# Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System

Mustafa Ghani, Holger Giese

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

#### Abstract

The increasing interconnectivity of embedded software systems has led to the rise of new types of Multi-Agent Systems, such as Distributed Cyber-Physical Systems, where agents synchronize by exchanging observations and local actions with remote agents. This inter-agent message passing involves (transmission, propagation, queuing, and processing) delays, which may compromise safety in safety-critical decision-making systems due to outdated information. Therefore, we proposed a methodology to derive explicit delay-robust models (resilient to  $\delta$ -delays) preserving safety from safe abstract models that assume zero-delays. However, this procedure requires iterative model checking steps. In this paper, we motivate to eliminate the need for costly iterations by exploring behavioral equivalences between explicit and abstract models to define a consistency notion. This consistency facilitates the systematic transfer of verified guarantees to unverified models, effectively eliminating the need for additional model checking.

#### **Keywords**

Cyber-Physical Systems Engineering, Formal Modeling, Model Consistency

#### 1. Introduction

The growing interconnectivity of previously isolated embedded software systems has led to the emergence of new types of Multi-Agent Systems, such as Distributed Cyber-Physical Systems (DCPSs). To maintain synchronization in such systems, agents exchange observations and local actions with remote agents. This kind of communication, defined as inter-agent message passing, involve transmission, propagation, queuing, and processing delays [1, 2]. Delays in inter-agent message passing caused by the time elapsed between agents' actions can lead to race conditions or compromise safety requirements in safety-critical systems, as decisions may be based on outdated information. Consequently, software models must clearly differentiate between local, immediate observations (occurring with zero time delay) and remote,  $\delta$ -delayed observations (requiring up to a specified  $\delta$  time). In [3], we introduced a methodology to enhance the robustness of zero-delay system models against  $\delta$ -delays integrated in the rule-based formalism of Timed Graph Transformation Systems. As shown in Figure 1, our approach begins with a given idealized (i.e., assuming zero-delayed inter-agent message passing) safety-critical system model S<sub>A0</sub>, for which safety has been verified. Based on S<sub>A0</sub>, we derive a more explicit model  $S_{E0}$  by naive extension of zero to  $\delta$ -delays for inter-agent message passing. We verify safety of  $S_{E0}$  by conducting model checking. If S<sub>E0</sub> reveals safety violations, we repair S<sub>A0</sub> and S<sub>E0</sub> in the context of the robustification step (denoted in Figure 1). We proposed in [3] this robustification step as part of our methodology to handle  $\delta$ -delayed messages. As a result, we obtain  $S_{E1}$  and  $S_{A1}$ . Our goal is to generate a pair of an abstract and explicit delay-robust model (such as S<sub>E1</sub> and S<sub>A1</sub>) to ensure different levels of abstraction.

This approach leverages the modeled information to ensure safety while avoiding unnecessary constraints on the agents' primary behavior. However, since model checking is computationally expensive [4], we aim to make this step for  $S_{A1}$  redundant. Therby, we aim to enhance the efficiency of our proposed methodology from Figure 1. To achieve this, we aim to ensure that the verified safety of  $S_{E1}$  is inherently carried over to  $S_{A1}$  by design.

Vienna'25: 17th Central European Workshop on Services and their Composition (ZEUS), February 20−21, 2025, Vienna, Austria 
☐ mustafa.ghani@hpi.de (M. Ghani)

© 0009-0004-6056-2125 (M. Ghani); 0000-0002-4723-730X (H. Giese)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



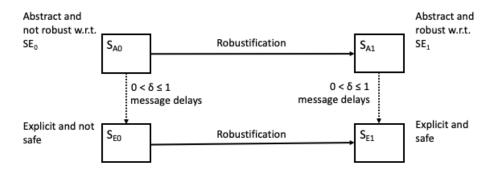


Figure 1: Methodology to derive  $\delta$ -delayed-robustness for a given zero-delay system model

