
Object Instance Monitoring
Lisa Arnold1

1Institute of Databases and Information Systems, Ulm University, Germany

Abstract
The monitoring of business processes represents a pivotal component of contemporary management practices to
ensure the efficiency and effectiveness of company processes. Object-centric business process monitoring is a
concept that involves the continuous observation and analysis of object instances to identify deviations from
defined standards and initiate prompt measures for optimisation. The utilisation of specific technologies, such as
Object Instance Monitoring, empowers companies to acquire valuable insights that facilitate the enhancement
of performance and the augmentation of customer satisfaction. The ability to identify risks at an early stage,
optimise the use of resources, and increase the company’s agility are key to long-term success in an increasingly
dynamic business world. The objective of this paper is twofold. Firstly, it seeks to define process metrics (i.e.,
the global status and duration of instances). Secondly, it discusses visualisation techniques for object instance
monitoring. The purpose of these two objectives is to facilitate resource and risk management.

Keywords
process monitoring, business processes, object-centric, object instance monitoring, resource management

1. Introduction

Object instance monitoring (OIM) is an essential aspect of process management. It facilitates the real-
time tracking and analysis of individual object instances, enabling companies to make informed decisions.
An object instance (e.g., Instance Application1) is defined as a specific execution of a business object
(e.g., Object Application). This is characterised by various connected states with business attributes and
decisions (i.e., lifecycle processes). The primary objectives of monitoring are to ensure process quality,
identify bottlenecks and increase efficiency. The implementation of individual process monitoring, for
instance, through the utilisation of dashboards, empowers organisations to respond expeditiously to
deviations and proactively implement measures [1].

Traditional business processes are defined as a series of activities and order constraints. These systems
offer the user a process-centric perspective. The monitoring of such traditional business processes
has the potential to provide Business Activity Monitoring (BAM) [2, 3]. However, it is not possible to
provide information regarding the specific execution of individual activity instances. Consequently, the
execution of these activities occurs within a black box, which is inaccessible to the user [4].

The PHILharmonicFlows framework is a runtime engine that facilitates the execution of object-
centric business processes. Furthermore, a monitoring engine that is integrated within the runtime
engine is provided. The fundamental premise of this paper is to define the concept of object instance
monitoring, which will be integrated within the monitoring engine. To facilitate the monitoring of
object-centric business processes, each instance status (e.g., running or terminated) that may exist
during runtime must be defined and delimited. In addition to the monitoring of status, the duration
of each instance constitutes a fundamental element of OIM. The objective of this paper is to establish
metrics to measure On Time, On Risk, and Overdue instances. In addition, the utilisation of visualisation
techniques to illustrate OIM is discussed. In light of this, a range of visualisation techniques is hereby
proposed, adapted to object-oriented processes and their respective instances.

The remainder of this paper is structured as follows. Section 2 provides a concise overview of
the key principles and characteristics of object-centric business processes. In Section 3, an overview
is provided of the potential statuses of instances during runtime. The concept and idea of instance

Vienna’25: 17th Central European Workshop on Services and their Composition (ZEUS), February 20–21, 2025, Vienna, Austria
$ lisa.arnold@uni-ulm.de (L. Arnold)
� 0000-0002-2358-2571 (L. Arnold)

© 2025 Copyright for this paper by its author. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

S. Böhm and M. Vidgof (Eds.): 17th ZEUS Workshop, ZEUS 2025, Vienna, Austria, 20–21 February, 2025
published at http://ceur-ws.org

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:lisa.arnold@uni-ulm.de
https://orcid.org/0000-0002-2358-2571
https://creativecommons.org/licenses/by/4.0/deed.en
 http://ceur-ws.org


duration monitoring is defined in Section 4. Section 5 provides a detailed exposition of the visualisation
techniques that have been developed for object instance monitoring. Related work is discussed in
Section 6. Section 7 concludes the paper.

