
DeepHazard: A Tensorflow/Keras and PyTorch-
Compatible Deep Learning Package for Survival Analysis

Gianmarco Sabbatini* and Lorenzo Manganaro

aizoOn Technology & Consulting s.r.l. Strada del Lionetto, 6, 10146, Torino (TO), Italy

Abstract
Survival analysis is a statistical approach that studies time-to-event data, with applications in many fields
ranging from medicine to social sciences. While deep learning has emerged as a powerful tool for survival
analysis, existing software solutions often lack flexibility, rely on unmaintained frameworks, or do not
support key functionalities such as transfer learning. To address these limitations, we present DeepHazard,
a novel Python package designed to facilitate the implementation of deep neural networks for survival
analysis. Built with compatibility for both TensorFlow/Keras and PyTorch, DeepHazard provides a
customizable architecture, efficient handling of censored data, pre-defined loss function derived from the
Cox model and including both L1/L2 regularization, and built-in support for transfer learning. Representing
a versatile and user-friendly framework, DeepHazard enables researchers to easily develop, customize, and
deploy deep learning models for survival analysis and risk stratification with applications in biomedical
sciences and beyond. The package is designed for ease of use, reproducibility, and integration into modern
machine learning workflows.

Keywords
Survival analysis, Deep learning, Time-to-event prediction, Tensorflow, Keras, PyTorch.1

1. Introduction

Survival analysis, also referred to as time-to-event analysis, is a branch of statistics that studies the
amount of time it takes before a particular event of interest occur [1]. Depending on the type of event
considered, it has a wide range of applications in many different fields, such as actuarial sciences,
that rely on survival models to predict life expectancy and design insurance policies [2], social
sciences, in which it is used for example to study career progression and job retention [3], or
industrial application, in which this kind of analysis is widely used for predictive maintenance [4],
that is the attempt of anticipating equipment failure and strategically planning maintenance or
replacements of key components of industrial plants.

A unique feature of this kind of analysis with respect to conventional regression, is the need of
handling censored data, that primarily arise because of incomplete follow-up of the samples. In
particular, censoring occurs when the event of interest is not yet happened at the time of analysis
[1]. This makes survival analysis particularly well-suited for biomedical applications, where the
event of interest can be death, disease recurrence, or any other clinically relevant outcome, and in
which patients may have not yet experienced such event during the course of a clinical trial, or the
outcomes may be unknown at the time of analysis, for example because the patient withdrew from
the study. In fact, in this field, survival analysis has been widely used to study patient prognosis,
evaluate treatment effectiveness, and develop risk prediction models [5].

In the last decades, with the advent of precision and personalized medicine, the need for robust
survival modelling techniques became increasingly evident. In fact, precision medicine extensively
exploit predictive algorithms to personalize the treatment strategies based on individual genetic

2nd Workshop "New frontiers in Big Data and Artificial Intelligence" (BDAI 2025), May 29-30, 2025, Aosta, Italy
∗ Corresponding author.

 gianmarco.sabbatini@aizoongroup.com (G. Sabbatini); lorenzo.manganaro@aizoongroup.com (L. Manganaro)
 0000-0003-4755-1638 (L. Manganaro)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gianmarco.sabbatini@aizoongroup.com
mailto:lorenzo.manganaro@aizoongroup.com
https://orcid.org/0000-0003-4755-1638

profiles [6], systematically acquired thanks to high-throughput and cost-effective technologies such
as next generation sequencing (NGS) and its evolutions [7].

However, leveraging these vast, heterogeneous datasets to get reliable survival predictions poses
a significant challenge for conventional statistical models, such as the Cox proportional hazards
model [8], that often rely on strong assumptions about the relationships between covariates and
survival, that may not hold in complex biological systems, and struggle with the high-dimensional
and strongly non-linear nature of genomic and multi-omic data.

