
A Review of Software Architecture Optimization
Approaches for Cloud Applications
Anton Frisch1, Robin Lichtenthäler1

1Distributed Systems Group, University of Bamberg, Bamberg, Germany

Abstract
Developing applications and deploying them on cloud platforms is a common approach. With the continuous
evolution of cloud computing and thewide range of technological options, however, making architectural decisions
while developing cloud applications can become difficult. One possibility to support the development of cloud
applications are software architecture optimization approaches that can evaluate and optimize an architecture
according to specific goals. This work provides an up-to-date review of currently existing architecture optimization
approaches specifically for cloud applications. Based on the review common optimization goals and approaches
are identified and the potential for future work is analyzed.

Keywords
cloud application, software architecture optimization, taxonomy

1. Introduction

Cloud computing is a mature concept that is widely used in the software industry 1. However, since the
first cloud offerings were published, cloud computing has evolved [1] and now a wide range of different
platforms and services are available. For developing cloud applications it is thus necessary to make
architectural choices that, on top of fulfilling functional requirements, also fit the inherent characteristics
of cloud computing. This means on the one hand taking advantage of cloud computing benefits and
on the other hand preparing for inherent issues of cloud environments. Applications specifically built
to fit into cloud environments are also called cloud-native applications (CNA) [2]. Architecting CNAs
means composing a distributed and scalable system out of (micro)services, using cloud-focused design
patterns, and operating it on an elastic cloud platform [2]. Providing support for these challenging
tasks thus is desirable. One possibility are so-called architecture optimization approaches [3]. These
approaches are able to evaluate the architecture of an application according to certain quality goals,
propose potential changes, and even implement a selected change in an architecture. The overall
research field of architecture optimization approaches has been reviewed by Aleti et al. in 2013 [3]
together with the development of a taxonomy to classify optimization approaches. However, the main
impact of cloud computing has occurred after that and a review of architecture optimization approaches
with a specific focus on cloud applications is missing in the literature to the best of our knowledge. The
aim of this work therefore is to fill this gap. Based on a literature review, the taxonomy of Aleti et al.
[3] is adapted to the context of cloud applications, and identified approaches are classified based on it.
The guiding research questions thus are:
RQ1: How can the current architecture optimization approaches for cloud applications be
classified using a structured taxonomy?
RQ2: What is the current state of software architecture optimization research for cloud
applications with respect to this classification?
To answer these research questions, based on the foundations presented in Section 2, we outline our
methodology in Section 3. The results of applying this methodology are presented in Section 4 and
discussed in Section 5, before a final conclusion in Section 6.

Vienna’25: 17th Central European Workshop on Services and their Composition (ZEUS), February 20–21, 2025, Vienna, Austria
Envelope-Open anton-liam.frisch@stud.uni-bamberg.de (A. Frisch); robin.lichtenthaeler@uni-bamberg.de (R. Lichtenthäler)
Orcid 0000-0002-9608-619X (R. Lichtenthäler)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/

S. Böhm and M. Vidgof (Eds.): 17th ZEUS Workshop, ZEUS 2025, Vienna, Austria, 20–21 February, 2025
published at http://ceur-ws.org

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:anton-liam.frisch@stud.uni-bamberg.de
mailto:robin.lichtenthaeler@uni-bamberg.de
https://orcid.org/0000-0002-9608-619X
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/
 http://ceur-ws.org


2. Cloud Application Software Architectures

Software Architecture is a practice for understanding and managing large-scale structures of software
systems [4]. A core foundation for it is the observation that “it isn’t enough for a computer program
to produce the correct outcome. Other software qualities such as dependability and maintainability are
also important and can be achieved by careful structuring.”[4]. Relevant methods include notations to
capture system characteristics or technological decisions, techniques to analyze systems, and tools that
facilitate and automate these tasks. The specific methods used by software architects, however, depend
on the domain and the quality aspects in focus. Aleti et al. [3] had a broad domain scope and thus relied
on a more general definition of architecture. According to the ISO42010 standard, an architecture is
defined as the “fundamental concepts or properties of an entity in its environment and governing principles
for the realization and evolution of this entity and its related life cycle processes” [5].
Cloud applications, however, represent a more specific domain for which different aspects may be

relevant than for other types of applications. Thus, it is justified to consider cloud application software
architectures as a more specific type of architecture for which specific methods can be developed
and applied. Important aspects are named by Pahl et al. [6] who define a cloud architecture as “an
abstract model of a distributed cloud system with the appropriate elements to represent not only application
components and their interrelationships, but also the resources these components are deployed on and the
respective management elements” [6]. These components, their interrelationships, and the resources
on which components are deployed have been described by Kratzke and Peinl [7] in more detail and
structured based on a set of layers, from the host layer, over a cluster layer to services and application
layers. Implementing so-called cloud-native applications [2] means ensuring certain characteristics for
the architecture of an application across the different elements and layers of a cloud system with the
goal of ensuring certain quality aspects. Implementing an application in a cloud-native way therefore
has the same goal as architecture optimization which is defined by Aleti et al. as “an automated method
that aims to achieve an optimal architecture design with respect to certain quality attributes” [3].
The key point in architecture optimization is that an automated method is used. This automated

method should be able to take a representation of the architecture of an application as input. On this
input, a quality evaluation mechanism has to quantify the current state of an architecture and analyze
potentials for optimization. The required changes to optimize an architecture should ideally also be
applicable to the application in a structured, automated way. To summarize, the focus of this work is
on such automated methods in the specific domain of cloud applications software architectures. That
means in this domain a focus is set on the components, typically services, how they communicate, and
how they are deployed in the cloud.

