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Abstract

The widespread implementation of innovative healthcare systems brings about notable security risks, especially
in cyber-physical systems (CPS). Ensuring patient safety and system performance is crucial in CPS, particularly
when detecting and preventing attacks. This paper discusses smart healthcare systems and presents a modified
deep neural network (DNN) model that can effectively classify various types of attacks on CPS. In addition, we
present a modified Ant Lion Optimization (ALO) algorithm that enhances the model’s accuracy and reliability
when combined with ensemble methods. By incorporating multiple feature selection techniques, the voting-based
ensemble selection method improves the ability to detect attacks by leveraging the importance of the rankings of
each feature assessed in those approaches. This enhances the recovery of vital data while minimizing the number of
characteristics utilized for identification. Our optimized DNN model outperforms traditional approaches regarding
real-time attack detection in smart healthcare system networks. From a theoretical standpoint, the methods
outlined in the paper have the potential to enhance the security measures implemented in the construction of CPS
and significantly bolster the resilience of smart healthcare systems against the latest cyber threats. The optimized
DNN, which was further optimized with the help of the modified ALO algorithm, returned excellent results, with
a carpet accuracy of 99.5%, a precision of 99.3%, a recall of 99.4%, an F1-score of 99.35%, and an ROCAUC of 0.995.
Such metrics illustrate the model’s effectiveness in detecting and classifying different cyberattack forms with a
high accuracy rate.
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1. Introduction

Integrating cyber-physical systems (CPS) into competent healthcare has improved the effectiveness of
patient monitoring, treatment, and care delivery. However, these advances could result in significant
security vulnerabilities. Such systems can become vulnerable to attacks, which could jeopardize the
patient’s safety and the system’s overall functionality. The urgent need to protect healthcare systems
from unauthorized intrusion, data and services assault, and illicit content embedding is becoming
increasingly apparent [1]. Using computer-based algorithms, CPS facilitates the seamless merging of
the digital and physical domains. A CPS ensures that a process is well-managed and regulated [2]. The
CPS is built to resist several types of data attacks, such as man-in-the-middle attacks, medical data
manipulation, and ransomware attacks like WannaCry. By utilizing the blockchain to store medical
data and employing advanced techniques such as convolutional neural networks for analysis, this
system can potentially improve the privacy and security of this data [3]. CPS aims to combine physical
methods with data processing and communications. Interdependent computational entities interacting
with the cosmos and its processes make up a CPS [4], [5].
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This work enhances DNN models for CPS healthcare security using a modified ALO algorithm and
ensemble feature selection. The ALO algorithm optimizes hyperparameters, while feature selection
removes redundancies. Key contributions include ALO’s role in security-focused DNN optimization
and showing improved attack detection. Experimental results validate its real-time effectiveness.

