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Abstract 
Survival analysis is a statistical approach that studies time-to-event data, with applications in many fields 
ranging from medicine to social sciences. While deep learning has emerged as a powerful tool for survival 
analysis, existing software solutions often lack flexibility, rely on unmaintained frameworks, or do not 
support key functionalities such as transfer learning. To address these limitations, we present DeepHazard, 
a novel Python package designed to facilitate the implementation of deep neural networks for survival 
analysis. Built with compatibility for both TensorFlow/Keras and PyTorch, DeepHazard provides a 
customizable architecture, efficient handling of censored data, pre-defined loss function derived from the 
Cox model and including both L1/L2 regularization, and built-in support for transfer learning. Representing 
a versatile and user-friendly framework, DeepHazard enables researchers to easily develop, customize, and 
deploy deep learning models for survival analysis and risk stratification with applications in biomedical 
sciences and beyond. The package is designed for ease of use, reproducibility, and integration into modern 
machine learning workflows. 
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1. Introduction 

Survival analysis, also referred to as time-to-event analysis, is a branch of statistics that studies the 
amount of time it takes before a particular event of interest occur [1]. Depending on the type of event 
considered, it has a wide range of applications in many different fields, such as actuarial sciences, 
that rely on survival models to predict life expectancy and design insurance policies [2], social 
sciences, in which it is used for example to study career progression and job retention [3], or 
industrial application, in which this kind of analysis is widely used for predictive maintenance [4], 
that is the attempt of anticipating equipment failure and strategically planning maintenance or 
replacements of key components of industrial plants. 

A unique feature of this kind of analysis with respect to conventional regression, is the need of 
handling censored data, that primarily arise because of incomplete follow-up of the samples. In 
particular, censoring occurs when the event of interest is not yet happened at the time of analysis 
[1]. This makes survival analysis particularly well-suited for biomedical applications, where the 
event of interest can be death, disease recurrence, or any other clinically relevant outcome, and in 
which patients may have not yet experienced such event during the course of a clinical trial, or the 
outcomes may be unknown at the time of analysis, for example because the patient withdrew from 
the study. In fact, in this field, survival analysis has been widely used to study patient prognosis, 
evaluate treatment effectiveness, and develop risk prediction models [5]. 

In the last decades, with the advent of precision and personalized medicine, the need for robust 
survival modelling techniques became increasingly evident. In fact, precision medicine extensively 
exploit predictive algorithms to personalize the treatment strategies based on individual genetic 
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profiles [6], systematically acquired thanks to high-throughput and cost-effective technologies such 
as next generation sequencing (NGS) and its evolutions [7]. 

However, leveraging these vast, heterogeneous datasets to get reliable survival predictions poses 
a significant challenge for conventional statistical models, such as the Cox proportional hazards 
model [8], that often rely on strong assumptions about the relationships between covariates and 
survival, that may not hold in complex biological systems, and struggle with the high-dimensional 
and strongly non-linear nature of genomic and multi-omic data. 

Instead, this is where deep learning is rapidly emerging as a powerful and robust alternative [9]. 
In fact, first of all it is intrinsically designed to catch non-linear patterns and correlations within the 
data. Secondly, by exploiting many flexible and diverse architectures, ranging from deep artificial 
neural networks [10], to convolutional [11] or recurrent [12] networks, it can be easily adapted to 
handle and integrate different data sources, from clinical data, to medical imaging or molecular data 
[13]. Moreover, deep learning models can be optimized for transfer learning [14], in which 
knowledge gained from larger datasets can be transferred and applied to smaller or domain-specific 
cohorts, an essential feature given the limited number of patients or samples characterizing many 
clinical datasets. 

In this context, there is an urgent need of frameworks designed to facilitate the development of 
deep learning models for survival analysis applications. 

1.1. Related works 

In the last few years, several deep learning-based libraries have been developed to address this need. 
However, all the existing tools present limitations that we aim to overcome with the present work. 
A detailed review of existing deep learning methods for survival analysis is beyond the scope of this 
paper and can be found elsewhere [15]; here, we limit to provide a selected overview of the most 
relevant existing packages: 

1. DeepSurv [16]: provides a deep learning extension of the Cox proportional hazard model, 
implemented using Theano [17] and Lasagne [18]. DeepSurv has demonstrated improved 
predictive performance over traditional Cox models by capturing complex, non-linear 
relationships within the data [16]. However, it lacks a built-in support for transfer learning 
applications. Moreover, and most importantly, it is entirely based on Theano, which (beside 
being considered less user-friendly, due to its lower-level nature) is no longer maintained, 
representing a huge limitation with respect to modern deep learning frameworks such as 
Tensorflow/Keras and PyTorch. 