Instead, this is where deep learning is rapidly emerging as a powerful and robust alternative [9].
In fact, first of all it is intrinsically designed to catch non-linear patterns and correlations within the
data. Secondly, by exploiting many flexible and diverse architectures, ranging from deep artificial
neural networks [10], to convolutional [11] or recurrent [12] networks, it can be easily adapted to
handle and integrate different data sources, from clinical data, to medical imaging or molecular data
[13]. Moreover, deep learning models can be optimized for transfer learning [14], in which
knowledge gained from larger datasets can be transferred and applied to smaller or domain-specific
cohorts, an essential feature given the limited number of patients or samples characterizing many
clinical datasets.

In this context, there is an urgent need of frameworks designed to facilitate the development of
deep learning models for survival analysis applications.

1.1. Related works

In the last few years, several deep learning-based libraries have been developed to address this need.
However, all the existing tools present limitations that we aim to overcome with the present work.
A detailed review of existing deep learning methods for survival analysis is beyond the scope of this
paper and can be found elsewhere [15]; here, we limit to provide a selected overview of the most
relevant existing packages:

1. DeepSurv [16]: provides a deep learning extension of the Cox proportional hazard model,
implemented using Theano [17] and Lasagne [18]. DeepSurv has demonstrated improved
predictive performance over traditional Cox models by capturing complex, non-linear
relationships within the data [16]. However, it lacks a built-in support for transfer learning
applications. Moreover, and most importantly, it is entirely based on Theano, which (beside
being considered less user-friendly, due to its lower-level nature) is no longer maintained,
representing a huge limitation with respect to modern deep learning frameworks such as
Tensorflow/Keras and PyTorch.

2. Cox-nnet [19] / Cox-nnet v2.0 [20]: Similar to DeepSurv, Cox-nnet provides a framework for
the implementation of a deep neural network for survival analysis that extends the Cox
proportional hazard model. Cox-nnet was developed with a specific focus on gene expression
datasets, despite its implementation has no differences with respect to a general purpose
network. With respect to DeepSurv, Cox-nnet provides less flexibility in terms of
regularization, since it does not provide the option of including dropout layers and it only
implements the Ridge penalization method that may be suboptimal for many datasets.
Moreover, Cox-nnet is also built on Theano, leading to similar concerns regarding
maintainability and compatibility with current deep learning ecosystems.

3. DeepHit [21]: This method addresses survival analysis within the context of competing risks,
that is only appropriate when there is the need to account for multiple mutually exclusive
event types, so that the goal is to directly estimate the probability of different events over
time. While DeepHit offers a flexible approach to modeling multiple event types, its focus
diverges from traditional survival analysis tasks that instead involve single-event outcomes.
While DeepHit is built based on Tensorflow/Keras that represents a gold standard for deep
learning applications, it does not integrate transfer learning functionalities, limiting its
applicability in the case of small datasets.

4. PyCox [22]: is a Python package devoted to survival analysis: It is built on PyTorch, thus
benefiting of its flexibility and active development. PyCox is primarily a collection of existing
models, including DeepSurv and DeepHit, but it does not introduce novel functionalities such
as customized cost functions or native support for transfer learning applications.

5. TorchSurv [23]: is a PyTorch-based package for survival analysis developed by Novartis in
collaboration with the US Food and Drug Administration. The goal of the package is to
provide an intuitive tool for implementing deep neural networks for survival analysis. It
implements loss functions derived from both parametric (Weibull accelerated failure time)
and semi-parametric (Cox proportional hazard) models, without the inclusion of any
additional regularization terms. While it a re-implements several well-established evaluation
metrics (typically provided by independent packages, such as scikit-survival), but it does not
provide built-in functionality for transfer learning applications.

6. TorchLife (https://github.com/sachinruk/torchlife/): Similar to TorchSurv, but with restricted
functionalities, TorchLife is a PyTorch-based package with a minimal implementation of
deep learning based models for survival analysis. It shares the same limitations already
identified in the case of TorchSurv.

7. Auton-survival [24]: is a PyTorch-based package extending both proportional and time-
dependent hazard models to deep learning architectures. Besides standard survival analysis
approaches, and unlike the packages, it also provides useful functionality for counterfactual
estimation and supervised or unsupervised risk stratification. However, similar to the other
packages, it lacks support for transfer learning applications.

