
Alignment of Process Lifecycle and Software Product Line
Engineering Phases
Philipp Hehnle1,∗, Manfred Reichert1,∗

1Institute of Databases and Information Systems, Ulm University, Germany

Abstract
Different organisation often run variants of the same business process. As opposed to managing each variant
separately, variants can be maintained centrally in a customisable process model, which allows applying changes
centrally and propagating them to each variant automatically. However, these approaches focus on the control
flow of the business processes. Software Product Line Engineering (SPLE) deals with the efficient development of
similar software products by selecting features for individual software variants. In previous work, we applied
the concepts of SPLE to business processes in order to be able to select the implementation of certain process
variants. For both business process management and SPLE there are a lifecycle and phases, respectively, that
describe the development process, which is associated with concepts and tools to facilitate it. When combining
process variability on the control flow level with process implementation variability using SPLE, the process
lifecycle needs to be aligned with the phases of SPLE. In this work, we present a consolidated lifecycle that allows
for the integrated usage of concepts and tools of process variability and SPLE.

Keywords
Business Process Management, Software Product Line Engineering, Process Configuration, Process Variability,
Process Family, Software Reuse

1. Introduction

Different organisations run variants of the same business processes. Craftspersons may apply for a
special parking permit in various German municipalities (e.g. Munich1 and Stuttgart2), which permits
them to park their cars in the urban area when visiting their clients without acquiring a parking permit
for each stop. The process of applying and checking the application for a special parking permit is
similar, yet slightly different among the municipalities. Process variants in the public sector have been
identified by other researchers as well [1]. Different approaches propose customisable process models
containing all process variants in one model forming a family of business process variants (process
family) [1]. By using a customisable process model, changes and optimisations can be applied centrally,
which reduces redundancies and thereby effort [2]. Special modelling languages and extensions to
existing modelling languages have been proposed to model variability in business processes and tools
have been presented to create a process variant by applying transformations to a customisable process
model, which is called deriving a process variant [1]. For instance, the Hide & Block approach allows
hiding and blocking edges of a customisable process model, which removes single edges or entire
outgoing paths when deriving a process variant [3]. However, the approaches of customisable process
models focus on control-flow variability of the business processes.

To avoid redundancies and thereby reduce costs when developing similar software products the
discipline of Software Product Line Engineering has evolved. Software products can be built by selecting
features from a set of common core artefacts, which constitute the Software Product Line (SPL) [4].
In literature, selecting features and building a software product is referred to as deriving a software
product from an SPL [5, 6]. Preprocessors, aspect-oriented programming, special language extensions

Vienna’25: 17th Central European Workshop on Services and their Composition (ZEUS), February 20–21, 2025, Vienna, Austria
∗Corresponding author.
$ philipp.hehnle@uni-ulm.de (P. Hehnle); manfred.reichert@uni-ulm.de (M. Reichert)
� 0009-0006-0420-7000 (P. Hehnle); 0000-0003-2536-4153 (M. Reichert)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://stadt.muenchen.de/service/info/hauptabteilung-i-sicherheit-und-ordnung-praevention/1072021/
2https://www.stuttgart.de/organigramm/leistungen/sonderparkausweise-fuer-gewerbetreibende-und-soziale-dienste.php

S. Böhm and M. Vidgof (Eds.): 17th ZEUS Workshop, ZEUS 2025, Vienna, Austria, 20–21 February, 2025
published at http://ceur-ws.org

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:philipp.hehnle@uni-ulm.de
mailto:manfred.reichert@uni-ulm.de
https://orcid.org/0009-0006-0420-7000
https://orcid.org/0000-0003-2536-4153
https://creativecommons.org/licenses/by/4.0/deed.en
 http://ceur-ws.org


like Jak for Java, and tool chains like FeatureHouse can be used to implement variability and derive
software products by selecting and composing features from the common core artefacts of an SPL [6].

A software product that executes a business process in form of a process model is called Process-
Aware Information System (PAIS) [7]. In previous work [8, 9], we applied the concepts and tools of SPL
Engineering to PAISs to allow for implementation variability of business processes.