2. Related Works

Deep learning (DL) consistently outperforms traditional machine learning techniques, as demonstrated
in studies such as [6], [7],[8]. Given sufficient data, DL models typically deliver superior results [9].
However, the use of DL models to address the CPS information security problem has been very gradual
compared to their application in other areas such as natural language processing, software fragility,
and image processing [10], [11]. Furthermore, other DL models have been suggested in recent articles
to identify CPS cyberattacks. It is often believed that the difficulties in superimposing privacy and
security on top of CPSs are to blame for the difficulty in detecting cyberattacks on these systems. The
authors detail their work on a tree classifier-based model for detecting network intrusions in a paper
cited as [12]. Achieving an accuracy of 94.23%, the system aims to accelerate anomaly detection by
reducing the dimensionality of incoming data. In the context of the Internet of Medical Things (IoMT),
malicious actors could jeopardize patient safety by remotely altering device configurations. To address
such threats, SMDAps, a specification-based misbehavior detection system, has been proposed [13].
To detect assaults on personal medical devices, the authors[14] have proposed an intrusion detection
system (IDS) called HEKA. Using the SVM classifier, HEKA can identify assaults on personal medical
supplies with an accuracy of 98.4% and an F1 score of 98%. They reportedly built an intrusion detection
system using the KDDCup-’99 dataset. The system used a combination of different classifiers to predict
network attacks and applied principal component analysis (PCA) to simplify the data, as mentioned in
[15]. Using the bagging algorithm’s categorized decision trees, the system had a 93.2% accuracy rate.
The Dew-Cloud-based model, which incorporates an organizational long-term memory (HLSTM) model,
is a hierarchical federated learning (HFL) system that the researchers suggested in their study [16].
Cyberattacks have developed into an asymmetrical kind of warfare, which is worrisome for computer
scientists and the world at large [17], [18]. Research by [19] Data analysis factors like accuracy, speed,
delay, ability to handle errors, amount of data, growth potential, convergence, and overall performance
guided the suggestion of using feed-forward and feedback propagation ANN models for research. To
mentally load and fool the adversary ([20]), provide a cognitive deception model (CDM) based on a neural
network. The CDM takes an input message and produces decoy messages that are separate, believable,
persuasive, and syntactically and semantically coherent. Their approach centered on investigating the
performance of various techniques across diverse datasets with varying characteristics and determining
the optimal parameters for these algorithms to function effectively. In a study conducted by researchers
[21], they utilized a recurrent neural network (RNN)-based AE. They employed data segmentation and
aggregation techniques to enhance the model’s performance, creating segments of varying lengths
while maintaining a similar total variation. Similarly, [22] utilized RNN AEs to effectively reconstruct
multi-dimensional time series data, giving researchers helpful information about the operating state of
specific sensors in the system without requiring complete reconstruction.

3. Methods and Materials

In this study, we develop an optimized DNN model to detect different cyberattacks on intelligent
healthcare CPS. We have utilized the TON_IoT dataset, which includes a range of attacks, and addressed
the challenges of data imbalance and selection through a voting-based ensemble approach. In addition,
the ALO algorithm, modified explicitly for ant lion optimization, is employed to optimize the hyper-
parameter of the DNN to attain the utmost detection rate for different attack scenarios. The working
flow diagram is shown in Figure 1. The selected features are assessed and selected using techniques
such as mutual information, lasso regression, and chi-square tests before they are integrated using a
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Figure 1: Overall Processing Flow Diagram of Attack Detection in Cyber-Physical Systems for Smart Healthcare
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Figure 2: Data Distribution from the TON_loT Dataset

voting-based ensemble feature selection. The extracted features also guide the DNN model architecture
design, which the modified ALO algorithm enhances. The last step involves classifying input data into
normal and attack classes using the optimized deep neural network, further improving the security of
smart healthcare systems.

3.1. Data Collection

The study uses the TON_IoT dataset, which is highly suitable for cybersecurity research in Internet
of Things (IoT) environments and includes applications in intelligent healthcare systems. The dataset
consists of various attack types, making it a solid basis for training and evaluating the proposed DNN
model. The dataset contains a wide range of instances, including injection attacks, benign traffic,
Distributed Denial of Service (DDoS) attacks, password attacks, scanning attacks, Cross-Site Scripting
(XSS) attacks, backdoor attacks, Man-in-the-Middle (MITM) attacks, Denial of Service (DoS) attacks,
and ransomware attacks. Figure 2 shows the data distribution from the TON_IoT dataset. In addition,
the data underwent preprocessing, including normalization and encoding of categorical features. It was
then split into a training set, which accounted for 70% of the data, and a testing set, which accounted
for the remaining 30%. The processing methodology in this study consists of several basic steps: data
normalization, feature extraction, and data splitting. The normalization of a feature z; is performed

using the following equation:
Ti— s
x; _ &t vmin (1)
Tmax — Lmin
Here, z; represents the original feature value, ,,;, and 2,4, denote the minimum and maximum
values of that feature in the dataset, respectively, and 7} is the resulting normalized value.



3.2. Feature Selection

Extraction of features entails detecting and extracting specific essential characteristics found in the raw
information to differentiate between the normal and attack states. Information concerning the features
is obtained from network traffic, sensor data, and system event logs. In this case, an ensemble feature
selection method is adopted, where the voting technique is utilized to rank the features while several
feature selection methods are employed. The DNN then receives the selected features.