2. Fundamentals of object-centric Business Process

In the object-centric process management paradigm PHILharmonicFlows, a business process is
described in terms of interacting business objects that correspond to real-world entities. The interactions
between the objects, as well as their relations, including their cardinalities, hierarchical structure, and
semantic relations, are manifested in the Relational Process Structure (RPS) (cf. Fig. 1)[5]. During
execution, business objects can create any number of object instances, provided that the constraints
imposed by their cardinalities are respected. Furthermore, business attributes may be defined for each
business object, specifying the business process. The RPS corresponding to the recruitment business
process, along with several of its key business attributes, is depicted in Fig. 1.

Figure 1: RPS of the recruitment business process with a number of the objects’ business attributes.

The runtime behaviour of these business objects is defined in terms of object lifecycles (lifecycle for
short) [6]. The lifecycle of the object Job Offer is depicted in Fig. 2. In general, a lifecycle comprises states,
with one start state (Preparation) and at least one end state (Position Filled and Position Vacant), as well
as any arbitrary number of intermediate states (Published and Closed). The runtime behaviour of each
object instance is defined by its own lifecycle instance. The start state of an instance is automatically
assigned as activated when the instance is created. Moreover, it is essential to note that during the
execution of an instance, it is only permissible for one state of the lifecycle to be marked as activated at
any given moment. It is consequently evident that parallel execution within a single lifecycle process
instance is not a possibility. However, executing multiple instances in parallel is indeed feasible. To
facilitate user interaction at runtime for each state, an automatically generated form sheet is created
from the lifecycle structure. In particular, the states of a lifecycle define the form sheets and their steps,
which in turn design the input fields. These are constructed from the object attributes. The result
is a data-driven business process. Furthermore, the lifecycle may encompass backwards transitions
to previous states, allowing for the reading, verification, or adjustment of previously entered data.
However, it should be noted that by default, there are no backwards transitions, as a modeller must
explicitly set these. Moreover, the intention behind backwards transitions is not to establish loops,
wherein a new instance is generated. Instead, the previous form is displayed once more, accompanied
by the input variables that the end user has previously entered.

A coordination process (cf. Fig. 3) controls the interactions between the lifecycles of multiple objects
and defines the sequence of states between multiple lifecycle states. A coordination step is defined as a
reference to the lifecycle state of an object. Moreover, a coordination process is generally represented
by a graph, in which the vertices correspond to the coordination steps and the edges correspond to the
coordination transitions. The coordination process graph is defined as a directed, acyclic and connected

Lisa Arnold: Business Instance Monitoring

41



Figure 2: Lifecycle of the object Job Offer.

Figure 3: The coordination process of the coordinating business object Job Offer.

graph. This implies that it does not permit backwards transitions or loops to preceding coordination
steps [7]. Conversely, the absence of such mechanisms can lead to cyclic dependencies, which, in turn,
can result in deadlocks. Consequently, the occurrence of cyclic dependencies may result in deadlocks,
thereby introducing an inherent risk to the process [7].

3. Status of an Instance

This section provides an overview of the various statuses that can be assigned to an instance.
Running Instance: A running instance is defined as an instance with an activated state that is

not the end state. In Fig. 4, the start state Preparation is the active state. Data collection is done using
forms. The form can be automatically generated from the process elements. Typically, in activity-centric
processes, forms must be designed manually for each activity. However, since PHILharmonicFlows
is data-centric, form generation is built in. The operational semantics control the dynamic aspects
of the form, such as the next value that is required. The active state of the process (cf. Fig. 4) gives
rise to the current form sheet Preparation, incorporating the designated input fields, which include
Title, Description, Category, Tasks, and Qualifications. Input fields designated Title and Description are
filled in with data, whereas a value for Category is required, indicated by the marking Enabled on the
Category step (cf. Fig. 4). The input fields designated Tasks and Qualifications have been marked as
ready. Nevertheless, the operational semantics have been designed to allow for flexibility. It is not
obligatory for a user to complete the form in the correct order. However, they are at liberty to deviate
from this by filling in the Qualifications field first and the Tasks field afterwards. This provides the end
user with a certain degree of flexibility. Provided that a lifecycle instance is active (not marking the end
state as active), it is considered to be running.

