkle Tree, is a bandwidth-efficient alternative to Merkle Tree. 
The main difference is the replacement of cryptographic hash functions with Vector Commitments. 
That change affects the size of the proof for k-ary Verkle Tree. It works better if the k is bigger. In 
k-ary

Figure 11: Algorithm 9: Generate membership proof for indexed Merkle tree

Merkle trees, root’s hash value is equal to  H(h1,  h2, ...,  hk), where  hi,  i= 1 , k are hashes of root 
children. If we need Prover to prove that hash hj is really in the tree, Prover needs to send the 
Verifier all  hi,  i= 1 , k,  i≠ j. However, if we use vector commitments, then we can calculate the 

hash of the root using the next formula: H′(h1, h2, h3, ..., hk) = H′(h1, ..., h j− 1)H′(h j)H′(h j+1..., hk). So, 
Prover needs to give only two values instead of  k−1.  That change makes the proof size of the 
Verkle tree more compact than an ordinary Merkle tree proof (O(logk(n)) instead of O(k logk(n))). 
The only downgrade is  the usage of  vector  commitments  that  are  more time-consuming than 
hashing, which makes the complexity of tree creation and tree element insertion harder than for 
the Merkle tree (O(kn) instead of O(n) for construction [10]). However, it is worth mentioning that 
bandwidth is typically much more expensive than computational power in the applications.

4.4. Radix Merkle Tree (RMT)

Radix Merkle is built on top of the Merkle tree but with a different goal. For more, it uses “search 
proof”. However, as said before, is possible to use both types of proof.

The difference between the Merkle tree and the radix Merkle tree is described in Fig. 3. The  
Radix Merkle Tree [20] consists of leaves, branches (or just an inner node), and root nodes. In 
addition to them, radix trees, for example, in Ethereum [20], also use the Extension node, which is 
a node containing a section of a radix path spanning two or more nodes without any side branches  
that are common for two or more child nodes. Leaves in a radix Merkle tree aren’t always located  
on the last level. A leaf can even be a child of the root. These different node types and the way the 
tree stores the information creates a very different tree structure.

It is common to use the 16-ary radix Merkle tree. Because every inner node has 16 = 24 child 
nodes, we can name every child node with a hexadecimal digit. Because every symbol takes exactly 
4 bits, it is common to use nibbles.

Definition 4.1 (Nibble). A nibble refers to four consecutive binary digits or half of an 8-bit byte.
The term nibble is used to describe a child of a node, and so to define a path from the root to  

some leaf. Radix tree has a different proof format that uses nibbles. The membership proof is a  
radix  path from the root  to  the leaf.  In  other  words,  the  radix  path is  just  an  ordered set  of 
directions to the next nodes, i.e., nibbles. We can concatenate those hexadecimal digits into one  
hexadecimal number representing the path.

The main advantage of a radix tree [20] is the ease of locating data from an address’s radix path, 
sometimes called node key.  The next  most  valuable  property  is  the  ease  of  appending a  new 
element, such that a tree is still sorted. A radix tree’s disadvantage is that it is sparsely populated 
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with leaves at varying heights until the radix tree is nearing full saturation. Therefore, if the lookup 
advantages of a radix tree could be transferred to a k-Merkle tree, say by using radix paths in all 
TXs, then a very dense data structure with leaves on a common level and fast look-up times could  
be created.

Figure 12: Comparison of binary Merkle, k-Merkle, and k-radix tree structures [20]

Because the radix path is a hexadecimal number, it is possible to use the account address as a radix 
path [20]. That gives us a tool to record the users.

Authors of [20] give an example of radix tree creation for Ethereum account management. A 32-
byte long Ethereum address is read in hex, where each hex value is read as a path in the k = 16-
radix tree. A hex value between 0 and 15 corresponds to a path from the current node to one of its 
children ranging from 0 to 15. Once the last occupied node is passed, regardless of whether all 
hexes in the address have been read, a leaf node containing the account is created. If a leaf node is  
reached during this process, that leaf node is replaced with a branch node, and the account leaves  
are moved down a level. When a path contains a series of nodes that do not branch off (i.e., each 
node  has  only  one  child),  that  sequence  is  compressed  into  a  single  extension  node.  This 
optimization avoids using multiple branch nodes to represent a simple, linear path.

4.4.1. Relative Index and Time Stamped Merkle Hash Tree (RITS-MHT)

The Relative Index and Time Stamped Merkle Hash Tree (RITS-MHT) is a data structure proposed 
in [11]. It was specifically designed for data auditing in cloud computing environments [25]. This 
data structure is a tree that integrates a Merkle Tree (MT) with a radix path for each node. This  
design significantly improves search efficiency, reducing the computational cost of finding a data 
block from O(n)  —as found in Wang’s protocol [6] — to a much faster  O(logn). Additionally, the 
structure tracks the time of the last data modification, which serves to guarantee data freshness. In  
[11] described algorithms for inserting and removing data and its signing.