2. Cox-nnet [19] / Cox-nnet v2.0 [20]: Similar to DeepSurv, Cox-nnet provides a framework for 
the implementation of a deep neural network for survival analysis that extends the Cox 
proportional hazard model. Cox-nnet was developed with a specific focus on gene expression 
datasets, despite its implementation has no differences with respect to a general purpose 
network. With respect to DeepSurv, Cox-nnet provides less flexibility in terms of 
regularization, since it does not provide the option of including dropout layers and it only 
implements the Ridge penalization method that may be suboptimal for many datasets. 
Moreover, Cox-nnet is also built on Theano, leading to similar concerns regarding 
maintainability and compatibility with current deep learning ecosystems. 

3. DeepHit [21]: This method addresses survival analysis within the context of competing risks,  
that is only appropriate when there is the need to account for multiple mutually exclusive 
event types, so that the goal is to directly estimate the probability of different events over 
time. While DeepHit offers a flexible approach to modeling multiple event types, its focus 
diverges from traditional survival analysis tasks that instead involve single-event outcomes. 
While DeepHit is built based on Tensorflow/Keras that represents a gold standard for deep 
learning applications, it does not integrate transfer learning functionalities, limiting its 
applicability in the case of small datasets. 



4. PyCox [22]: is a Python package devoted to survival analysis: It is built on PyTorch, thus 
benefiting of its flexibility and active development. PyCox is primarily a collection of existing 
models, including DeepSurv and DeepHit, but it does not introduce novel functionalities such 
as customized cost functions or native support for transfer learning applications. 

5. TorchSurv [23]: is a PyTorch-based package for survival analysis developed by Novartis in 
collaboration with the US Food and Drug Administration. The goal of the package is to 
provide an intuitive tool for implementing deep neural networks for survival analysis. It 
implements loss functions derived from both parametric (Weibull accelerated failure time) 
and semi-parametric (Cox proportional hazard) models, without the inclusion of any 
additional regularization terms. While it a re-implements several well-established evaluation 
metrics (typically provided by independent packages, such as scikit-survival), but it does not 
provide built-in functionality for transfer learning applications. 

6. TorchLife (https://github.com/sachinruk/torchlife/): Similar to TorchSurv, but with restricted 
functionalities, TorchLife is a PyTorch-based package with a minimal implementation of 
deep learning based models for survival analysis. It shares the same limitations already 
identified in the case of TorchSurv. 

7. Auton-survival [24]: is a PyTorch-based package extending both proportional and time-
dependent hazard models to deep learning architectures. Besides standard survival analysis 
approaches, and unlike the packages, it also provides useful functionality for counterfactual 
estimation and supervised or unsupervised risk stratification. However, similar to the other 
packages, it lacks support for transfer learning applications. 

1.2. Objective and structure of the paper 

The objective of this paper is to present DeepHazard, a novel python package for the implementation 
of deep learning models devoted to survival analysis that extends the regularized Cox proportional 
hazard model. The package aims to address the limitations of the existing packages, described in 
section 1.1, by providing a versatile and user-friendly solution both compatible with 
Tensorflow/Keras and PyTorch. Survival analysis is handled by incorporating a customizable loss 
function that implements the negative partial log-likelihood of the Cox model including both tunable 
L1 and L2 regularization. Moreover, DeepHazard provides optimized support for transfer learning 
applications, enhancing its applicability to small datasets. The package was developed and tested for 
precision medicine applications, but there are no conceptual limitations in its applicability across 
different domains. 

The remainder of the paper is organized as follows: section 2 provides a theoretical background 
on the Cox model from which the implemented loss-function is derived; section 3 provides details 
about the implementation and the functionalities of the package; section 4 provides the references 
to download and use the package; finally, section 5 summarizes the conclusion of the paper.  

2. Theoretical background 

A detailed dissertation about all the possible approaches to survival analysis goes beyond the scope 
of this paper and can be found elsewhere [1]. However, here follows a few basic notion that are 
relevant for the reader the seeks to understand the presented implementation. 