Terminated Instance: Terminated instances are defined as instances that have reached one of their
end states (end state marked as activated). As demonstrated in Fig. 2 and 4, the end states comprise
precisely one step. This step is devoid of any reference to a business attribute and is consequently
designated as an empty step. It is important to note that an end state does not generate a form sheet or
input fields. The primary purpose of end states is to enable the monitoring or collection of terminated
instances without the need to delete or eliminate these instances. Multiple end states can characterise
a lifecycle. The various potential end states of each instance (e.g., the state of a position being either
vacant or filled) can be leveraged to demonstrate their different outcomes. Generally, these instances

Lisa Arnold: Business Instance Monitoring

42



Figure 4: Screenshot from runtime engine of the Lifecycle Job Offer with markings.

(a) No outgoing Backwards transition from an end
state.

(b) Backwards transition from an end state to a previ-
ous state.

Figure 5: Difference between completely terminated instances and temporarily terminated instances.

do not necessitate further work. End states can exhibit backwards transitions to one of their previous
states. It is incumbent upon the modeller to define such transitions explicitly. In the event of such a
backwards transition, a terminated instance may be reactivated. This enables the distinction between
instances that have been fully and non-fully terminated.

Fully Terminated Instance: A fully terminated instance is defined as an instance that has reached
its end state, and there is no backwards transition to reactivate the instance again. Fig. 5a shows an
intermediate state with one step and a transition to the empty end state. An instance that can be fully
terminated is the default way of modelling a lifecycle process.
Non-Fully Terminated Instance: A non-fully terminated instance is defined as an instance that

has reached its end state, and there is at least one backwards transition to a previous state modelled to
reactivate the instance. Fig. 5b shows the same constellation as in Fig. 5a with an additional backwards
transition. This case is used when an instance that has reached an end state and is normally terminated
can be considered again. Considering the recruitment process used in Section 2 as a running example,
one use case is the rejection of applications because the vacancy is filled (cf. Fig. 2). However, the
candidate who has been offered the job rejects it. In this case, the rejected application is reconsidered
and the instance to find the most suitable candidate is reactivated. Furthermore, a lifecycle can have two
types of end states: one with the possibility of reactivating an instance and another with no reactivation
option. This eliminates the need for complex special-case modelling.

Expected Instance: Expected instances are defined as those which are yet to be created, but whose
existence is already anticipated. The purpose of these instances is to facilitate resource management
calculations and planning.

• Minimum Cardinality: Within the paradigm of the data model, the cardinality between two
objects that are related can be defined. By default, a 1 : n cardinality is established, and the
n : m relation’s placeholders n and m can be defined by the modeller as follows: minimum (e.g.,
4..m), maximum (e.g., 1..8), or range (e.g., 3..5). In the event of a minimum being specified, it can
be used to calculate the expected instances. To illustrate this, consider the recruitment process
illustrated in Fig. 1. This process stipulates that for each application, between three and five
instances of reviews must be created.

• Event Log: Utilising an event log facilitates the calculation of the expected number of instances
by leveraging the average number of instances generated by completed business process instances.
However, it should be noted that this variation can be subject to inaccuracy. Nevertheless, it can

Lisa Arnold: Business Instance Monitoring

43



assist in approximating the anticipated expense. For example, the number of applications can be
estimated during the recruitment process. Consequently, the anticipated quantity of application
instances can be calculated, thereby facilitating the estimation of the number of review instances.

• Machine Learning: The utilisation of supervised machine learning (i.e., neural networks [8]
or random forest), in conjunction with a comprehensive event log, has been demonstrated to
enhance the precision of the mean calculation of the method above (i.e., event log). This approach
has been shown to yield more accurate predictions, as it incorporates additional factors beyond
the number of applications. These factors considered are numerous. These include the nature of
the job offer, the qualifications deemed necessary, and economic as well as environmental factors.