3. Methodology

The research method for this study adapts the approach from Aleti et al. [3] and the guidelines for
systematic reviews by Kitchenham et al. [8]. This section presents the study selection criteria, followed
by the search strategy and the data extraction and synthesis process. To select relevant publications,
the inclusion and exclusion criteria by Aleti et al. were slightly adapted to focus on the domain of
cloud applications as described in Section 2. Three inclusion criteria must be satisfied by each selected
publication. Firstly, a machine-processable representation of the software architecture must be provided
which the approach receives as input. Secondly, a quality evaluation mechanism must be defined, either
to assess relevant quality attributes or to ensure that quality attributes and constraints are inherently
satisfied. Lastly, degrees of freedom must be defined, meaning that it must be described how the
approach can modify a given software architecture to achieve the optimization goal. In addition, works
are excluded if they: 1) focus on optimizing a single component in an application without integrating
context and interactions with other components; 2) discuss topics not directly related to software
architecture, e.g., compiler optimization or hardware-specific optimizations; 3) focus on optimizing
hardware instead of software.

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

17



7 relevant papers identified

Initial Broad Search
302 Search Results

3 relevant papers identified

Targetet Database
Search

996 Search Results

6 relevant papers identified

Backward Search
775 Citations

1 relevant paper identified

Forward Search
581 Citations

Total of 19 relevant
papers identified

Figure 1: Search Process

The inclusion and exclusion criteria were applied in three stages: a
title screening, an abstract review, and a full-text evaluation. In each
stage, if for a publication the inclusion and exclusion criteria could not
be clearly determined it was moved to the next stage.
The applied search strategy is summarized here and additional in-

formation can be found online2. As shown in Figure 1, a broad search
across Google Scholar, IEEE Xplore, and ACM Digital Library was used
to identify initial relevant studies and to guide the further process. This
identified seven relevant papers and using the publishing sources, the
following four databases were selected for a more targeted search: IEEE
Xplore, ACM Digital Library, Elsevier ScienceDirect, and Springer Link.
This targeted search applied more specific search strings and revealed
additional three relevant studies. Together with two works previously
known to the authors, a subsequent backward search using these twelve
was done, identifying six more. Finally, a forward search revealed one
additional publication, leading to a total of 19 relevant publications that
satisfy the inclusion criteria, shown in Table 1. It has to be noted that in
relation to the amount of search results, not many publications satisfied
all inclusion criteria.

Table 1
Identified primary literature for the review
Ref. Title Authors Published Found By Citing
[9] Exploring Sustainable Alternatives for Microservices Deployment in the

Cloud V. Cortellessa, D. Di Pompeo, M. Tucci
2024, IEEE Database Search

(IEEE Xplore)
[10] The 𝜇TOSCA Toolchain: Mining, Analyzing, and Refactoring Microservices J.

Soldani, G. Muntoni, D., A. Brogi
2021, Wiley Known Before

[11] Modeling and Optimization of Performance and Cost of Serverless Applica-
tions C. Lin, H. Khazaei

2020, IEEE Known Before

[12] Architectural Design of Cloud Applications: A Performance-Aware Cost Mini-
mization ApproachM. Ciavotta, G. P. Gibilisco, D. Ardagna, E. Di Nitto, M. Lattuada

2020, IEEE Initial Search
(Google Scholar)

[13, 14, 15,
16]

[17] Performance Optimization of Cloud Applications at Architecture L. X. Du, Y.
Ni, P. Ye, X. Wang, R. Xiao

2019, Springer Database Search
(Springer Link)

[18, 15]

[19] Modeling Optimal and Automatized Cloud Application Deployment S. De
Gouw, J. Mauro, G. Zavattaro

2019, Elsevier Initial Search
(Google Scholar)

[20, 21, 22]

[16] Multi-Objective Optimization of Deployment Topologies F. Willnecker, H.
Krcmar

2018, ACM Initial Search
(Google Scholar)

[13, 18, 23]

[24] ElaClo: A Framework for Optimizing Software Application Topology in the
Cloud N. Tanković, T. G. Grbac, M. Žaga

2017, Elsevier Initial Search
(Google Scholar)

[13, 20, 25,
26, 14]

[15] A Mixed Integer Linear Programming Approach for Multi-Cloud Capacity
Allocation M. Ciavotta, D. Ardagna, G. P. Gibilisco

2017, Elsevier Database Search
(ScienceDirect)

[25, 18]

[22] Zephyrus2: On the Fly Deployment Optimization Using SMT and CP Tech-
nologies E. Ábrahám, F. Corzilius, E. B. Johnsen