2.1. Target representation in survival analysis 

Unlike traditional supervised learning tasks where labels are either discrete, such as the case of 
classification, or continuous, in the case of regression, survival analysis involves a more complex 
target representation, that is relevant to know when approaching the code of the presented package. 
In fact, each observation in a survival dataset consists of: 

https://github.com/sachinruk/torchlife/


1. an event time Ti (a continuous numerical value): representing the time at which the event (or 
the last follow-up) occurs; 

2. an event indicator δi (a binary value): representing a flag indicating whether the event was 
observed (1) or not observed (0). 

For example, in a medical study tracking the survival of cancer patients, a patient's target might 
look like (24 months, 1) which means that after 24 months after the diagnosis the patient has 
experienced the event (e.g. death). Or it might look like (24 months, 0) which means that, up to the 
last available follow-up that occurs 24 months after the diagnosis, the patient has not yet experienced 
the event; in this case it is called censored. 

2.2. Cox proportional hazard loss function 

One of the milestones of survival analysis is the previously mentioned Cox proportional hazards 
model, that was introduced by Sir David Cox in 1972 [8]. The model is based on a semi-parametric 
approach that aims at estimating the hazard function, which quantifies the instantaneous risk of an 
event occurring at a specific time, given that the subject has survived up to that point. The hazard 
function is expressed as: 

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝛽𝑋     (1) 

where: 

• h0(t) is the baseline hazard function, representing the hazard when all covariates are zero; the 
model is considered semi-parametric because it makes no assumptions on the baseline hazard 
function; 

• X is the vector of covariates (features); 
• β is the vector of regression coefficients, which determine the effect of each covariate on the 

hazard. 

The name proportional hazards refers to the fact that changes in the value of a predictor produce 
proportional changes in the hazard regardless of time. 

Unlike standard regression models, the Cox model does not estimate explicitly the time to event. 
Instead, it focuses on risks and it estimates the coefficients by maximizing the partial likelihood 
function, which depends only on the ordering of event times rather than their exact values.  

Given that the baseline hazard function is unknown, since no assumptions are made on its 
functional form, the standard likelihood cannot be used as a loss function, whereas it is often replaced 
in deep learning-based survival models by the negative partial log-likelihood function, given by: 

𝐿(𝛽) =  − ∑ 𝛿𝑖(𝑋𝑖𝛽 − 𝑙𝑜𝑔 ∑ 𝑒 𝑋𝑗 𝛽
𝑗 𝑖𝑛 𝑅𝑖

)𝑖      (2) 

where: 

• δi is an event indicator, equal to 1 if the event occurred and 0 if the data is censored; 
• Ri is the risk set, consisting of individuals who are still at risk at time t. 

Such a loss function is designed to handle censored data, so that the model does not perform a 
standard regression aimed at estimating precise time-to-event, but rather it estimates the relative 
risk for each patient (or sample) and outputs a ranking, ordering patients according to their risk 
level. 



3. Key features and implementation 

As already stated in section 1.2, the present article aims at presenting a novel python package for 
the implementation of deep learning models devoted to survival analysis that extends the regularized 
Cox proportional hazard model, making it more adaptable and powerful for complex datasets. The 
package provides a versatile and user-friendly solution both compatible with Tensorflow/Keras and 
PyTorch, in which survival analysis is handled by incorporating a customizable loss function that 
implements the negative partial log-likelihood of the Cox model including both tunable L1 and L2 
regularization. The next subsections provides an overview of the key features of the package. 

3.1. Customizable model architecture 

DeepHazard offers a high degree of flexibility when defining the neural network architecture, which 
makes it an ideal tool for a wide variety of problems. The user can specify the input dimension (i.e. 
the number of features), the layer sizes (i.e. the number of neurons in each hidden layer), and 
regularization terms (L1 or L2 penalties) with their parameters. 

The model is built on top of the Sequential class of Keras and PyTorch respectively, which allow 
the creation of layers in a simple and modular way, and inherit all the customizable hyper-
parameters. The basic unit of the deep network are Dense layers, that can be included by specifying 
the layer size. The activation function defaults to the Scaled Exponential Linear Unit (SELU) [25] that 
should limit the issue with vanishing gradients. Dropout layers can be included by specifying a layer 
size between 0 and 1, representing the dropout probability. 

Such a flexible architecture ensures that the model can adapt to a wide range of datasets, from 
the most simples with just a few features to the highly complex and multi-dimensional. 