1.2. Objective and structure of the paper

The objective of this paper is to present DeepHazard, a novel python package for the implementation
of deep learning models devoted to survival analysis that extends the regularized Cox proportional
hazard model. The package aims to address the limitations of the existing packages, described in
section 1.1, by providing a versatile and user-friendly solution both compatible with
Tensorflow/Keras and PyTorch. Survival analysis is handled by incorporating a customizable loss
function that implements the negative partial log-likelihood of the Cox model including both tunable
L1 and L2 regularization. Moreover, DeepHazard provides optimized support for transfer learning
applications, enhancing its applicability to small datasets. The package was developed and tested for
precision medicine applications, but there are no conceptual limitations in its applicability across
different domains.

The remainder of the paper is organized as follows: section 2 provides a theoretical background
on the Cox model from which the implemented loss-function is derived; section 3 provides details
about the implementation and the functionalities of the package; section 4 provides the references
to download and use the package; finally, section 5 summarizes the conclusion of the paper.

2. Theoretical background

A detailed dissertation about all the possible approaches to survival analysis goes beyond the scope
of this paper and can be found elsewhere [1]. However, here follows a few basic notion that are
relevant for the reader the seeks to understand the presented implementation.

2.1. Target representation in survival analysis

Unlike traditional supervised learning tasks where labels are either discrete, such as the case of
classification, or continuous, in the case of regression, survival analysis involves a more complex
target representation, that is relevant to know when approaching the code of the presented package.
In fact, each observation in a survival dataset consists of:

https://github.com/sachinruk/torchlife/

1. an event time Ti (a continuous numerical value): representing the time at which the event (or
the last follow-up) occurs;

2. an event indicator δi (a binary value): representing a flag indicating whether the event was
observed (1) or not observed (0).

For example, in a medical study tracking the survival of cancer patients, a patient's target might
look like (24 months, 1) which means that after 24 months after the diagnosis the patient has
experienced the event (e.g. death). Or it might look like (24 months, 0) which means that, up to the
last available follow-up that occurs 24 months after the diagnosis, the patient has not yet experienced
the event; in this case it is called censored.

2.2. Cox proportional hazard loss function

One of the milestones of survival analysis is the previously mentioned Cox proportional hazards
model, that was introduced by Sir David Cox in 1972 [8]. The model is based on a semi-parametric
approach that aims at estimating the hazard function, which quantifies the instantaneous risk of an
event occurring at a specific time, given that the subject has survived up to that point. The hazard
function is expressed as:

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒𝛽𝑋 (1)

where:

• h0(t) is the baseline hazard function, representing the hazard when all covariates are zero; the
model is considered semi-parametric because it makes no assumptions on the baseline hazard
function;

• X is the vector of covariates (features);
• β is the vector of regression coefficients, which determine the effect of each covariate on the

hazard.

The name proportional hazards refers to the fact that changes in the value of a predictor produce
proportional changes in the hazard regardless of time.

Unlike standard regression models, the Cox model does not estimate explicitly the time to event.
Instead, it focuses on risks and it estimates the coefficients by maximizing the partial likelihood
function, which depends only on the ordering of event times rather than their exact values.

Given that the baseline hazard function is unknown, since no assumptions are made on its
functional form, the standard likelihood cannot be used as a loss function, whereas it is often replaced
in deep learning-based survival models by the negative partial log-likelihood function, given by:

𝐿(𝛽) = − ∑ 𝛿𝑖(𝑋𝑖𝛽 − 𝑙𝑜𝑔 ∑ 𝑒 𝑋𝑗 𝛽
𝑗 𝑖𝑛 𝑅𝑖

)𝑖 (2)

where:

• δi is an event indicator, equal to 1 if the event occurred and 0 if the data is censored;
• Ri is the risk set, consisting of individuals who are still at risk at time t.