Deleted Instances: The PHILharmonicFlows framework facilitates the direct deletion of running
instances by end users, contingent upon the possession of the requisite permissions. For instance, an
applicant has the option to withdraw their application by deleting it. An employee can not remove an
application without the necessary permissions.

4. Instance Duration Monitoring

The maximum processing time (i.e., the time span in which the instance must be completed) and the
proceeding time (i.e., the time taken to complete the work of an instance) can be used to monitor risk
management. For each lifecycle, a modeller (or process owner) can specify the amount of time for
an instance, as well as each of its states, to be completed. For example, after an application has been
received, a reviewer has two weeks to complete the review. Additionally, the maximum processing
duration of one lifecycle state (i.e., one form sheet) can be defined. For example, if a candidate is
successful in the assessments, they will be invited for an interview (i.e., state Preparation Interview). In
this case, a recruiter has five days to send the candidate an interview date. Each running instance can
be categorised into one of the following modes:
On Risk: This status is defined for instances or states where the proceeding time is nearly over.

The determination of the point at which an instance or state is deemed to be at risk is made by a key
performance indicator (KPI). By default, the value On Risk is set to 80% of the maximum processing time.
Consequently, when 80% of the defined proceeding time has elapsed, an instance or state is flagged as
being at risk. If an instance or state reaches a risk status, an alert is to be dispatched to the employees
responsible for editing the instance or state. Furthermore, in the event of a reported absence (e.g., illness,
holiday), the alert is to be forwarded to a colleague. However, this is only possible if the employee has
designated a colleague in the system.

On Time: The definition applies to instances or states in which the proceeding time is on time, i.e.,
the proceeding time falls within the first 80% of the maximum processing time span. It is possible to
adapt the KPI of the value On Risk. Consequently, the temporal span within which an instance or state
is considered to be on time is also subject to adaptation.
Overdue: This is defined for instances or states where the defined processing time has elapsed. In

such a scenario, an escalation message will be transmitted to a different employee. The identification of
the employee concerned is specified within the runtime engine. Typically, the escalation message is
sent to a colleague the first time, or to a manager if the deadline is missed more often.

5. Visualisation

In the context of object-centric business processes, the PHILHarmonicFlows monitoring framework
has been developed to facilitate the monitoring of instances created within its runtime engine. The
monitoring framework enables users to define bespoke monitoring components and charts, thereby
empowering them to track and analyse process metrics meticulously. The primary objective of the
monitoring framework is to facilitate a collaborative process that enables users to construct their
own monitoring framework through a straightforward click-and-build interface. This will allow users

Lisa Arnold: Business Instance Monitoring

44



to create bespoke monitoring dashboards in accordance with their respective permissions, specific
task area and individual interests. The monitoring framework provides a range of options for data
visualisation, including pie charts, doughnut charts, and bar charts. These visualisation charts can be
employed to represent the instance duration (i.e., On Time, On Risk, or Overdue) or status (i.e., running,
terminated, or expected) of a single instance. Furthermore, the framework provides options for data
visualisation at the level of a collection of instances (e.g., all application instances related to the same
job offer), all instances of the same object type, or the lifecycle state of an instance.

The use of rudimentary diagrams (e.g., bar charts) is optimal for monitoring individual instances
(i.e., single review instances) or instances of the same type (i.e., all review instances). The utilisation
of sophisticated diagram types is imperative for the comprehensive monitoring of business processes.
The sunburst chart [9] is a prime example of a sophisticated diagram. It is particularly well-suited to
the visualisation of hierarchically dependent data structures. The adaptation of sunburst charts for the
illustration of our recruitment process example is demonstrated in Fig. 6. The sunburst chart [10] was
applied to the progress indicator (cf. Fig. 6a) calculated with a one-dimensional Kalman Filter [11] and
the risk management (cf. Fig. 6b) of all running instances.