3.2.1. Mutual Information

The degree to which each characteristic depends on the target variable may be determined via mutual
information. Features are deemed more relevant to the job if they have excellent mutual knowledge of
the goal. Mathematically, mutual information between a feature x; and the target variable y is calculated

* (xia y)
I(ziy) =S plaiy)log [ oYl ()
;y <p(xi)p(y) )

Where p(x;,y) is the joint probability distribution of z; and y, and p(z;) and p(y) are the marginal
probability distributions of z; and y, respectively. Features with the highest mutual information scores
are selected for further analysis.

3.2.2. Lasso Regression (L1 Regularization)

By applying an L1 penalty to the coeflicients, the linear model known as Lasso Regression selects
features. Some coefficients become zero due to this penalty, eliminating aspects that aren’t crucial to
the model. The Lasso objective function is:
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Where wj is the coefficients, A is the regularization parameter, and n and m represent the number of
samples and features, respectively. Features with non-zero coefficients are selected as they contribute

to predicting the target variable.

3.2.3. Chi-Square Test

To determine if categorical traits are independent of the dependent variable, statisticians employ the
chi-square test. In terms of categorical variables, it quantifies the discordance between actual and
predicted frequencies. The Chi-square statistic for a feature z; concerning the target y is calculated as:

(Ox — E)*
X (iyy) = Ekj S @

where Oy, is the observed frequency and EJ, is the expected frequency under the independence assump-
tion. Features with the highest Chi-Square scores are considered the most relevant.

3.2.4. Voting-Based Ensemble Feature Selection Method

The voting-based ensemble method summarizes the different feature selection outcomes and credits
repeated feature selections in the various techniques. This avoids the problem of bias resulting from
excessive dependence on one method of selecting the best features. The dataset X, consisting of m
features, is represented as: X = {z1, z2,..., Ty }. We apply n different feature selection methods to
this dataset, resulting in n subsets of selected features S, 52, ..., Sy, where S; C X is the subset of
features selected by the j-th feature selection method. For each feature x; in the dataset X, a vote



is assigned based on whether it was selected using a particular feature selection method. The total
number of votes for the feature x; across all methods is calculated as

n

Vi) =) 1(z; €5;) (5)

j=1

where 1(z; € ;) is an indicator function that equals 1 if z; is present in S}, and 0 otherwise. A
threshold k is set to determine the minimum number of votes required for a feature to be included in the
final selected feature set F. The final selected feature set F is given by F' = {z; € X | votes(x;) > k}
Where, k is the minimum number of votes a feature must receive to be considered essential and included
in the final feature set. The final feature set F consists of features that have received at least k votes,
reflecting a consensus among the various feature selection methods. The choice of k can be adjusted
depending on the desired strictness of feature selection. For example, setting k = n would require a
feature to be selected by all methods, while & = & would require selection by at least half of the methods.

Algorithm: Voting-Based Ensemble Feature Selection
Input: Dataset X with m features {1, z2, ..., z,,} and target variable y
Output: Selected feature set F

1. Initialize empty lists for selected features: Sy7, Srassos SChiSquare
2. Set voting threshold £ (e.g., k = 2)
3. Step 1: Feature Selection using Mutual Information
a) For each feature z; in X:
i. Compute Mutual Information I (x;;y)
b) Select the top n features based on the highest I(x;;y) values and add to Sy;;
4. Step 2: Feature Selection using Lasso Regression (L1 Regularization)
a) Fit Lasso Regression model on X with target y
b) For each feature x; in X:
i. If Lasso coefficient w; # 0, add x; to Srqsso
5. Step 3: Feature Selection using Chi-Square Test
a) For each feature z; in X:
i. Compute Chi-Square statistic x?(x;, %)
b) Select top n features based on highest X2 (x4, y) values and add to SchiSquare
6. Step 4: Voting Mechanism
a) Initialize an empty dictionary VoteCount to store vote counts for each feature
b) For each feature x; in X:
i. VoteCount[z;] =0
ii. If z; € Spy1, then VoteCount|x;] = VoteCount[z;] + 1
iii. If x; € SLasso, then VoteCount[z;] = VoteCount[z;] + 1
iv. If x; € SchiSquare then VoteCount[z;] = VoteCount|[xz;] 4 1
7. Step 5: Select Final Feature Set I
a) Initialize empty set F’
b) For each feature x; in X:
i. If VoteCount[z;] > k, add z; to F
c) Return F