Such a loss function is designed to handle censored data, so that the model does not perform a
standard regression aimed at estimating precise time-to-event, but rather it estimates the relative
risk for each patient (or sample) and outputs a ranking, ordering patients according to their risk
level.

3. Key features and implementation

As already stated in section 1.2, the present article aims at presenting a novel python package for
the implementation of deep learning models devoted to survival analysis that extends the regularized
Cox proportional hazard model, making it more adaptable and powerful for complex datasets. The
package provides a versatile and user-friendly solution both compatible with Tensorflow/Keras and
PyTorch, in which survival analysis is handled by incorporating a customizable loss function that
implements the negative partial log-likelihood of the Cox model including both tunable L1 and L2
regularization. The next subsections provides an overview of the key features of the package.

3.1. Customizable model architecture

DeepHazard offers a high degree of flexibility when defining the neural network architecture, which
makes it an ideal tool for a wide variety of problems. The user can specify the input dimension (i.e.
the number of features), the layer sizes (i.e. the number of neurons in each hidden layer), and
regularization terms (L1 or L2 penalties) with their parameters.

The model is built on top of the Sequential class of Keras and PyTorch respectively, which allow
the creation of layers in a simple and modular way, and inherit all the customizable hyper-
parameters. The basic unit of the deep network are Dense layers, that can be included by specifying
the layer size. The activation function defaults to the Scaled Exponential Linear Unit (SELU) [25] that
should limit the issue with vanishing gradients. Dropout layers can be included by specifying a layer
size between 0 and 1, representing the dropout probability.

Such a flexible architecture ensures that the model can adapt to a wide range of datasets, from
the most simples with just a few features to the highly complex and multi-dimensional.

3.2. Loss function with L1 and L2 regularization

A key feature that sets DeepHazard apart from traditional Cox models is its custom loss function,
coxph_neg_log_part_like_l1_l2, which combines the standard Cox proportional hazards loss with L1
and L2 regularization. The regularization terms are pivotal in deep learning applications because,
together with other techniques such as early stopping or dropout, they prevent the model from
overfitting, that is the most common issue when training deep neural networks, especially with small
or noisy datasets that are typical of biomedical applications. In particular, L1 regularization induce
sparsity, pushing the model to focus only on the most relevant features, whereas L2 regularization
prevents excessively large weights, further stabilizing the model.

Thus, the resulting loss function can be formalized as:

𝐿(𝛽) = − ∑ 𝛿𝑖(𝑋𝑖𝛽 − 𝑙𝑜𝑔 ∑ 𝑒 𝑋𝑗 𝛽
𝑗 𝑖𝑛 𝑅𝑖𝑖) + 𝜆1 ∑ |𝛽𝑘 | + 𝜆2 ∑ 𝛽𝑘

2
𝑘𝑘 (3)

where 𝜆1 and 𝜆2 are the coefficients modulating L1 and L2 regularization respectively.
Another important feature is that DeepHazard utilizes masking to handle censored data,

significantly improving computation efficiency.

3.3. Model saving and loading

DeepHazard provides robust functionality for saving and loading models, which is crucial for
maintaining reproducibility and efficiency in machine learning workflows.

The save and load methods use dill, a Python library for serializing Python objects. When saving
a model, DeepHazard stores the architecture and hyper-parameters (input dimensions, layer sizes,
regularization terms, optimizer type, and activation function) as well as the values of the weights.

This allows for seamless reloading and deployment of models at any point in time, without the
need to retrain the network from scratch. Moreover, this functionality ensures that a trained model
can be stored and reused in future experiments or in production systems.

3.4. Transfer learning

Another key feature of DeepHazard is that it provides built-in support for transfer learning
applications. In particular, each layer is associated with a flag indicating whether its weights should
be modified during model fitting. The flag can be set through the set_trainable_layers method, that
allows the user to freeze the weights of some layers of the model, effectively turning them into non-
trainable layers. By freezing the early layers (which capture lower-level features), the user can retrain
only the last few layers, which capture higher-level abstractions. This is particularly useful when
adapting a pre-trained model to a new dataset or task, significantly speeding up the training process
and preventing overfitting. It also facilitates the reuse of existing models for related tasks, making
the development pipeline more efficient.