JO1

JO2

A1

A2

A3

A4 A5

R1
R2

R3

R4

R5
R6

R7
R8

R9
R10

R11

I1

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

(a) Current progress (from 0% to 100%).

JO1

JO2

A1

A2

A3

A4 A5

R1
R2

R3

R4

R5
R6

R7
R8

R9
R10

R11

I1

Overdue

On Risk

On Time

(b) Current status (On Time, On Risk, or Overdue).
Figure 6: Sunburst charts illustrate the runtime behaviour of the recruitment business process (JO := Job Offer,
A := Application, R := Review, I := Interview) [10].

Heat maps [1] are another method for gaining an overall view of the business process. The coordina-
tion process is visualised through the utilisation of a heat map. Two variants of the coordination process
are distinguished: the standard coordination process (cf. Fig. 3), which displays solely the coordination
steps that have interactions with other objects, and the extended coordination process, in which all
absent coordination steps (i.e., coordination steps without interactions between different objects) are
automatically incorporated. The employment of a heat map facilitates the representation of the number
of active instances for each coordination step. In this representation, the colour red is used to denote a
low number of active instances. In contrast, green is used to indicate a high number of active instances
in a coordination step. The heat map has the potential to optimise resource management by helping to
identify personal bottlenecks more efficiently and to take prompt countermeasures.

6. Related Work

The field of Business Activity Monitoring (BAM) has already been established as a subject of research,
with a considerable number of academic papers [2, 3, 12]. Furthermore, BAM has been incorporated
into commercial tools, such as Bizagi [13]. The BAM tool from Bizagi is an analytical instrument that
enables the graphical representation of information about the status of ongoing cases. BAM comprises
three constituent elements. Primarily, Process BAM is responsible for the analysis of the present status
(i.e., On Time, On Risk, or Overdue) of all ongoing processes. Secondly, the function of Activity BAM is to
analyse the current state (i.e., On Time, On Risk, or Overdue) of ongoing activities. Finally, the function
of the Resources Monitor is to analyse the current workload (i.e., On Time, On Risk, or Overdue) and
performance of end users and work teams[14]. Furthermore, Camunda employs a heat map to facilitate
the monitoring and optimisation of business processes, visualising the duration or the most frequent
path of these processes [1].

Lisa Arnold: Business Instance Monitoring

45



7. Conclusions

The objective of this paper is to examine the application of object instance monitoring (OIM) in the
context of object-centric business processes. The paper establishes and delineates a comprehensive
categorisation of the statuses (e.g., running or terminated) that an instance may achieve during the
execution of a business process. Furthermore, it establishes a duration concept for running instances,
and specifies metrics On Time, On Risk, and Overdue. Finally, the utilisation of visualisation techniques
(i.e., rudimentary diagrams, sunburst charts, and heat maps) adapted to object-centric business processes
is explained, with a focus on illustrating OIM constituents. Further work is currently underway to
develop personalised dashboards, the functionality of which will enable each user to create their own
bespoke dashboard by selecting a combination of monitoring functions and visualisation types from a
curated list.

Acknowledgments

This work is part of the ProcMape project, funded by the KMU Innovativ Program of the Federal
Ministry of Education and Research, Germany (F.No. 01IS23045B).

Declaration on Generative AI

During the preparation of this work, the author used Grammarly in order to: Grammar and spelling
check. After using this tool, the author reviewed and edited the content as needed and takes full
responsibility for the publication’s content.

References

[1] E. Amann, C. Corea, C. Drodt, P. Delfmann, A dashboard creator suite for simultaneous predictive
process monitoring., in: International Conference on Business Process Management Demo
(BPM’22), 2022, pp. 152–156.

[2] J.-P. Friedenstab, C. Janiesch, M. Matzner, O. Muller, Extending bpmn for business activity
monitoring, in: 45th Hawaii International Conference on System Sciences, IEEE, 2012, pp. 4158–
4167.