1.1. Problem statement

Both the approaches for customisable process models and SPL Engineering have defined steps, which
build a lifecycle model and a phases model, respectively. Each step/phase consists of activities and is
associated with certain concepts and tools supporting the necessary activities. In order to allow for
process variability on the control-flow and implementation level the steps of the lifecycle and the phases
of SPL Engineering need to be aligned, i.e. the associated concepts need to be linked and the tools of
each step need to be integrated.

1.2. Contribution

This paper presents a consolidated lifecycle for managing and improving process variants in terms
of control-flow and implementation variability whose steps are associated with the corresponding
concepts and tools.

1.3. Outline

In Section 2, related work is assessed regarding the lifecycle of processes and the phases of SPL
Engineering. Section 3 presents a consolidated lifecycle that integrates the steps of the process lifecycle
and the phases of SPL Engineering including the concepts and tools of both domains. The paper
concludes with a summary and an outlook in Section 4.

2. Related Work

This section presents the phases of SPL Engineering as well as the BPM lifecycle.

2.1. Phases of Software Product Line Engineering

SPL Engineering typically is divided into four phases [6, 10]. Figure 1 shows the phases of SPL
Engineering. During domain analysis, the requirements in terms of features of the SPL are elicited
including the commonalties and differences among the software products resulting in a feature model.
Feature models were first introduced by [11] as a tree structure. Figure 5 shows an example feature
model. The SPL is the root. The features the SPL consists of are connected via edges to the root.
Features themselves can consists of features. Furthermore, features can be marked optional, mandatory,
and alternative. During domain implementation, the features identified during domain analysis are
implemented using variability mechanisms (e.g. preprocessor, aspect-oriented programming, language
extensions like Jak, tool chains like FeatureHouse) that allow composing them dynamically. Domain
analysis and domain implementation are considered domain engineering as they comprise activities
concerning the SPL as a whole. When deriving a software product from an SPL, first, during requirements
analysis the features that shall be contained in the software product are selected from the feature model
created during domain analysis. The selected features form a configuration, which is used during
software generation. Based on the configuration, the implemented features are composed and the
software product is thereby generated. Requirements analysis and software generation are considered
application engineering as they comprise activities concerning one individual software product that is
derived from an SPL.

FeatureIDE is an integrated development environment (IDE) that supports developing SPLs during
the corresponding phases [10]. For domain analysis, FeatureIDE provides a feature modelling tool (cf.

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

2



Domain analysis Domain
implementation

Software
generation

Requirements
analysis

D
om

ai
n

En
gi
ne

er
in
g

Ap
pl
ic
at
io
n

En
gi
ne

er
in
g

Figure 1: Phases of Software Product Line Engineering adapted from [6]

Figure 5). For domain implementation, FeatureIDE support various variability mechanisms. In order
to select the desired features during requirements analysis, FeatureIDE provides a configuration editor
(cf. Figure 6). During software generation, FeatureIDE relies on the chosen variability mechanism to
compose the software product that shall be derived from the SPL.

2.2. Business Process Management Lifecycle

Business Process Management (BPM) supports “business processes using methods, techniques, and
software to design, enact, control, and analyze operational processes involving humans, organizations,
applications, documents and other sources of information.”[12] Various researchers describe the steps
and activities for BPM as BPM lifecycles.

Figure 2: Consolidated BPM Lifecycle

While there are minor differences among
the presented BPM lifecycles, the lifecycle
models do have a lot in common. Figure
2 shows a consolidated BPM lifecycle that
incorporates the commonalties of the pre-
sented BPM lifecycle models. During the pro-
cess design step, the processes are modelled
[13, 14, 15, 16]. A graphic representation of the
business processes facilitates communication
for stakeholders. This step is also called mod-
eling [17, 18]. In the process implementation
step, the process is realised in an organisation,
usually it is implemented as software [16, 18].
A workflow-management-system can be used.
This step is also called configuration [13, 14, 15].
In the context of process variability, [17] pro-
pose an additional step selection/instantiation,
in which the desired process variant is selected and automatically instantiated while ensuring consis-
tency and correctness of the instantiated process variant. Although this step is not included by other
BPM lifecycle models, we incorporate it in our consolidated BPM lifecycle as we deal with process
variants. In the process enactment step, the implemented process is executed, often in a workflow
engine [13, 14]. This step is also called execution [15, 16, 18]. During process evaluation, running process
instances are monitored and evaluated, data of running processes is aggregated to find deficiencies,
and finally improvements are collected, which serve as input for the process design step in which the
improvements are incorporated into the process model [16, 14]. This step is also called diagnosis [13, 15]
or optimisation [17, 18].