4.4.2. Merkle Patricia Trie (MPT)

Merkle Patricia tree (or Merkle Patricia trie) [19, 20] is a radix Merkle tree implementation used in 
Ethereum. In Ethereum, every block header contains three Merkle trees for three kinds of objects 
[19]:  transactions,  receipts,  and  state,  which  aims  at  allowing  light  clients  to  make  and  get  
verifiable answers to many kinds of queries. The transactions tree serves to verify the inclusion of 
a  transaction  within  a  block,  while  the  receipts  tree  facilitates  the  retrieval  of  all  instances 
corresponding  to  a  particular  event  (e.g.,  amount  of  gas  used  or  any  event  logs  from  the 
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transactions), and the state tree to check the current balance of an account, whether an account 
exists, or to simulate running transactions on a given contract.

Ethereum requires a tree data structure that can quickly recalculate a tree root after an edit,  
insert, or delete operation. The tree root must depend on the data and not on the order in which  
updates are made. Note that regular Merkle trees do not satisfy this requirement. Furthermore, the 
data  structure  must  prevent  Denial-of-Service  attacks  where  malicious  attackers  may  craft 
transactions to make the tree as deep as possible and, hence, slow updates. To stop this, the data  
structure must have bounded depth.

In The Merkle Patricia Tries, proof of membership, i.e., key, is encoded using a special Hex-
Prefix (HP) encoding [19]. The nibble is appended to the beginning of the key to signify parity and 
terminator status. Parity denotes if the length of a key is even or odd. Terminator status denotes  
whether the node is an extension or a leaf node. Note that if the original key value was of even  
length, an extra zero nibble would be appended to achieve overall evenness. This ensures that the 
key can be properly represented in bytes.

4.4.3. Jellyfish Merkle Tree (JMT)

Jellyfish Merkle Tree [21] is a modified version of AR16 MT  , i.e. Addressable (Sparse) Radix 16-ary 
Merkle Tree, with the following features:

 Version-based  Node  Key. JMT  chooses  a  version-based  key  schema  with  multi-fold 
benefits:
 Facilitating version-based sharding.
 Greatly lowering compaction overhead in LSM-tree (Log-Structured Merge-tree) based 

storage engines such as RocksDB.
 Smaller key size on average.

 Less Complexity. JMT has only two physical node types, Internal Node and Leaf Node. 
Ex- tension node is removed, because it is unlikely for two paths to share a long common 
part of the path.

 Concise Proof Format. The number of sibling digests in a JMT proof is less on average 
(Θ(log( number of existent leaves))) than that of the same A(S)RMT without optimizations 
(Θ(log( number of maximum leaves))), i.e., the height of the equivalent A(S)MT), requiring 
less computation and space.

Authors of [21] created Jellyfish Merkle Tree as a tree optimized for computation and space, 
designed for the Diem Blockchain. The proof format and verification algorithm are complex, but 
the tree has a smaller proof size and less computation overhead of verification that practically 
benefits users while keeping the algorithm complexity transparent to end users.

5. Improvements

5.1. Storage space improvement

5.1.1. Pruned Merkle Tree (PMT)

In  some cases,  using Merkle  trees  to  compute digest,  i.e.  the hash in  root,  there  is  a  need to 
duplicate the node. Authors of [17, 18] say that it is an ineffective way and propose their approach, 
firstly named Merkle Trim Tree (MTT), and then named Pruned Merkle Tree (PMT). They change 
the construction algorithm by delaying the computation of the digest of the first node and other  
nodes to the root. Such a construction allows us to save a little of memory by not copying blocks.  
An example of the difference between the Merkle tree and the Pruned Merkle tree is shown in  
Fig. 13. Because of not copying the node, the algorithm for PMT creation will save space equal to 
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two nodes in comparison with the usual MT creation algorithm. If the tree is perfect, then the 
pruned Merkle tree will look like the usual Merkle tree.

5.1.2. Default hashes for SMT

A sparse Merkle tree is a big mathematical structure, so despite being fast, sparse Merkle trees need 
a lot  of  memory because there are a  lot  of  empty nodes,  so,  there is  a  necessity to use some 
memory-saving strategies.