2016, Springer Backward Search [25, 21]

[23] Optimization of Deployment Topologies for Distributed Applications F. Will-
necker, H. Krcmar

2016, IEEE Backward Search [13, 18]

[14] Palladio Optimization Suite: QoS Optimization for Component-Based Cloud
AppsM. Ciavotta, M. Ardagna, A. Koziolek

2016, ACM Backward Search

[27] A Model-Driven DevOps Framework for QoS-Aware Cloud ApplicationsM.
Guerriero, M. Ciavotta, G. P. Gibilisco, D. Ardagna

2015, IEEE Initial Search
(Google Scholar)

[25, 18]

[26] A Multi-objective ACS Algorithm for Cost, Performance, and Reliability
Optimization A. Ashraf, B. Byholm, I. Porres

2015, IEEE Forward Search

[21] Automated Synthesis and Deployment of Cloud Applications R. Di Cosmo, M.
Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche, A. Agah

2014, ACM Initial Search
(Google Scholar)

[18] A Multi-model Optimization Framework for Cloud Applications D. Ardagna,
G. P. Gibilisco, M. Ciavotta, A. Lavrentev

2014, Springer Initial Search
(Google Scholar)

[25]

[25] Search-Based Genetic Optimization for Cloud Software Reconfiguration S.
Frey, F. Fittkau, W. Hasselbring

2013, IEEE Backward Search

[20] CloudOpt: Multi-Goal Optimization of Application Deployments J. Z. Li, M.
Woodside, J. Chinneck

2011, IEEE Backward Search

[13] PerOpteryx: Automated Application of Tactics in Multi-Objective Software
Architecture Optimization A. Koziolek, H. Koziolek, R. Reussner

2011, ACM Backward Search

2https://github.com/AntonFrisch/Methodology_Architecture_Optimization_Cloud_Applications

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

18

https://github.com/AntonFrisch/Methodology_Architecture_Optimization_Cloud_Applications


To answer RQ1, the approaches from the selected publications were firstly categorized according to
the existing taxonomy by Aleti et al. [3]. This was done in an extensive descriptive manner without
predefined values. In a second step, the categorization was reviewed again to refine the classification.
Similar concepts were merged together into synonymous terms to create a finite list of categorization
values. If necessary, new values were created and unused values were deleted. Several categories that
captured the information in the primary studies on an abstract level were extended for them to capture
more specific information. In the final step, all papers were re-evaluated with the set of finite categories
and values created. Therefore employing a test-retest procedure advised by Kitchenham [8] for single
researchers. By synthesizing relevant information for every category in a quantitative and descriptive
manner from the resulting categorization, RQ2 is answered.

4. Results

In the following, the results of applying the methodology described in Section 3 are presented with
Section 4.1 focusing on RQ1 and Section 4.2 focusing on RQ2.

4.1. A Taxonomy of Software Architecture Optimization Approaches

Taxonomy

Problem

Phase

Quality
Attribute

Dimensionality

Constraint
Freedom

Constraints

Architecture
Type

Solution

Architecture
Representation

Method

Quality
Evaluation

Method

Degrees of
Freedom

Optimization
Approach

Constraint
Handling

Method

Validation

Approach
Validation

Optimization
Validation

Legend

Removed
category

New
category

Domain

Refined 
category

Figure 2: Taxonomy Overview (based on [3])

The overall structure and most categories of the tax-
onomy by Aleti et al. [3] are kept also for classify-
ing optimization approaches for cloud applications.
With the Problem, Solution, and Validation categories,
the main aspects of what an approach aims to pro-
vide, how it does so and whether it can be proven
to be valid, can be described. For the subcategories,
however, some modifications were made, based on
the reviewed literature. The result is the taxonomy
shown in fig. 2. Firstly, the Domain category from
the original taxonomy, is replaced with the Architec-
tural Type category. While the original taxonomy
was intended to be applicable within a broad range
of domains, cloud applications are a specific domain.
And a category that does not provide differentiation
between approaches has no value in a taxonomy.
Nevertheless, a differentiation can be done based on
which aspects or layers of an architecture are con-
sidered. Secondly, subcategories in the Solution category have been refined by adding categories that
allow for a classification on different layers of abstraction. For example, the Architecture representation
category enables a classification of the general type of representation. And the Architecture Representa-
tion Method allows for a classification of which specific language, tool, or technology is used. Thirdly,
the largest change is that the specific values assignable in each category are newly defined based on the
reviewed approaches. That means values included by Aleti et al. [3] were excluded to enable a clean
derivation of relevant values. The resulting values are considered more in detail in the next section.