Layer 1 Layer 2 Layer 3 Layer 4
256,0.4 128,0.4 64,0.4 32,0.4

oo

Output Layer 5

i

16,0.4

[pewe (0 [ oo

Figure 3: Proposed Deep DNN network

3.3. Model Architecture

The number of features, F', selected in the feature selection process corresponds to the number of
input features, which is the input layer. Let # € R’ be the vector of the selected input features. The
DNN model for CPS intrusion detection proposes an attack. It is embedded in an intelligent health
care system of five hidden BUS fully connected dense layers. In each hidden layer 1, the input from
the previous layerh(;_1) undergoes a linear transformation followed by applying the rectified linear
unit (ReLU) activation function. The mathematical operation for the I*" hidden layer is given by
h; = ReLU(W;h;_1 + b;) where W] is the weight matrix that connects the neurons of layer 1-1 to the
neurons of layer L, b; is the bias vector added to the linear transformation, and ReLU is the activation
function defined as ReLU(z) = max(0, z). This activation function introduces non-linearity into the
model, allowing it to learn more complex functions. The first hidden layer consists of 256 neurons,
transforming the input vector hg = x is the input features vector) using the weight matrix Wj; and
bias b;. The second hidden layer reduces the dimensionality further by using 128 neurons and applying
a new set of weights W5 and biases by. The third hidden layer has 64 neurons, continuing to distill
the most relevant information through the weight matrix W3 and bias b3. The fourth hidden layer
comprises 32 neurons, used W, to refine the feature representation further. The fifth and final hidden
layer contains 16 neurons, producing the final intermediate output hys before the model’s predictions
are computed in the output layer. Batch normalization is used after each hidden layer to standardize
the input to each layer to improve training stability and speed. Dropout is another measure used after
each hidden layer, which aims to avoid overfitting by training a random percentage of neurons with
zero outputs. Stacking these hidden layers enhances the model’s capacity to identify different kinds
of cyberattacks in smart healthcare CPS by allowing it to learn hierarchical feature representations
gradually. Figure 3 shows the proposed deep DNN network. The batch normalization operation for a
given layer is defined as:

h_
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Where, ;1 and o are the mean and standard deviation of the mini-batch. v and /3 are learnable parameters
that scale and shift the normalized output. To prevent overfitting, dropout layers are applied after each
hidden layer. Dropout randomly sets a fraction p of input units to zero during training. The dropout
operation is defined as h?mp = h;-r, wherer ~ Bernoulli(p) The variable r represents a binary
mask vector that is drawn from a Bernoulli distribution, which has a probability p of retaining a unit.



The output layer consists of 2 neurons, corresponding to the two classes: ‘normal’” and ‘attack. The
softmax activation function is applied to the output logits to convert them into class probabilities. The
mathematical operation for the output layer is 0 = Softmax(Wgshs + bg). Where, W and bg are the
output layer’s weight matrix and bias vector. The softmax function is defined as:

Softmax(z;) = _oplE) (7)

2 =1 exp(z;)

This function ensures that the outputs are non-negative and sum to 1, representing valid probabilities.
The model learns to reduce the categorical cross-entropy loss, which looks at how different the predicted
probabilities are from the actual class labels. The cross-entropy loss is defined as:

1 N C
L=-52> iclog(iic) (8)

i=1 c=1

Here, N denotes the number of training examples, C' is the number of classes, y(; ) represents the true
label (1 for the correct class, 0 otherwise), and ¥; . is the predicted probability for class c for the i-th
example.