Some researchers like [16, 18] propose further steps, e.g. strategic activities in which organisational
and process goals are defined. These steps are out of scope for this work, as we focus on the digitisation

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

3



of business processes.
The interested reader is referred to the literature reviews [19] and [20] about BPM lifecycles.

3. A Consolidated Lifecycle for Control-Flow and Implementation
Variability of Processes

This section presents a consolidated lifecycle model that maps the phases of SPL Engineering to the steps
of the BPM lifecycle in order to allow for process variability on the control-flow and implementation
level. First, a real-world example is described based on which requirements are deduced. Finally, the
consolidated lifecycle model is presented satisfying the requirements.

3.1. Special Parking Permit for Craftspersons

During a cooperation with German municipalities, the process for checking the special parking permit
for craftspersons was inspected. See Example 1 as a simplified description of the process.

Example 1 In various German municipalities, Craftspersons can apply for a special parking permit,
which allows them to park in the urban city during their customer visits without acquiring a parking
permit for each stop. When a craftsperson has applied for a parking permit, the application needs to
be checked. In some municipalities, a clerk checks the application, whereas in other municipalities
the application check is carried out automatically. If the application is justified, the parking permit
is issued. Otherwise, the craftsperson is notified of the rejection. The notification may be via mail,
e-mail, or SMS.

In previous work [8, 9], we implemented Example 1 as a proof-of-concept whereas activities check
application and notify craftsperson are variable, i.e their implementation may vary. We refer
to a digitized business process realised as PAIS with variable activity implementations from which
concrete variants may be derived as PAIS Product Line. The activity implementations were developed as
self-contained plugins. When deriving a variant from the PAIS Product Line, we use the framework
and tool chain FeatureHouse [21] to compose the selected plugins into one software artefact. Then, the
plugins are registered with the corresponding activities they belong to.

Furthermore, it is conceivable that for some municipalities Example 1 is extended in that the craftsper-
son is notified either way (both when the permit is issued and when the application is rejected).
Consequently, the control-flow of the process is variable as in some variants there is a notification
activity when a parking permit is issued whereas in others there is not.

The described scenario represents a PAIS Product line whose control-flow is variable as well as its
activity implementations.

3.2. Requirements

During the development of SPLs and customisable process models certain steps, which are associated
with concepts and tools, need to be carried out, which form the phases of SPL Engineering and the
BPM lifecycle, respectively. When implementing a PAIS Product Line comprising a process model with
a variable control-flow and activities whose implementations may be exchanged, the steps related to
the development of SPLs and customisable process models need to be aligned including the associated
concepts and tools, creating a consolidated lifecycle. Consequently, the consolidated lifecycle needs to
meet the following requirements:

R1: The phases of SPL Engineering and the steps of the BPM lifecycle need to be aligned, i.e. each
phase need to be mapped to a step in order to align the related tasks that need do be carried out
during the development of an SPL and a customisable process model.

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

4



R2: The concepts associated with the phases and steps of SPL Engineering and the BPM lifecycle
need to be aligned, i.e. need to be connected.

R3: The tools supporting the phases of SPL Engineering and the steps of the BPM lifecycle need to be
integrated, so that there is a holistic tool chain facilitating the development of a PAIS Product
Line with a variable control-flow and variable activity implementations.

3.3. The Consolidated Lifecycle

In the following, the consolidated lifecycle, which aligns the phases of SPL Engineering and the steps of
the BPM Lifecycle, is presented (cf. Figure 3).

Figure 3: Consolidated Lifecycle for Control-Flow and Implementation Variability of Processes

Process models created in BPMN 2.0 serve as simple means of communication of the represented
process for business analysts as well as developers who will implement the process [22]. Besides the
visual representation, BPMN 2.0 process models have an XML representation, which allows for the
execution of the models. Consequently, the process model, which will be implemented and executed,
represents the requirements of the digitized business process. In SPL Engineering, the requirements are
elicited during domain analysis, which results in a feature model. Consequently, the domain analysis can
be mapped to the BPM lifecycle step process design. In previous work, we also mapped feature models
to process models. Each activity, which may be variable (i.e. its implementation may be changed or the
entire activity may be optional) equates to a feature in the feature model. Therefore, in previous work
[8, 9], we introduced process feature models, which represent a PAIS Product Line as a feature model
in three levels. The first level corresponds to the PAIS Product Line itself. The second level contains
all activities whereas the third level comprises the possible implementations of the activities. Figure
4 shows an example process consisting of a start event, two activities, and an end event. The feature
model in Figure 5 represents the example process and is created with FeatureIDE. It can be seen that for
both Activities 1 and 2 there are two optional implementations.