The problem with memory can be solved by associating the empty subtree, i.e. subtree without  
non- default leaves, with one node with some default hash [2, 21]. We can do it in two ways: by 
predefined hash value hash for the whole tree or by one predefined hash for one level of the tree,  
i.e. for a tree of height h, we have hashh= hash, hashh− 1 = H(hashh, hashh), hashh− 2 = H(hashh− 1, hashh− 1), 
etc. However, that idea is incomplete because it slows down non-membership proof. The next way 
is not only to change the empty subtree by one node but also to leverage the leaf to a higher level.  
Unfortunately, that approach leads to higher algorithm complexity.

Figure 13: The comparison of transactions in the traditional Merkle tree (MT) and Pruned Merkle 
Tree (MTT) to form the root for three transactions [17, 18]

5.1.3. Tree inner nodes storing

Another way to save memory for a sparse Merkle tree is not to save inner nodes hash in the  
memory,  because it  is  possible  to  calculate  them when needed using leaf  hashes.  There is  an  
algorithm, TREEHASH [26,  27],  which can compute the root of a tree and require only leaves 
hashes. The algorithm can compute the hash in a root of a tree in O(n) time, using O(log(n)) space 
in the process. TREEHASH is created for binary trees, but extending it to work with k-ary tree isn’t 
a problem, (alg. 10).

Figure 14: Algorithm 10: TREEHASH for k-ary tree
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Algorithm (alg. 11) can generate proofs and require only leaves hashes to work. It is similar to 
algorithm (alg. 1), which creates the tree, but with additional steps and without the tree creation. 
Its membership proof generation requires you to calculate O(n) hashes for the whole tree to create 
the membership proof, so it is memory-efficient but time-inefficient. The mentioned algorithm is a 
straightforward method for calculating the proof. There are better approaches to it [26–28].

5.1.4. Time and space compromise solution

To find a compromise between time and space, authors of [2] define caching strategies based on 
capturing branches. The main idea is to store hashes of some nodes, and then use saved hashes to  
skip some computations. On average, there will be faster proofs.  Author of [28] proposes a proof 
computing algorithm working with O(log(n)/h) operations per output and O(log(n(2h/h))) space, 
using some saved subgraphs.

Figure 15: Algorithm 11: Generate binary Merkle tree proof from hashes

5.2. Membership proof size improvement

Average membership proof size improvement. In [29] described a strategy similar to building a 
Hafman code  tree.  It  reduces  the  size  of  membership  proof  for  frequently  used  elements  but 
increases the membership proof size for rarely used elements. This approach makes the proof size  
less on average than the same for the usual Merkle tree.

Verkle Trees (VT). As was said before, Verkle Trees has a small membership proof because they 
use committing instead of hashing. That, reduce the proof size from O(k logk(n) to O(logk(n), by  
the price of computations. There is no problem with implementing that strategy in sparse Merkle  
trees, indexed Merkle trees, or even in radix Merkle trees.

5.3. Logic improvement

The Odd and Even Merkle Hash Tree (O&E MHT), proposed in [8], presents an alternative method 
for  root  hash  computation.  The  fundamental  principle  of  this  approach  is  to  deviate  from 
sequential  node processing.  Instead,  nodes are segregated based on their index parity:  all  odd-
indexed nodes are aggregated to form a left branch, while all even-indexed nodes constitute a right 
branch. An example of this structure is illustrated in Fig. 14.

Notably,  this  construction  does  not  reduce  algorithmic  execution  time;  on  the  contrary,  it 
increases the overall complexity of the implementation. The Modified Merkle Hash Tree (MMHT), 
also  presented  in  [8],  is  a  technique  designed  to  avoid  the  need  for  node  duplication.  The 
methodology involves partitioning the initial set of hashes into two distinct subsets. Following this, 
two  intermediate  hash  values  are  computed  from  these  respective  subsets,  potentially  using 
different schemes. The final root hash is then derived by computing the hash of the concatenation 
of these two intermediate results.
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Figure 16: Example of perfect Odd and even modified Merkle hash tree (O&E MHT) [8]. Here hi is 
a hash value of i-th node

Figure 17: Binary modified Merkle hash tree (2-ary MMHT) [8]. Here h j
i
 is a hash in i-th node in j-

th row. That is also true for a Node notation. Node j
i
 is a node on i-th place in j-th row

As shown in Fig. 17, for a binary Modified Merkle hash tree (2-ary MMHT) there is a set of x values 
that digest is computed as a chain, and the set that digest is computed as the usual binary Merkle  
tree scheme. We can use the tree construction to avoid duplication of nodes in the Merkle tree.  
MMHT algorithm process steps are described in algorithm 1 in [8]. Authors are using a Count 
trigger value to give a number of nodes to be concatenated together. As shown in Fig. 17 to avoid 
duplications we need to have x+2k data blocks, so the second part will form the perfect Merkle tree 
of height  k. However, it is possible to give fewer values than needed to have the perfect Merkle 
tree. So the complexity of the approach for a tree that is divided into two parts of length x and t is 
equal to the complexity of an ordinary Merkle tree with t elements + x.