4.2. Classification of Current Approaches

The result of reviewing the found approaches and their classification based on the taxonomy is shown
in table 2. It has to be noted that for the categories Quality Attribute, Constraints, Quality Evaluation,
Degrees of Freedom, Optimization Approach, Optimization Method, Constraint Handling, and Optimization
Validation a presented approach could be assigned to multiple values.
Problem Category For the Phase in which approaches can be applied, design time approaches are
dominant and no approach was identified focusing exclusively on runtime optimization. Thus, these

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

19



approaches rely on complete input availability before deployment — either through system modeling
or, as in 50% of the approaches, by incorporating runtime data. The most commonly optimized Quality
Attribute is cost, which is the sole optimization goal in 8 approaches and considered alongside other
goals, often performance, in 9 approaches. Other quality attributes appear less frequently. 58% of
the reviewed papers use fixed Constraints, meaning these approaches adhere to a predetermined
unmodifiable set of constraints. In contrast, 37% of the papers allow the user to set the constraints based
on the system’s needs. Performance is the most frequently used constraint (74%). In most approaches,
multiple constraints are applied and combined in various ways. The Architecture type category reveals
a clear dominance of deployment architecture approaches, accounting for 95% of the approaches.
Solution Category In the Architecture representation category, Performance Models are used the most
(84%). A performance model focuses on representing a system’s components and their connections
combined with performance metrics. In contrast, Architecture models capture the structural organiza-
tion of components and are used only in two approaches. The specific methods that are used cover a
broad range. Extended forms of the PCM (Palladio Component model [29]) are the most prevalent (37%).
All other modeling approaches are only used once. The Quality Evaluation category classifies how the
quality attributes are quantified and evaluated. Model-Based (MB) techniques are predominant (47%),
followed by Simulation-Based (SB) approaches (26%). Layered Queuing Networks (LQN) and M/G/1
queuing models emerged as core approaches for predicting how quality attributes such as response
time, throughput, and system costs behave under load. LQNs are widely adopted due to their capability
to model complex, multi-layered application architectures, with each layer representing different com-
ponents or services [30]. Approaches are categorized as “Inherent” if they achieve optimization through
inherent solution satisfaction. These approaches inherently satisfy quality attributes and constraints
and therefore don’t rely on distinct quality evaluation methods. Regarding Degrees of Freedom, Compo-
nent Allocation stands out as the most frequently applied, (79%). Horizontal Scalability, Component
Replication, and Resource selection follow closely, indicating a strong emphasis on scaling strategies,
that are essential for enhancing flexibility and performance in cloud environments. The combination
of Horizontal Scalability, Component Replication, and Component Allocation is notably prevalent,
appearing together in 11 approaches [27, 18, 12, 21, 24, 16, 9, 17, 22, 15, 26]. For the Optimization strategy
approximate methods dominate in the findings (79%). Exact methods are less common (42%). Within
these, Mixed-Integer Linear Programming and Tabu Search are the most prevalent, highlighting their
effectiveness in solving specific types of architectural optimization problems. Meanwhile, Genetic
Algorithms and Evolutionary Algorithms make up a significant portion of the approximate methods.
In the reviewed approaches, Tabu Search is frequently used as a second-phase refinement method
following an initial solution generated by Mixed Integer Linear Programming. Genetic Algorithms can
be considered as a subfield of Evolutionary Algorithms but since their frequent appearance during the
review, they were categorized separately. For Constraint Handling, the prohibit method is the most
common. It ensures that only feasible configurations are generated by strictly prohibiting any solutions
that violate predefined constraints. Repair strategies are the second most common. They allow minor
adjustments to solutions to meet constraints.
Validation Category In the Approach Validation category case studies are often used to demonstrate
practical applicability in realistic settings. However, only a few case studies are conducted within a
productive industrial setting [24, 19] and most are using available open-source applications as examples
[25, 17] or prototypes [27, 10, 9]. Experiments are also widely used, allowing for controlled, theoretical
validation in simulated environments [18, 15, 20]. Finally, Benchmark Problems, specifically the SPEC-
jEnterpriseNEXT benchmark, used by Willnecker et al. [23, 16], are less common. For Optimization
Validation, a significant portion (53%) of studies did not present any explicit comparative validation.
Comparison with a baseline is otherwise the predominant method, providing a benchmark against
other simpler algorithms or approaches.

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

20



Table 2
Resulting classification according to the taxonomy

1.1 Problem Category

Phase
Design Time (84%) [18, 12, 21, 24, 28, 16, 10, 15, 9, 17,

22, 20, 23, 14, 13, 26]
Hybrid (16%) [27, 19, 25]

Quality Attributes
Cost (89%) [27, 18, 12, 21, 24, 11, 16, 19, 15, 9,

17, 22, 20, 14, 13, 25, 26]
Performance (47%) [24, 11, 16, 9, 17, 23, 13, 25, 26]
Resource Utilization (11%) [16, 23]
Software Quality (5%) [10]
Power Consumption (11%) [9, 20]
SLA Violations (5%) [25]
Reliability (5%) [26]

Dimensionality
Single-Objective Optimiza-
tion (58%)

[27, 18, 12, 21, 11, 19, 10, 15, 22, 23,
14]

Multi-Objective Optimiza-
tion (37%)

[24, 16, 9, 17, 13, 25, 26]

Hybrid (5%) [20]
Constraint Freedom

Fixed (58%) [18, 24, 11, 9, 17, 20, 23, 14, 13, 25,
26]

Customizable (37%) [27, 12, 21, 16, 19, 15, 22]
None (5%) [10]