Figure 4: Example Process

Figure 5: Feature Model in FeatureIDE

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

5



In the domain implementation phase, the requirements of the SPL are implemented. The BPM lifecycle
has a similar step implementation in which the process model, which represents the requirements,
is implemented in that it can be executed by a workflow-engine. Thus, domain implementation and
implementation of the BPM lifecycle can be mapped. As introduced in our previous work [9], the activity
implementations are developed as composable plugins.

During requirements analysis, the desired features are selected from the feature model whereas during
the selection step of the BPM lifecycle the control-flow of the process is determined, for example by
removing optional activities (Hide & Block approach [3]). The configuration editor of FeatureIDE can
be used to select the desired implementations for the corresponding activities or if no implementation
for an activity is chosen, the activity may be removed. Figure 6 shows the configuration editor in
FeatureIDE that allows selecting activity implementations for example process depicted in Figure 4
taking into account the options laid out by the feature model in Figure 5.

Figure 6: Configuration Editor in FeatureIDE

The configuration of the selected features
from the step requirements analysis and selec-
tion is used during software generation and in-
stantiation to generate a PAIS including the
process model with the selected activity im-
plementation. In line with our previous work
[9], the selected implementations may be com-
posed to one artefact using FeatureHouse and
register as plugins with the corresponding ac-
tivities. Furthermore, optional activities for
which no implementation was selected are re-
moved from the process model, e.g. by apply-
ing the Hide & Block approach.

While the phases of SPL Engineering do not
comprise a runtime perspective, the BPM life-
cycle considers process enactment and evaluation. As our consolidated lifecycle model shall cover
the development, maintenance, and improvement of PAIS Product Lines, we incorporate the runtime
perspective of the BPM lifecycle. During process enactment, process instances are started and during
evaluation the running process instances are monitored for flaws and bottlenecks, which will be analysed
and used as input for improvement during the first step domain analysis and process design.

4. Conclusion

When implementing similar software products as SPL, certain tasks need to be carried out, which
involve concepts and tools. These tasks are organised as the phases of SPL Engineering. The BPM
lifecycle describes the tasks that need to be carried out in order to develop and maintain process variants
on the control-flow level. When implementing process variants whose implementations as well as
the control-flow vary, the approaches of SPL Engineering and customisable process models need to
be combined. In this work, we presented a consolidated lifecycle model that aligns the tasks of SPL
Engineering and the BPM lifecycle. Furthermore, the corresponding concepts were aligned and the
tools where integrated for a holistic perspective and usage.

Future work shall reveal in a deep dive how the approaches for customisable process models (e.g. Hide
& Block approach) can technically be integrated with the tools of SPL Engineering like the configuration
editor of FeatureIDE and be used to automatically derive the process model during software generation
and instantiation when using variability mechanisms like FeatureHouse.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

6



References

[1] M. La Rosa, W. M. P. van der Aalst, M. Dumas, F. P. Milani, Business Process Variability Modeling:
A survey, ACM Computing Surveys 50 (2017) 1–45.

[2] A. Delgado, D. Calegari, F. García, B. Weber, Model-driven management of BPMN-based business
process families, Software & Systems Modeling 21 (2022) 2517–2553.

[3] W. M. P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, M. H. Jansen-Vullers, Configurable
Process Models as a Basis for Reference Modeling, in: Business Process Management Workshops,
volume 3812 of Lecture Notes in Computer Science, Springer, 2006, pp. 512–518.

[4] L. Bass, P. Clements, R. Kazman, Software architecture in practice, Always learning, 3. ed., Addison-
Wesley, 2013.

[5] S. Deelstra, M. Sinnema, J. Bosch, Product derivation in software product families: A case study,
Journal of Systems and Software 74 (2005) 173–194.