[3] W. Schmidt, Business activity monitoring (bam), in: Business Intelligence and Performance
Management: Theory, systems and industrial applications, Springer, 2013, pp. 229–242.

[4] V. Künzle, M. Reichert, Philharmonicflows: towards a framework for object-aware process
management, Journal of Software Maintenance and Evolution: Research and Practice 23 (2011)
205–244.

[5] S. Steinau, K. Andrews, M. Reichert, The relational process structure, in: Int. Conf. on Advanced
Information Systems Engineering (CAiSE’18), Springer, 2018, pp. 53–67.

[6] S. Steinau, K. Andrews, M. Reichert, Executing lifecycle processes in object-aware process
management, in: Int. Symp. on Data-Driven Process Discovery and Analysis (SIMPDA’17),
Springer, 2017, pp. 25–44.

[7] S. Steinau, K. Andrews, M. Reichert, Coordinating large distributed relational process structures,
Software and Systems Modeling 20 (2021) 1403–1435.

[8] H. Liu, M. Xu, Z. Yu, V. Corvinelli, C. Zuzarte, Cardinality estimation using neural networks, in:
Proceedings of the 25th Annual International Conference on Computer Science and Software
Engineering, 2015, pp. 53–59.

[9] F. Le Guen, Sunburst Chart, https://www.excel-exercise.com/sunburst-chart/, 2022. [Online; ac-
cessed 14-February-2025].

Lisa Arnold: Business Instance Monitoring

46

https://www.excel-exercise.com/sunburst-chart/


[10] L. Arnold, M. Breitmayer, M. Reichert, Monitoring object-centric business processes: an empirical
study, in: International Conference on Research Challenges in Information Science (RCIS’2023),
Springer, 2023, pp. 327–342.

[11] L. Arnold, M. Breitmayer, M. Reichert, A one-dimensional kalman filter for real-time progress
prediction in object lifecycle processes, in: 2021 IEEE 25th International Enterprise Distributed
Object Computing Workshop (EDOCW’21), IEEE, 2021, pp. 176–185.

[12] H. Kim, Y.-H. Lee, H. Yim, N. W. Cho, Design and implementation of a personalized business
activity monitoring system, in: Human-Computer Interaction. HCI Applications and Services: 12th
International Conference on Human-Computer Interaction (HCI’07), Springer, 2007, pp. 581–590.

[13] F. M. Nafie, M. A. Eltahir, Real-time monitoring and analyzing business process performance,
nternational Journal of Engineering And Science Vol. 6 (2016) 31–35.

[14] Bizagi-Germany-GmbH, BAM Documentation, https://help.bizagi.com/platform/en/index.html?
bam.htm, 2023. [Online; accessed 14-February-2025].

Lisa Arnold: Business Instance Monitoring

47

https://help.bizagi.com/platform/en/index.html?bam.htm
https://help.bizagi.com/platform/en/index.html?bam.htm

	Alignment of Process Lifecycle and Software Product Line Engineering Phases Philipp Hehnle and Manfred Reichert
	Studying domain dependence in BPMN process modeling: An empirical research proposal Thomas S. Heinze
	Towards Model Consistency between abstract and explicit Delay-Robustness in Timed Graph Transformation System Mustafa Ghani
	A Review of Software Architecture Optimization Approaches for Cloud Applications Anton Frisch and Robin Lichtenthäler
	Seamless Migration of Containerized Stateful Applications in Orchestrated Edge Systems Roman Kudravcev and Sebastian Böhm
	Comparing Cloud and On-Premises Kubernetes: Insights into Networking and Storage Tooling Jakob Koller and Sebastian Böhm
	Business Instance Monitoring Lisa Arnold
	Surgery AI: Multimodal Process Mining and Mixed Reality for Real-time Surgical Conformance Checking and Guidance Aleksandar Gavric, Dominik Bork and Henderik A. Proper
	Author Index