Constraints
Performance (74%) [27, 18, 12, 24, 11, 16, 15, 9, 17, 20,

23, 14, 13, 25, 26]
Resource Limits (47%) [27, 18, 12, 21, 16, 19, 15, 22, 20]
Deployment Constraints
(32%)

[21, 16, 19, 22, 23, 25]

Cost (42%) [24, 11, 16, 9, 17, 13, 25, 26]
Power Consumption (5%) [9]
License Availability (5%) [20]
SLA Violations (5%) [25]
Reliability (5%) [26]
None (5%) [10]

Architecture Type
Deployment (95%) [27, 18, 12, 21, 24, 11, 16, 19, 15, 9,

17, 22, 20, 23, 14, 13, 25, 26]
Software Architecture (5%) [10]

1.3 Validation Category

Approach Validation
Case study (58%) [27, 12, 21, 24, 19, 10, 9, 17, 14,

13, 25]
Experiment (32%) [18, 11, 15, 22, 20, 26]
Benchmark problems (11%) [16, 23]

Optimization Validation
Not presented (53%) [27, 21, 11, 16, 19, 10, 9, 23, 14,

13]
Comparison with baseline
heuristic algorithm (42%)

[18, 12, 24, 15, 17, 20, 25, 26]

Comparison with
random search (5%)

[24]

Internal comparison (5%) [22]

1.2 Solution Category

Architecture Representation
Performance Model (48%) [27, 18, 12, 21, 11, 16, 19, 15,

9, 17, 22, 23, 14, 13, 25, 26]
Architecture Model (11%) [24, 10]
Evaluation Model (5%) [20]

Architecture Representation Method
PCM [extended] (42%) [27, 18, 12, 16, 15, 23, 14, 13]
ACM [extended](11%) [21, 22] ATG (5%) [24]
Directed Graph (5%) [11] ABS extended (5%) [19]
TOSCA (5%) [10] UML extended (5%) [9]
CAPOM (5%) [17] LQM (5%) [20]
KDM (5%) [25] None (5%) [26]

Quality Evaluation
Model-Based (47%) [27, 18, 12, 11, 15, 9, 20, 14,

13]
Simulation-Based (26%) [24, 16, 19, 23, 25]
Nonlinear Math. Function (21%) [27, 18, 12, 15]
Inherent (26%) [21, 10, 17, 22, 26]

Quality Evaluation Method
Layered Queueing Network (42%) [27, 18, 12, 15, 9, 20, 14, 13]
M/G/1 (21%) [27, 18, 12, 15]
Palladio-bench (11%) [16, 23]
MC-OQN (5%) [24] Analytical Model (5%) [11]
ABS Simulator (5%) [19] CDOSim (5%) [25]
Inherent (26%) [21, 10, 17, 22, 26]

Degrees of Freedom
Component Allocation (79%) [27, 18, 12, 21, 21, 24, 16, 19,

9, 17, 22, 20, 23, 14, 13, 25,
26]

Horizontal Scalability (74%) [27, 18, 12, 21, 24, 16, 19, 15,
9, 17, 22, 23, 14, 13, 25, 26]

Component Replication (74%) [27, 18, 12, 21, 21, 24, 16, 19,
15, 9, 17, 22, 20, 23, 13, 26]

Resource Selection (58%) [27, 18, 12, 21, 24, 19, 15, 17,
22, 14, 25, 26]

Vertical Scalability (26%) [11, 19, 23, 13, 25]
Component Selection (16%) [19, 14, 13]
Provider Service Selection (11%) [15, 25]
Software Pattern (5%) [10]
Workflow Orchestration (5%) [11]

Optimization Strategy
Approximate (79%) [27, 18, 12, 24, 11, 16, 10, 15,

9, 17, 23, 14, 13, 25, 26]
Exact (42%) [27, 18, 12, 21, 19, 15, 22, 20]

Optimization Method
Mixed Linear Int. Prog. (26%) [27, 18, 12, 15, 20]
Tabu Search (26%) [27, 18, 12, 15, 14]
Genetic Algorithm (26%) [9, 14, 13, 25]
Constraint Programming (16%) [21, 19, 22]
Evolutionary Algorithm(16%) [24, 16, 17, 23]
Greedy Algorithm (5%) [11]
Refactoring Rules (5%) [10]
Ant Colony Optimization (5%) [26]

Constraint Handling
Prohibit (79%) [27, 18, 12, 21, 24, 11, 19, 15,

9, 22, 23, 14, 13, 25, 26]
Repair (37%) [27, 18, 12, 16, 15, 17, 14]
None (5%) [10] Penalty (5%) [20]

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

21



5. Discussion

Architecture Optimization Approaches for Cloud Applications, as considered here, remain a niche topic,
reflected by the relatively few papers found in the literature search. Although this observation may
in part be the result of the more strictly formulated inclusion criteria in Section 3 that consider only
approaches presenting a structured and automated optimization method. More approaches are available
which however include manual steps or do not provide as concrete optimization suggestions as the
approaches considered in this work.