Algorithm: Modified ALO for DNN Hyperparameter Tuning

Input: Population size P, Maximum number of iterations MaxIter, Search space for hyperparameters
and DNN model architecture
Output: Optimal hyperparameters for the DNN

1. Initialize a population of Ant lions with random hyperparameters within the defined search space.

2. Evaluate the fitness of each Ant lion by training the DNN and measuring validation accuracy and
loss.

3. Select the best-performing ant lions as elites.
4. while (termination criteria not met) do
a) for each ant (candidate solution) do

i. Perform a random walk in the hyperparameter space based on the position of the
nearest Ant lion.
ii. Update the ant’s position using:

Xant (t> + Xlion (t)
2

Xant(t + 1) -

iii. Train the DNN with the current hyperparameters of the ant.
iv. Evaluate the fitness of the ant using the fitness function:

F(X) = Validation Accuracy — « x Validation Loss

v. If the ant’s fitness is better than the corresponding Ant lion’s fitness, update the Ant
lion’s position.
b) end for
c¢) Apply elitism: retain the best-performing Ant lions as elites.
5. end while
6. Return the best set of hyperparameters found.



Table 1
The Performance Analysis of the Proposed Model

Metric Accuracy Precision Recall F1-Score ROC-AUC

Injection 99.7 99.6 99.8 99.7 0.997
Benign 99.4 99.2 99.3 99.25 0.994
DDoS 99.6 99.5 99.7 99.6 0.996
Password 99.4 99.2 99.3 99.25 0.994
XSS 99.3 99.1 99.2 99.15 0.993
Scanning 99.2 99 99.1 99.05 0.992
Backdoor 99.1 98.9 99 98.95 0.991
DoS 99.3 99.1 99.2 99.15 0.993
MITM 99 98.8 98.9 98.85 0.99
Ransomware 98.9 98.7 98.8 98.75 0.989
Overall 99.5 99.3 99.4 99.35 0.995

4. Result and Discussion

The evaluation focused on a DNN model enhanced with a modified ALO algorithm, tested on a healthcare
CPS dataset containing various attacks. Performance was measured using accuracy, precision, recall,
F1-score, and ROC-AUC metrics. Table 1 defines the performance parameters showcased by the deep
neural network, or the DNN model, to identify the various forms of cyberattacks in smart healthcare
cyber-physical systems. The model delivers appreciable performance in terms of the multiple forms of
attacks with the weakness’s injection attacks (accuracy of 99.7%, precision of 99.6%, recall of 99.8%, F1
score of 99.7%, and ROC AUC of 0.997) and DDoS attacks (accuracy of 99.6%, precision 99.5%, recalled
99.7%, F1 score of 99.6% and an AUC score of 0.996). The model performs similarly in classifying benign
traffic accuracy at 99.4% and ROC AUC of 0.994, but at a lower level of precision and recall than the
attack categories. However, while the model does well in terms of detection of XSS, scanning, backdoor,
DoS, MITM, and ransomware attacks, the associated performance scores for these categories are less,
with accurate values between 98.9% and 99.3%, AUC values nearing 0.99. Judging from these results,
it can be inferred that the model is generally efficient, especially when detecting common and more
devastating types of attacks such as injections and DDoS attacks. Results show the model performs
optimally across most attack types, indicating its practical applicability, particularly in smart healthcare
systems. Figure 4 shows the training and testing accuracy of the proposed DNN model optimized
with the modified ALO technique, which has been carried out for 100 epochs. The graph implies that
improvement and understanding of the model have taken place over time, both in the training data and
testing data, since there has been a gradual increase in the accuracy percentages on both datasets. The
training accuracy graph is slow to rise in the first few epochs, indicating that the model can harness a
fast learning rate from the training set. However, after additional training, the graph begins to resemble
a straight line, slightly below the optimal level of 100% accuracy. This means that the model has learned
almost every feature of the data. The dashed line in the graph refers to the accuracy obtained during
the testing phase, which follows almost the same trend but is lower than the training phase. There is a
tiny margin between training and test accuracy. This evidence suggests the model can fit the unseen
data reasonably well and does not overfit considerably. The high accuracy for both training and testing
data is because the model’s hyperparameters have been effectively adjusted using modified ALO for
optimizing hyperparameters in detecting harmful cyberattacks in smart healthcare systems. Figure 5
illustrates the loss curves for training and test datasets over 100 epochs. The losses converge as constants
remain stable, with an initial sharp dip indicating the model’s learning phase. As training progresses,
the curves stabilize, signifying optimal performance. Training loss is typically lower than test loss
since both datasets share a similar distribution. The small gap between the curves suggests minimal
overfitting, demonstrating that the model generalizes well. This balance ensures reliable predictions
without excessive bias toward training data. The impact of feature selection on the performance of the
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Figure 5: Loss of the Proposed Deep DNN Network with ALO algorithm