[6] C. Kästner, S. Apel, Feature-Oriented Software Development, in: Generative and Transformational
Techniques in Software Engineering IV: International Summer School, Springer, 2013, pp. 346–382.

[7] M. Dumas, W. van der Aalst, A. Ter Hofstede, Process-aware information systems: Bridging people
and software through process technology, Wiley, 2005.

[8] P. Hehnle, M. Reichert, Handling Process Variants in Information Systems with Software Product
Line Engineering, in: 2023 IEEE 25th Conference on Business Informatics (CBI), 2023, pp. 1–10.

[9] P. Hehnle, M. Reichert, Flexible process variant binding in information systems with software prod-
uct line engineering, 2024. URL: https://arxiv.org/abs/2410.17689. arXiv:2410.17689, preprint.

[10] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeatureIDE: An extensible
framework for feature-oriented software development, Science of Computer Programming 79
(2014) 70–85.

[11] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, S. Peterson, Feature-Oriented Domain Analysis
(FODA) Feasability Study, Technical Report, 1990.

[12] W. M. P. van der Aalst, A. H. M. ter Hofstede, M. Weske, Business Process Management: A Survey,
in: Business process management, volume 2678 of Lecture Notes in Computer Science, Springer,
2003, pp. 1–12.

[13] W. M. P. van der Aalst, Business process management: a personal view, Business Process
Management Journal 10 (2004).

[14] M. Weske, Business Process Management, Springer, 2019.
[15] M. Netjes, H. Reijers, W. M. P. van der Aalst, Supporting the BPM life-cycle with FileNet, in:

Proceedings of the 11th International Workshop on Exploring Modeling Methods for Systems
Analysis and Design, 2006, pp. 135–146.

[16] M. zur Muehlen, D. T.-Y. Ho, Risk Management in the BPM Lifecycle, in: Business Process
Management Workshops, volume 3812 of Lecture Notes in Computer Science, Springer, 2006, pp.
454–466.

[17] A. Hallerbach, T. Bauer, M. Reichert, Managing Process Variants in the Process Lifecycle, in: 10th
Int’l Conf. on Enterprise Information Systems (ICEIS’08), 2008, pp. 154–161.

[18] C. Houy, P. Fettke, P. Loos, Empirical research in business process management – analysis of an
emerging field of research, Business Process Management Journal 16 (2010) 619–661.

[19] R. Macedo de Morais, S. Kazan, S. Inês Dallavalle de Pádua, A. Lucirton Costa, An analysis of
BPM lifecycles: from a literature review to a framework proposal, Business Process Management
Journal 20 (2014) 412–432.

[20] N. Nousias, G. Tsakalidis, K. Vergidis, Not yet another BPM lifecycle: A synthesis of existing
approaches using BPMN, Information and Software Technology 171 (2024) 107471.

[21] S. Apel, C. Kastner, C. Lengauer, FEATUREHOUSE: Language-independent, automated software
composition, in: 2009 IEEE 31st International Conference on Software Engineering, 2009, pp.
221–231.

[22] Object Management Group, Business Process Model and Notation (BPMN): Version 2.0.2, 2013.
URL: https://www.omg.org/spec/BPMN/2.0.2/PDF.

Hehnle and Reichert: Alignment of Process Lifecycle and Software Product Line Engineering Phases

7

https://arxiv.org/abs/2410.17689
http://arxiv.org/abs/2410.17689
https://www.omg.org/spec/BPMN/2.0.2/PDF

	Alignment of Process Lifecycle and Software Product Line Engineering Phases Philipp Hehnle and Manfred Reichert
	Studying domain dependence in BPMN process modeling: An empirical research proposal Thomas S. Heinze
	Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System Mustafa Ghani
	A Review of Software Architecture Optimization Approaches for Cloud Applications Anton Frisch and Robin Lichtenthäler
	Seamless Migration of Containerized Stateful Applications in Orchestrated Edge Systems Roman Kudravcev and Sebastian Böhm
	Comparing Cloud and On-Premises Kubernetes: Insights into Networking and Storage Tooling Jakob Koller and Sebastian Böhm
	Business Instance Monitoring Lisa Arnold
	Surgery AI: Multimodal Process Mining and Mixed Reality for Real-time Surgical Conformance Checking and Guidance Aleksandar Gavric, Dominik Bork and Henderik A. Proper
	Author Index