# 2. Timed Graph Transformation System

A graph G = (Gv, Ge, sG, tG) consists of a set Gv of nodes, a set Ge of edges, a source function sG: Ge  $\rightarrow$ GV, and a target function tG: Ge  $\rightarrow$  Gv. Let G = (Gv, Ge, sG, tG) be a graph. Let G<sub>s</sub> = (Gv<sub>s</sub>, Ge<sub>s</sub>, sG<sub>s</sub>, tG<sub>s</sub>) be a subgraph of G, if.  $Gv_s \subseteq Gv$  and  $Ge_s \subseteq Ge$ .  $G|G_s$  denotes  $G_s$  is a subgraph of G. For a set X of clocks  $\Phi(X)$  denotes the set of all clocks contraints  $\phi$  generated by  $\phi := x1 \sim c \mid xa - xj \sim c \mid \phi \wedge \phi$ , where  $\sim \in$  $\{<,>,\leq,\geq\}$ ,  $c\in\mathbb{N}\cup\{\infty\}$  are constants, and xa, xj  $\in$  X are clocks. Let X be a set of clocks. V(X) denotes the set of all functions v:  $X \to \mathbb{R}$  and is called Clock valuation. Let v:  $X \to \mathbb{R}$  and  $X' \subseteq X$ . Then v[X' :=  $[0]: X \to \mathbb{R}$  is a clock reset such that for any  $x \in X$  holds if  $x \in X'$ , then v[X' := 0](x) = 0 else v[X' := 0](x) = 00](x) = v(x). Let  $v: X \to \mathbb{R}$  and  $\delta \in \mathbb{R}$ . Then  $v + \delta: X \to \mathbb{R}$  is a clock increment such that for any  $x \to X$ holds  $(v + \delta)(x) = v(x) + \delta$ . Let  $v: X \to \mathbb{R}$  and  $\phi$  be some constraint over X. Then  $v \models \phi$  denotes that v satisfies the constraint  $\phi$ . Let v0:  $X \to \mathbb{R}$  be the initial clock valuation if v0(x) = 0 for every  $x \in X$ . V0(X) is the singleton set containing the unique initial clock valuation. Let H = (Hv, He, sH, tH) and G be two graphs. An injective graph morphism (short: morphism) mg:  $G \to H$  is a pair of mappings mv: Gv  $\rightarrow$  Hv and me: Ge  $\rightarrow$  He, where mv  $\circ$  sG = sH  $\circ$  me and mv  $\circ$  tG = tH  $\circ$  me. Graph Conditions (GCs) are used to state properties on graphs requiring the presence or absence of certain subgraphs in a host graph using propositional connectives and (nested) existential quantification over graph patterns. Let TG be a distinguished graph, called type graph. A type graph has attributes connected to local variables and an attribute condition (AC) over many-sorted first-order attribute logic, which is used to specify the values for those local variables. Tg = (G, mg') is a typed graph, where G is a graph and mg' is a morphism:  $G \to TG$ . Let  $Tg_1 = (T_1, t_1)$  and  $Tg_2 = (T_2, t_2)$  be two typed graphs. A typed graph morphism tgm:  $Tg_1 \rightarrow Tg_2$  is a morphism mg":  $T_1 \rightarrow T_2$ , which is compatible with the typing functions, i.e.,  $t_2 \circ mg$ " =  $t_1$ . Let  $\rho$  = (L, R, K, NAC, l: K  $\rightarrow$  L, r: K  $\rightarrow$  R,  $\omega$ , prio) be a Graph Transformation Rule (short: rule), if L (called left-hand side of rule), K (called interface graph of rule), R (called right-hand side of rule) are (typed) graphs, l and r are two (typed) morphisms, NAC is a finite set of forbidden (typed) graphs X containing L, prio:  $R \to \mathbb{N}$  assigns a priority to each rule, and  $\omega$  is the Application Condition (ApC) that is expressed as a graph condition. The transformation procedure defining a graph transformation approach introduced by the Double Pushout Approach [5] and is used throughout in this paper. Intuitively, the adaption of graph G can be realized by using the graph transformation rule  $\rho$ , which enforces additions and removals of subgraphs from G resulting in graph Gi, if  $\rho$  can be applied to G by satisfying ApC  $\omega$  for a match ma: G  $\rightarrow$  Gi. Finally, we define Graph Transformations. Let GTS = (R, G, prior) be a graph transformation system, if. R is a finite set of finite rules, G is a graph, and prio:  $R \to \mathbb{N}$  is a mapping assigning priorities, formulated as a natural number, to each rule. Rule  $r_i \in R$ with priority  $p_i \in \mathbb{N}$  suppress rule  $r_i \in \mathbb{R}$  and its priority  $p_i \in \mathbb{N}$  if  $p_i > p_i$ . A Graph Transformation Step (short: step) is if Rule  $\rho$  transforms Graph G into Graph J. A step is called the application of a rule. If G is transformed to J by a (possibly empty) sequence of rule applications/ steps, then we write  $G \xrightarrow{*}$ J. Let tGTS be a Timed Graph Transformation System, then tGTS = (R, G, time, prio, NAC) is a typed timed graph transformation system (short: TGTS), if. R is a finite set of finite rules, G is a graph, time:  $G \to \mathbb{R}_0^+$  is a partial function that maps a graph to an element of the set of all real numbers greater or

Mustafa Ghani: Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System

equal to 0, i.e., a total timepoint, and prio:  $R \to \mathbb{N}$ . Note, function  $CN(G) = \{n \mid n \in Gv \land mg'v(n) = Clock\}$  identifies in every graph the nodes used for time measurement.