3.5. Prediction and predict_proba

It is important to remember that the output of this kind of networks is a risk, i.e. a quantity inversely
related to survival, that provide a ranking between samples in the test/validation set. However, there
are cases in which it might be useful to categorize such risk, for example distinguishing between
high-, intermediate- and low-risk patients.

To this end, the predict_proba method is designed to apply customizable thresholds to the model’s
predictions. Specifically, it uses lt (lower threshold) and ht (higher threshold) values to classify
predictions into (up to) three categories:

• [1, 0, 0]: for values below the lower threshold (indicating low risk);
• [0, 0, 1]: for values above the higher threshold (indicating high risk);
• [0, 1, 0]: for values in between the two threshold (indicating intermediate risk).

This method provides a way to interpret model predictions in terms of probability classes, making
it ideal for risk stratification tasks.

With the idea of minimizing the overhead on users’ code, survival-related evaluation metrics (e.g.,
C-index or Brier score) were intentionally excluded from the package, since these can be easily found
in standard survival analysis libraries such as scikit-survival.

4. Code availability

The source code of DeepHazard, as well as exemplary usage, is available at
https://gitlabdigei.aizoon.it/aizoOn/DeepHazard/.

5. Conclusion

In this article, we presented the key features of DeepHazard, a powerful, flexible and user-friendly
package that extend the traditional Cox proportional hazard model and leverages the capabilities of
cutting-edge frameworks like Tensorflow/Keras and PyTorch for the implementation of deep
learning feed-forward neural networks for survival analysis. With its customizable architecture,
regularization options, built-in transfer learning support, and efficient handling of survival analysis
tasks, it provides an excellent tool for researchers and practitioners working in many fields,
ranging from biomedical sciences to finance or any other domain where survival data are
prevalent.

Acknowledgements

This work was supported by the Italian Ministry of Research, under the complementary actions to
the NRRP “D34Health – Digital Driven Diagnostics, prognostics and therapeutics for sustainable
Health care” Grant (# PNC0000001).

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT for grammar and spelling check, or
paraphrasing/rewording. After using this tool, the authors reviewed and edited the content as needed
and take full responsibility for the publication’s content .

References

[1] P. Wang, Y. Li, and C.K. Reddy. “Machine learning for survival analysis: A survey.” ACM
Computing Surveys (CSUR) 51.6 (2019): 1-36. doi:10.1145/3214306.

[2] I.G. Duncan, Actuarial applications of survival analysis in healthcare, Ph.D. thesis, Heriot-Watt
University, Edinburgh, UK, 2020.

[3] H. Li, Y. Ge, H. Zhu, H. Xiong, and H. Zhao. Prospecting the Career Development of Talents: A
Survival Analysis Perspective. Proceedings of the 23rd ACM SIGKDD International Conference,
ACM Press, Halifax, NS, Canada, 2017, pp. 917–925. doi:10.1145/3097983.3098107.

[4] Z. Yang, J. Kanniainen, T. Krogerus, and F. Emmert-Streib. “Prognostic modeling of predictive
maintenance with survival analysis for mobile work equipment.” Scientific Reports 12 (2022):
8529. doi:10.1038/s41598-022-12572-z.

[5] G. Beis, A. Iliopoulos, and I. Papasotiriou. “An Overview of Introductory and Advanced Survival
Analysis Methods in Clinical Applications: Where Have we Come so far?” Anticancer Research
44.2 (2024): 471-487. doi:10.21873/anticanres.16835.

[6] D. B. Doroshow and J. H. Doroshow. “Genomics and the History of Precision Oncology.”
Surgical Oncology Clinics of North America 29.1 (2020): 35-49. doi:10.1016/j.soc.2019.08.003.

[7] O. Akintunde, T. Tucker, and V. J. Carabetta. “The evolution of next-generation sequencing
technologies.” In: High Throughput Gene Screening: Methods and Protocols. Springer US, New
York, NY, 2024, pp. 3-29.