proposed DNN model is shown in Table 2. Applying feature selection techniques significantly improved
all evaluated metrics, including accuracy, precision, recall, F1-score, and ROC-AUC. Accuracy increased
from 98.5% to 99.5%, enhancing prediction precision. Similarly, precision rose from 98.2% to 99.3%, while
recall improved from 98.3% to 99.4%, demonstrating better target identification. The F1-score, which
balances precision and recall, increased from 98.25% to 99.35%. ROC-AUC also showed performance
gains, reflecting improved class discrimination. These enhancements highlight the importance of feature
selection in optimizing input data, ultimately strengthening the model’s accuracy and effectiveness in
detecting cyberattacks in smart health CPS. Table 3 presents the results of the modified ALO algorithm
on the proposed DNN model performance metrics. The results indicate that using the ALO algorithm
enhances the model’s performance across all evaluated metrics. For instance, the accuracy of the model
terms without ALO is 98.8%, while with ALO, it is 99.5%. This means ALO helps enhance the model’s
performance in classifying positive and negative classes. The same, the precision in positive predictions
made by the model, i.e., true positives, is 98.5% in the absence of the ALO algorithm. In contrast, it
is 99.3% in the presence of ALO, with even better performance. This improvement indicates that the



Table 2
Impact of Feature Selection

Metric Without Feature Selection ~ With Feature Selection

Accuracy 98.5 99.5
Precision 98.2 99.3
Recall 98.3 99.4
F1-Score 98.25 99.35
ROC-AUC 0.985 0.995

Table 3
Effectiveness of Modified ALO

Metric Without ALO  With ALO

Accuracy 98.8 99.5
Precision 98.5 99.3
Recall 98.6 99.4
F1-Score 98.55 99.35
ROC-AUC 0.988 0.995

model is better at decreasing false positives with ALO optimization. The F1-score, calculated as the
harmonic mean of precision and recall, improves significantly from 98.55% to 99.35% percentile given the
application of ALO techniques, emphasizing proportional advancement of precision and recall. Finally,
the ROC-AUC score, which helps in understanding all the distinct classes in this data set, increases from
0.988 to 0.995, showing that the model performs better after ALO optimization. This study demonstrates
that modified ALO for hyperparameter optimization enhances cyberattack detection in healthcare CPS.

5. Conclusion and Future Work

The proposed approach to detecting cyber threats within smart healthcare CPS demonstrates impressive
efficiency by harmonizing advanced feature selection methods with DNN architecture carried out with
the modified ALO algorithm. The enhanced optimal DNN, which was refined with the modified ALO
algorithm, performed well, as evidenced by an accuracy level of 99.5%, precision of 99.3%, recall of 99.4%,
F1-score of 99.35% and ROC-AUC of 0.995. These statistics suggest that the model effectively detects
and classifies multiple categories of cyber threats, hence injection attacks, DDoS, and XSS, among many
others. The findings provide evidence that the considered strategy effectively increases the safety and
reliability of intelligent healthcare CPS, which is essential for accurately and quickly mitigating potential
risks. Several avenues for future study might be explored in light of the successes of this work to deepen
and expand the suggested technique. One such exciting possibility is determining how the modified
ALO is extended to handle more extensive and complex datasets, as in the case of healthcare CPS, which
are becoming very common. Expanding the model with real-time data enables continuous monitoring
and quicker detection, enhancing the system’s agility against cyber threats. Further work could also
be conducted by integrating other optimization techniques, such as genetic algorithms, to develop
new strategies for hyperparameter tuning. Furthermore, testing this approach in particular domains
like industrial IoT or autonomous cars would be valuable since it will help demonstrate and assess its
flexibility and generality. Finally, subsequent work can enhance model interpretation and clarify how
DNN makes decisions and the strategies carried out to enhance better acceptance of Al-based security
control systems, especially in critical areas such as healthcare.
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