3.2. Loss function with L1 and L2 regularization 

A key feature that sets DeepHazard apart from traditional Cox models is its custom loss function, 
coxph_neg_log_part_like_l1_l2, which combines the standard Cox proportional hazards loss with L1 
and L2 regularization. The regularization terms are pivotal in deep learning applications because, 
together with other techniques such as early stopping or dropout, they prevent the model from 
overfitting, that is the most common issue when training deep neural networks, especially with small 
or noisy datasets that are typical of biomedical applications. In particular, L1 regularization induce 
sparsity, pushing the model to focus only on the most relevant features, whereas L2 regularization 
prevents excessively large weights, further stabilizing the model. 

Thus, the resulting loss function can be formalized as: 

𝐿(𝛽) =  − ∑ 𝛿𝑖(𝑋𝑖𝛽 − 𝑙𝑜𝑔 ∑ 𝑒 𝑋𝑗 𝛽
𝑗 𝑖𝑛 𝑅𝑖𝑖 ) + 𝜆1 ∑ |𝛽𝑘 | + 𝜆2 ∑ 𝛽𝑘

2
𝑘𝑘    (3) 

where 𝜆1  and 𝜆2  are the coefficients modulating L1 and L2 regularization respectively. 
Another important feature is that DeepHazard utilizes masking to handle censored data, 

significantly improving computation efficiency. 

3.3. Model saving and loading 

DeepHazard provides robust functionality for saving and loading models, which is crucial for 
maintaining reproducibility and efficiency in machine learning workflows. 

The save and load methods use dill, a Python library for serializing Python objects. When saving 
a model, DeepHazard stores the architecture and hyper-parameters (input dimensions, layer sizes, 
regularization terms, optimizer type, and activation function) as well as the values of the weights. 

This allows for seamless reloading and deployment of models at any point in time, without the 
need to retrain the network from scratch. Moreover, this functionality ensures that a trained model 
can be stored and reused in future experiments or in production systems. 



3.4. Transfer learning 

Another key feature of DeepHazard is that it provides built-in support for transfer learning 
applications. In particular, each layer is associated with a flag indicating whether its weights should 
be modified during model fitting. The flag can be set through the set_trainable_layers method, that 
allows the user to freeze the weights of some layers of the model, effectively turning them into non-
trainable layers. By freezing the early layers (which capture lower-level features), the user can retrain 
only the last few layers, which capture higher-level abstractions. This is particularly useful when 
adapting a pre-trained model to a new dataset or task, significantly speeding up the training process 
and preventing overfitting. It also facilitates the reuse of existing models for related tasks, making 
the development pipeline more efficient. 

3.5. Prediction and predict_proba 

It is important to remember that the output of this kind of networks is a risk, i.e. a quantity inversely 
related to survival, that provide a ranking between samples in the test/validation set. However, there 
are cases in which it might be useful to categorize such risk, for example distinguishing between 
high-, intermediate- and low-risk patients. 

To this end, the predict_proba method is designed to apply customizable thresholds to the model’s 
predictions. Specifically, it uses lt (lower threshold) and ht (higher threshold) values to classify 
predictions into (up to) three categories: 

• [1, 0, 0]: for values below the lower threshold (indicating low risk); 
• [0, 0, 1]: for values above the higher threshold (indicating high risk); 
• [0, 1, 0]: for values in between the two threshold (indicating intermediate risk). 

This method provides a way to interpret model predictions in terms of probability classes, making 
it ideal for risk stratification tasks. 

With the idea of minimizing the overhead on users’ code, survival-related evaluation metrics (e.g., 
C-index or Brier score) were intentionally excluded from the package, since these can be easily found 
in standard survival analysis libraries such as scikit-survival. 

4. Code availability 

The source code of DeepHazard, as well as exemplary usage, is available at 
https://gitlabdigei.aizoon.it/aizoOn/DeepHazard/. 

5. Conclusion 

In this article, we presented the key features of DeepHazard, a powerful, flexible and user-friendly 
package that extend the traditional Cox proportional hazard model and leverages the capabilities of 
cutting-edge frameworks like Tensorflow/Keras and PyTorch for the implementation of deep 
learning feed-forward neural networks for survival analysis. With its customizable architecture, 
regularization options, built-in transfer learning support, and efficient handling of survival analysis 
tasks, it provides an excellent tool for researchers and practitioners working in many fields, 
ranging from biomedical sciences to finance or any other domain where survival data are 
prevalent. 
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