## 3. Research Objective

To bypass model checking of  $S_{A1}$  and ease the general proposed methodology, we aim to transfer verified safeness from  $S_{E1}$  to  $S_{A1}$  by design. The underlying idea to archieve this, is to explore the formal relationship between the two models (i.e.,  $S_{E1}$  and  $S_{A1}$ ) to leverage model consistency, which enables transferring safety. Therefore, we define the following research questions.

- Are  $S_{E1}$  and  $S_{A1}$  formally in relation?
- How can model-based guarantees be systematically transferred from  $S_{E1}$  to  $S_{A1}$  by design?

To address this research gap, we aim to identify potential behavioral equivalences among  $S_{E1}$  and  $S_{A1}$ . Establishing such a formal relation may facilitate the transfer of safety guarantees from  $S_{E1}$  to  $S_{A1}$  by design, thereby eliminating the need for model checking of the latter. However, this approach presents challenges in determining the appropriate level of abstraction required. Furthermore,  $S_{E1}$  may introduce potential states that violate safety, which were not reachable in  $S_{E0}$ .

#### 4. Related Work

Since model-based consistency research is inherently tied to its domain, and approaches that formally reason about consistency assume additional information about what is being analyzed with respect to the consistency notion [6], we restrict ourselves to models of Timed Graph Transformation Systems with a focus on delay-robustness for mission-critical systems. In [7] the authors presented a different version of Timed Graph Transformation Systems neither supporting quantitative analysis nor considering delay-robustness. In [8, 9], inter-agent message delays were not explicit considered since message passing was restricted by allowing communication within a given timing intervall. In [3], we presented an approach to derive explicit delay-robustness for a given abstract model. However, this approach requires the verification of every generated model (i.e.,  $S_{E0}$ ,  $S_{E1}$ ,  $S_{A1}$ ) while in this work we propose a consistency relation making model checking for  $S_{A1}$  not required and assuring delay-robustness per design.

#### 5. Conclusion and Future Work

In this paper, we discussed the motivation for reducing the computational cost and the number of model-checking iterations in our previously proposed approach by defining a consistency relation between  $S_{E1}$  and  $S_{A1}$ . Such a formal relation could serve as the foundation for systematically transferring model-based guarantees. In this context, we identified key research questions and the associated challenges related to achieving this objective.

# Acknowledgments

This research was funded by the HPI Research School on Systems Design.

#### **Declaration on Generative Al**

The authors have not employed any Generative AI tools.

Mustafa Ghani: Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System

### References

- [1] B. A. Forouzan, Data communications and networking, Huga Media, 2007.
- [2] M. Van Steen, A. S. Tanenbaum, A brief introduction to distributed systems, Computing 98 (2016) 967–1009.
- [3] M. Ghani, S. Schneider, M. Maximova, H. Giese, Deriving delay-robust timed graph transformation system models, in: International Conference on Graph Transformation, Springer, 2024, pp. 158–179.
- [4] M. Schmalz, H. Völzer, D. Varacca, Model checking almost all paths can be less expensive than checking all paths, in: International Conference on Foundations of Software Technology and Theoretical Computer Science, Springer, 2007, pp. 532–543.
- [5] E. Hartmut, E. Karsten, P. Ulrike, T. Gabriele, Fundamentals of algebraic graph transformation, Monographs in theoretical computer science. An EATCS series. Springer (2006).
- [6] R. Pascual, B. Beckert, M. Ulbrich, M. Kirsten, W. Pfeifer, Formal foundations of consistency in model-driven development, in: International Symposium on Leveraging Applications of Formal Methods, Springer, 2024, pp. 178–200.
- [7] S. Gyapay, R. Heckel, D. Varró, Graph transformation with time: Causality and logical clocks, in: Graph Transformation: First International Conference, ICGT 2002 Barcelona, Spain, October 7–12, 2002 Proceedings 1, Springer, 2002, pp. 120–134.
- [8] M. Maximova, H. Giese, C. Krause, Probabilistic timed graph transformation systems, in: Graph Transformation: 10th International Conference, ICGT 2017, Held as Part of STAF 2017, Marburg, Germany, July 18-19, 2017, Proceedings 10, Springer, 2017, pp. 159–175.
- [9] M. Maximova, S. Schneider, H. Giese, Compositional analysis of probabilistic timed graph transformation systems, Formal Aspects of Computing 35 (2023) 1–79.