To answer RQ1, we can state that Aleti et al.’s taxonomy already enables an effective categorization
of cloud application optimization approaches. We adapted it by removing one category, adding new
categories with different abstraction levels, and defining a new set of values as described in 4.1.

For RQ2 our findings in 4.2 represent the basis from which the following conclusions can be drawn:
Dominance of Design-Time Approaches Most reviewed approaches focus on optimization before
deployment, allowing early performance and cost predictions without incurring additional test infras-
tructure expenses. This design-time emphasis supports more complex solution derivation, as runtime
constraints (e.g., adaptation speed) are less critical. However, questions remain about the actual benefits
of runtime optimization versus predefined scaling policies.
Prevalence of Cost and Performance as Key Quality Attributes: Cost and performance dominate
in the reviewed approaches. Cost optimization, in particular, appears in nearly all single-objective
approaches and all multi-objective ones, reflecting the economic focus of using cloud services. Fur-
thermore, performance and cost are more straightforward to observe at runtime in order to validate
optimization approaches. Optimization approaches for other quality aspects, like maintainability or
portability require more effort in their validation since case studies or experiments need to be done in a
longer time span. While this focus on performance and cost is practical, it highlights a research gap
concerning other quality attributes, for example also reliability.
Focus on Performance Models and Palladio Component Model Many approaches rely on perfor-
mance models, with PCM being the most widely used thanks to its maturity and tool support. This
strong focus indicates PCM’s effectiveness in predicting and evaluating QoS attributes. Although
alternatives such as Aeolus or customized models exist and are employed the PCM is the only model
with widespread adoption in the reviewed approaches.
Dominance of Approximate Optimization Strategies 79% of the approaches apply heuristic or
approximate approaches to tackle the NP-hard [31] nature of cloud architecture optimization. Exact
methods appear less frequently and often in combination with approximations, usually by limiting
problem scope or mixing modeling techniques to ensure feasibility.
Validation Gap in Cloud Architecture Optimization. Few standardized benchmarks exist, making
comparisons across approaches difficult. Most validations rely on case studies rather than real-world
industrial settings and lack detailed demonstrations of economic benefits. Future research could focus
on robust benchmarking frameworks and well-documented success stories to strengthen the field’s
credibility and practical impact.
Some limitations of this review must be acknowledged. Only complete optimization approaches

presented in academia were included which are typically toolchains comprised of different subfields
like software modeling and the formulation of optimization problems. Therefore advancements in
individual subfields and industry-driven solutions are not part of this study. Additionally, threats to
completeness arise from the selection of databases and search terms. Also, the review was mainly
conducted by a single researcher. Therefore the risk of some bias can’t be completely excluded but was
mitigated through a clear methodology and taxonomy-based extraction.

As stated before, we are not aware of another review for software architecture optimization approaches
specifically targeting cloud applications. Therefore, as related work mainly the reviewed primary studies
would have to be considered and the review by Aleti et al. [3] upon which this study is built.

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

22



6. Conclusion

This work presents a systematic review of 19 papers on architecture optimization approaches for cloud
applications. A taxonomy for categorizing approaches was derived and current research trends in the
field were identified. Key findings include the dominance of design-time optimization, cost-focused goals,
reliance on performance models like PCM, and the prevalence of approximate optimization methods.
Gaps in validation strategies and a lack of standardized benchmarks were identified, highlighting areas
for improvement. These insights aim to guide future research and development for new approaches,
advancing the field with more robust and versatile solutions.

Declaration on Generative AI

During the preparation of this work, the authors used Grammarly in order to: Grammar and spelling
check. After using this tool, the authors reviewed and edited the content as needed and take full
responsibility for the publication’s content.

References

[1] A. Taherkordi, F. Zahid, Y. Verginadis, G. Horn, Future cloud systems design: Challenges and
research directions, IEEE Access 6 (2018) 74120–74150. doi:10.1109/access.2018.2883149.

[2] N. Kratzke, P.-C. Quint, Understanding Cloud-native Applications after 10 Years of Cloud
Computing - A Systematic Mapping Study, Journal of Systems and Software 126 (2017) 1–16.
doi:10.1016/j.jss.2017.01.001.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, I. Meedeniya, Software architecture optimization
methods: A systematic literature review, IEEE TSE 39 (2013) 658–683. doi:10.1109/tse.2012.64.

[4] M. Shaw, P. Clements, The golden age of software architecture, IEEE Software 23 (2006) 31–39.
doi:10.1109/ms.2006.58.

[5] ISO/IEC/IEEE, ISO/IEC/IEEE 42010:2022 - Software, systems and enterprise — Architecture de-
scription, 2022. URL: https://www.iso.org/standard/74393.html.

[6] C. Pahl, P. Jamshidi, O. Zimmermann, Architectural Principles for Cloud Software, ACM Transac-
tions on Internet Technology 18 (2018) 1–23. doi:10.1145/3104028.

[7] N. Kratzke, R. Peinl, ClouNS - a Cloud-Native Application Reference Model for Enterprise
Architects, in: IEEE 20th International Enterprise Distributed Object Computing Workshop
(EDOCW), IEEE, 2016, pp. 1–10. doi:10.1109/edocw.2016.7584353.