There are some problems with MMHT. The main of them is the time to get to the first blocks.  
The less the sequence number of the block, the bigger the time is. Because of that, for the first  
blocks, the proof size is bigger, the modification time is bigger, etc.

In article [30] about recursive STARKs, the author introduces us to recursive proving. using 
recursive STARKs we prove some statements for leaves, then for nodes in the next level and up to 
the root node. The proof is valid if all the proofs are valid. It is an AND logic. Because AND logic is 
harder than OR, authors of [31] propose to use OR logic. They write a lot of advantages of using 
OR logic in proof aggregation. Unfortunately, that work is in progress and there is no practical  
implementation yet.
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6. Comparison and results

All the mentioned trees have different constructions, use cases, and complexities. Table 1 describes  
the main advantages and disadvantages of those constructions.

Table 1
Merkle tree types comparison

Tree type Advantages Disadvantages

k-ary MT Simple implementation. Average speed. 

k-  ary SMT Faster insertion and deletion compared to k-ary 
MT, support nonmembership proof. 

Requires a lot of memory (leaf 
for every possible output of the 
hash function). 

k-ary IMT Faster insertion and deletion compared to k-ary 
MT. Can be built on top of an existing linked 
list. Has a smaller downgrade for appending 
multiple elements at once than SMT. 

Slow search of node, which can 
affect the speed of membership 
proof creation, element insertion, 
etc., when the tree is nearly full. 

k-ary VT Short proofs, so faster proof exchange and 
proof verification. 

Hard creation and insertion 
because of the use of vector 
commitments instead of hashes. 

k-ary RMT Short proofs, and even shorter proofs for proofs 
with multiple nodes with a common path. 

Complex implementation, 
memory inefficient.

Theoretical  results  of  the  complexity  of  the  main  algorithms,  i.e.  new  element  insertion,  
membership proof generation and verification are shown in a table 2.

In Table 2, “h.” means complexity in hashing, and “c.” means complexity in comparisons. There 
are  two  exceptions.  VT  uses  a  commitment  function  instead  of  a  hashing  and  RMT  uses  a  
comparison  function  instead  of  hashing.  MP search  means  MP creation  while  the  whole  tree 
structure is available

Table 2
Theoretical complexity for trees with n leaves

k-MT k-SMT k-IMT k-VT k-RMT

tree size (nodes) O(n) O(n) O(n) O(n) O(n) 

proof size (pairs) O(k log_k(n)) O(k log_k(n)) O(k log_k(n)) O(log_k(n)) O(k log_k(n)) nibbles

Creation (h) O(n) O(n) O(n) O(kn) O(n) 

Inserting (h) O(k log_k(n)) O(k log_k(n)) O(k log_k(n)) O(k log_k(n)) O(k log_k(n)) 

Node search (c) O(n) O(1) O(n) O(n) O(1) 

MP search (c) O(n) O(log_k(n)) O(n) O(n) O(1) 

MP creation (h) O(n) O(n) O(n) O(n) O(1) c.

MP verification (h) O(k log_k(n)) O(k log_k(n)) O(k log_k(n)) O(log_k(n)) O(log_k(n)) c

NMP search (c) - O(log_k(n)) O(n) O(n) O(1) 

NMP creation (h) - O(n) O(n) O(n) O(1) c.

MMP verification (h)- O(k log_k(n)) O(k log_k(n)) O(log_k(n)) O(log_k(n)) c
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Conclusions

There are a lot of Merkle tree constructions for different purposes. They have their pros and cons.  
If we need a simple tree implementation, then the best choice is the sparse Merkle tree (SMT). If the 
purposeof a tree is to have short proofs for big bandwidth, then the best choices are the Verkle 
Tree (VT) and the radix Merkle tree (RMT). If the purpose of a tree is to store a huge amount of 
data, then the best choices are sparse Merkle tree (SMT) and indexed Merkle tree (IMT). If we are 
constantly modifying the tree, or we need fast proofs having nearly unlimited memory on a Prover 
and Verifier side, then the best choice is the radix Merkle tree (RMT). And finally, if we are lacking 
in memory, then the standard Merkle tree could be the best choice. For the best performance, it is  
better to implement the mentioned in a section 5 improvements if possible.

Declaration on Generative AI
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