[8] D. R. Cox. “Regression models and life tables.” Journal of the Royal Statistical Society, Series B
34.2 (1972): 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x.

[9] I. H. Sarker. “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy,
Applications and Research Directions.” SN Computer Science 2 (2021): 420. doi:10.1007/s42979-
021-00815-1.

[10] J. Schmidhuber. “Deep learning in neural networks: An overview.” Neural Networks 61 (2015):
85-117. doi:10.1016/j.neunet.2014.09.003.

[11] S. Cong and Y. Zhou. “A review of convolutional neural network architectures and their
optimizations.” Artif Intell Rev 56 (2023): 1905-1969. doi:10.1007/s10462-022-10213-5.

[12] Y. Yu, X. Si, C. Hu, and J. Zhang. “A Review of Recurrent Neural Networks: LSTM Cells and
Network Architectures.” Neural Computation 31.7 (2019): 1235-1270. doi:10.1162/neco_a_01199.

[13] M. Gezimati and G. Singh. “Deep learning for multisource medical information processing.” In:
Data Fusion Techniques and Applications for Smart Healthcare. Academic Press, 2024, pp. 45-
76.

[14] M. Gholizade, H. Soltanizadeh, M. Rahmanimanesh, et al. “A review of recent advances and
strategies in transfer learning.” International Journal of System Assurance Engineering and
Management (2025). doi:10.1007/s13198-024-02684-2.

[15] S. Wiegrebe, P. Kopper, R. Sonabend, et al. “Deep learning for survival analysis: a review.”
Artificial Intelligence Review 57 (2024): 65. doi:10.1007/s10462-023-10681-3.

[16] J. L. Katzman, U. Shaham, A. Cloninger, et al. “DeepSurv: personalized treatment recommender
system using a Cox proportional hazards deep neural network.” BMC Medical Research
Methodology 18 (2018): 24. doi:10.1186/s12874-018-0482-1.

[17] Theano Development Team. “Theano: A Python framework for fast computation of
mathematical expressions.” arXiv preprint arXiv:1605.02688 (2016).

[18] S. Dieleman, J. Schlüter, C. Raffel, E. Olson, S. K. Sonderby, D. Nouri, et al. “Lasagne: First
release.” (2015). doi:10.5281/zenodo.27878.

[19] T. Ching, X. Zhu, and L. X. Garmire. “Cox-nnet: An artificial neural network method for
prognosis prediction of high-throughput omics data.” PLoS Computational Biology 14.4 (2018):
e1006076. doi:10.1371/journal.pcbi.1006076.

[20] D. Wang, Z. Jing, K. He, and L. X. Garmire. “Cox-nnet v2.0: improved neural-network-based
survival prediction extended to large-scale EMR data.” Bioinformatics 37.17 (2021): 2772-2774.
doi:10.1093/bioinformatics/btab046.

[21] C. Lee, W. Zame, J. Yoon, and M. van der Schaar. “DeepHit: A Deep Learning Approach to
Survival Analysis With Competing Risks.” In: Proceedings of the AAAI Conference on Artificial
Intelligence 32.1 (2018). doi:10.1609/aaai.v32i1.11842.

[22] H. Kvamme, Ø. Borgan, and I. Scheel. “Time-to-event prediction with neural networks and cox
regression.” arXiv preprint arXiv:1907.00825 (2019).

[23] M. Monod, P. Krusche, Q. Cao, B. Sahiner, N. Petrick, D. Ohlssen, and T. Coroller. “TorchSurv:
A Lightweight Package for Deep Survival Analysis.” Journal of Open Source Software 9.104
(2024): 7341. doi:10.21105/joss.07341.

[24] C. Nagpal, W. Potosnak, and A. Dubrawski. “auton-survival: an Open-Source Package for
Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-
Event Data.” arXiv preprint arXiv:2201.00000 (2022).

[25] G. Lambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. “Self-Normalizing Neural Networks.”
In: Advances in Neural Information Processing Systems 30 (2017). arXiv:1706.02515.