[8] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in Software
Engineering, techreport EBSE-2007-01, Keele University and Durham University, 2007. URL:
https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf.

[9] V. Cortellessa, D. Di Pompeo, M. Tucci, Exploring Sustainable Alternatives for the Deployment of
Microservices Architectures in the Cloud, in: 2024 IEEE 21st International Conference on Software
Architecture (ICSA), 2024, pp. 34–45. doi:10.1109/ICSA59870.2024.00012.

[10] J. Soldani, G. Muntoni, D. Neri, A. Brogi, The 𝜇TOSCA toolchain: Mining, analyzing, and refac-
toring microservice-based architectures, Software: Practice and Experience 51 (2021) 1591–1621.
doi:10.1002/spe.2974.

[11] C. Lin, H. Khazaei, Modeling and Optimization of Performance and Cost of Serverless Applications,
IEEE TPDS 32 (2021) 615–632. doi:10.1109/TPDS.2020.3028841.

[12] M. Ciavotta, G. P. Gibilisco, D. Ardagna, E. D. Nitto, M. Lattuada, M. A. A. Da Silva, Architec-
tural Design of Cloud Applications: A Performance-Aware Cost Minimization Approach, IEEE
Transactions on Cloud Computing 10 (2022) 1571–1591. doi:10.1109/TCC.2020.3015703.

[13] A. Koziolek, H. Koziolek, R. Reussner, PerOpteryx: Automated application of tactics in multi-
objective software architecture optimization, in: Joint ACM SIGSOFT Conference – QoSA and ACM

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

23

http://dx.doi.org/10.1109/access.2018.2883149
http://dx.doi.org/10.1016/j.jss.2017.01.001
http://dx.doi.org/10.1109/tse.2012.64
http://dx.doi.org/10.1109/ms.2006.58
https://www.iso.org/standard/74393.html
http://dx.doi.org/10.1145/3104028
http://dx.doi.org/10.1109/edocw.2016.7584353
https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
http://dx.doi.org/10.1109/ICSA59870.2024.00012
http://dx.doi.org/10.1002/spe.2974
http://dx.doi.org/10.1109/TPDS.2020.3028841
http://dx.doi.org/10.1109/TCC.2020.3015703


SIGSOFT Symposium – ISARCS on Quality of Software Architectures, ACM, Boulder Colorado
USA, 2011, pp. 33–42. doi:10.1145/2000259.2000267.

[14] M. Ciavotta, M. Ardagna, A. Koziolek, Palladio Optimization Suite: QoS optimization for
component-based Cloud applications, in: 9th EAI International Conference on Performance Eval-
uation Methodologies and Tools, ACM, Berlin, Germany, 2016. doi:10.4108/eai.14-12-2015.
2262562.

[15] M. Ciavotta, D. Ardagna, G. P. Gibilisco, A mixed integer linear programming optimization
approach for multi-cloud capacity allocation, Journal of Systems and Software 123 (2017) 64–78.
doi:10.1016/j.jss.2016.10.001.

[16] F. Willnecker, H. Krcmar, Multi-Objective Optimization of Deployment Topologies for Distributed
Applications, ACM Transactions on Internet Technology 18 (2018) 1–21. doi:10.1145/3106158.

[17] X. Du, Y. Ni, P. Ye, X. Wang, R. Xiao, Performance Optimization of Cloud Application
at Software Architecture Level, in: K. Li, W. Li, H. Wang, Y. Liu (Eds.), Artificial Intel-
ligence Algorithms and Applications, volume 1205, Springer Singapore, 2020, pp. 724–738.
doi:10.1007/978-981-15-5577-0_58.

[18] D. Ardagna, G. P. Gibilisco, M. Ciavotta, A. Lavrentev, A Multi-model Optimization Framework
for the Model Driven Design of Cloud Applications, in: C. Le Goues, S. Yoo (Eds.), Search-Based
Software Engineering, volume 8636, Springer International Publishing, Cham, 2014, pp. 61–76.
doi:10.1007/978-3-319-09940-8_5.

[19] S. De Gouw, J. Mauro, G. Zavattaro, On the modeling of optimal and automatized cloud application
deployment, Journal of Logical and Algebraic Methods in Programming 107 (2019) 108–135.
doi:10.1016/j.jlamp.2019.06.001.

[20] J. Z. Li, M. Woodside, J. Chinneck, M. Litoiu, CloudOpt: Multi-goal optimization of application
deployments across a cloud, in: 7th International Conference on Network and ServiceManagement,
2011, pp. 1–9. URL: https://ieeexplore.ieee.org/abstract/document/6103947.

[21] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche, A. Agahi, Automated
synthesis and deployment of cloud applications, in: 29th ACM/IEEE International Conference
on Automated Software Engineering, ACM, Vasteras Sweden, 2014, pp. 211–222. doi:10.1145/
2642937.2642980.

[22] E. Ábrahám, F. Corzilius, E. B. Johnsen, G. Kremer, J. Mauro, Zephyrus2: On the Fly Deployment
Optimization Using SMT and CP Technologies, in: M. Fränzle, D. Kapur, N. Zhan (Eds.), Dependable
Software Engineering: Theories, Tools, and Applications, Springer International Publishing, Cham,
2016, pp. 229–245. doi:10.1007/978-3-319-47677-3_15.

[23] F. Willnecker, H. Krcmar, Optimization of Deployment Topologies for Distributed Enterprise Ap-
plications, in: 12th International ACM SIGSOFT Conference on Quality of Software Architectures
(QoSA), IEEE, Venice, 2016, pp. 106–115. doi:10.1109/QoSA.2016.11.

[24] N. Tanković, T. Galinac Grbac, M. Žagar, ElaClo: A framework for optimizing software application
topology in the cloud environment, Expert Systems with Applications 90 (2017) 62–86. doi:10.
1016/j.eswa.2017.07.001.

[25] S. Frey, F. Fittkau, W. Hasselbring, Search-based genetic optimization for deployment and recon-
figuration of software in the cloud, in: 35th International Conference on Software Engineering
(ICSE), IEEE, San Francisco, CA, USA, 2013, pp. 512–521. doi:10.1109/ICSE.2013.6606597.

[26] A. Ashraf, B. Byholm, I. Porres, A Multi-objective ACS Algorithm to Optimize Cost, Performance,
and Reliability in the Cloud, in: 2015 IEEE/ACM 8th International Conference on Utility and Cloud
Computing (UCC), IEEE, Limassol, Cyprus, 2015, pp. 341–347. doi:10.1109/UCC.2015.54.

[27] M. Guerriero, M. Ciavotta, G. P. Gibilisco, D. Ardagna, A Model-Driven DevOps Framework for
QoS-Aware Cloud Applications, in: 17th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), IEEE, Timisoara, Romania, 2015, pp. 345–351.
doi:10.1109/SYNASC.2015.60.

[28] M. Loukides, The Cloud in 2021: Adoption Continues, O’Reilly Media, Inc., 2021. URL: https:
//www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/.

[29] S. Becker, H. Koziolek, R. Reussner, The Palladio component model for model-driven performance

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

24

http://dx.doi.org/10.1145/2000259.2000267
http://dx.doi.org/10.4108/eai.14-12-2015.2262562
http://dx.doi.org/10.4108/eai.14-12-2015.2262562
http://dx.doi.org/10.1016/j.jss.2016.10.001
http://dx.doi.org/10.1145/3106158
http://dx.doi.org/10.1007/978-981-15-5577-0_58
http://dx.doi.org/10.1007/978-3-319-09940-8_5
http://dx.doi.org/10.1016/j.jlamp.2019.06.001
https://ieeexplore.ieee.org/abstract/document/6103947
http://dx.doi.org/10.1145/2642937.2642980
http://dx.doi.org/10.1145/2642937.2642980
http://dx.doi.org/10.1007/978-3-319-47677-3_15
http://dx.doi.org/10.1109/QoSA.2016.11
http://dx.doi.org/10.1016/j.eswa.2017.07.001
http://dx.doi.org/10.1016/j.eswa.2017.07.001
http://dx.doi.org/10.1109/ICSE.2013.6606597
http://dx.doi.org/10.1109/UCC.2015.54
http://dx.doi.org/10.1109/SYNASC.2015.60
https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/
https://www.oreilly.com/radar/the-cloud-in-2021-adoption-continues/


prediction, Journal of Systems and Software 82 (2009) 3–22. doi:10.1016/j.jss.2008.03.066.
[30] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, Enhanced Modeling and Solution of

Layered Queueing Networks, IEEE TSE 35 (2009) 148–161. doi:10.1109/TSE.2008.74.
[31] G. Canfora, M. Di Penta, R. Esposito, M. L. Villani, An approach for qos-aware service composition

based on genetic algorithms, in: Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’05, Association for Computing Machinery, New York, NY,
USA, 2005, p. 1069–1075. doi:10.1145/1068009.1068189.

Frisch and Lichtenthäler: A Review of Software Architecture Optimization Approaches for Cloud
Applications

25

http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1109/TSE.2008.74
http://dx.doi.org/10.1145/1068009.1068189

	Alignment of Process Lifecycle and Software Product Line Engineering Phases Philipp Hehnle and Manfred Reichert
	Studying domain dependence in BPMN process modeling: An empirical research proposal Thomas S. Heinze
	Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System Mustafa Ghani
	A Review of Software Architecture Optimization Approaches for Cloud Applications Anton Frisch and Robin Lichtenthäler
	Seamless Migration of Containerized Stateful Applications in Orchestrated Edge Systems Roman Kudravcev and Sebastian Böhm
	Comparing Cloud and On-Premises Kubernetes: Insights into Networking and Storage Tooling Jakob Koller and Sebastian Böhm
	Business Instance Monitoring Lisa Arnold
	Surgery AI: Multimodal Process Mining and Mixed Reality for Real-time Surgical Conformance Checking and Guidance Aleksandar Gavric, Dominik Bork and Henderik A. Proper
	Author Index

