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Abstract
The sustainable development of remote and ecologically sensitive regions, such as mountain landscapes, depends
also upon land use management. This study examines land use dynamics in the Alpine region of Lombardy, Italy,
as delineated by the eco-regions defined by the Italian Statistical Institute (ISTAT). By analyzing land use data
from Regional Agency for Services to Agriculture and Forestry (ERSAF), we assess the 2013 and the 2018 status
for 19 relevant land use categories, along with the identification of net changes observed during this period. This
exploratory work, based on the use of high volume data, lays the foundations for a wider project that aims at
modeling spatial autocorrelation, outlining the challenges this estimation would lead to, when managing such a
huge volume of data via AI algorithms.
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1. Introduction

Sustainable land use has become a key issue in mitigating the effects and in adapting to the climate
change. In particular, this issue is even more crucial in the case of remote and ecologically sensitive
areas, such as mountainous regions. These regions, characterized by fragile ecosystems and complex
socio-economic dynamics, are particularly vulnerable to the increasing pressure of urbanization and
soil loss caused by hydro-geological instability. Consequently, the preservation of biodiversity, the
mitigation of land degradation and the promotion of sustainable development require efficient planning
for the conservation and management of human activity [1, 2].

Developing such plans and formulating public policies that concurrently support ecological integrity
and socio-economic resilience present significant challenges. This underscores the need for targeted
research into land use dynamics, a task that often exceeds the capacities of local administrations due
to resource constraints. Effectively addressing these challenges requires adopting a spatially nuanced
approach to land use management. For this purpose, we need a shift from administrative borders to the
concept of eco-regions, also referred to as ecological regions. These are defined as relatively extensive
units of land or water that contain a distinct composition of species and natural communities [3]. These
kind of boundaries approximate the original extent of natural communities prior to substantial changes
in land use. These regions offer a valuable framework for analyzing trends and the impacts of land use
changes, identifying areas prioritized for conservation, and facilitating environmental risk assessment.
Within the Italian context, the classification of territories is structured within a four-level eco-region
system, comprising two divisions (first level), seven provinces (second level), eleven sections (third
level), and thirty-three subsections (fourth level). The subdivision of the Italian territory, provided by
the Italian Statistical Institute (ISTAT), has been undertaken in accordance to specific combinations of
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climatic, bio-geographic, physiographic, and hydrographic factors. This framework has been designed
aiming to provide a framework to support the design and the implementation of environmental-related
policies [4].

The objective of this work is to explore the possible integration of the Italian eco-regions system and
the land use data available for Lombardy. We focus on the specific case of the Alpine province for 2013
and 2018. In addition, the challenges associated with the modeling of this type of data are discussed,
with a particular focus on AI algorithms implementation.

Following a brief description of the study area, of the data, and of the adopted methodology, we
discuss our early results. Finally, future research directions will be outlined.

2. Data and Methods

The study area we analyze encompasses 175 municipalities within the Italian Lombardy region, which
have been classified by ISTAT into the Alpine Province. Specifically, at the fourth level of the hierarchy,
26 municipalities are classified as “Sottosezione Alpi Nord-Occidentali” (Northwestern Alps Subsection),
while the remaining 149 municipalities belong to the “Sottosezione Alpi Nord-Orientali” (Northeastern
Alps Subsection). To comprehend the magnitude of this area, it is necessary to consider that the
Lombardy region encompasses an area of approximately 24,000 km2, and the region covered by our
study (the Alpine region) constitutes approximately one-fourth of that size. The geographical location
of the study area is illustrated in panel (a) of Figure 1. This depicts the Lombardy region by municipal
boundaries, with colors representing the respective subsections. The two Alpine subsections analyzed,
the Northwestern (identified by the code 1A1b and color orange) and the Northeastern (identified by
the code 1A2c and color green) correspond to the northernmost. Given the recognized role of altitude in
delineating alpine provinces, the mean altitude for each municipality is reported in panel (b) of Figure 1.
The darker shades of color in the figure correspond to higher mean altitudes. In particular, norther and
northeastern municipalities, which represent the Italian border with Switzerland, appear to exhibit
higher mean altitudes. We expect that this feature of the area will affect the spatial patterns of the
phenomena we are going to study.
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Figure 1: Study area.

The land use data studied have been extracted from the Regional Agency for Services to Agriculture
and Forestry (ERSAF) dataset. This dataset is obtained by combining land use and land cover data with
information coming from the Lombardy Region’s Agricultural Information System (SIARL) database



and from the Intended Use of Agricultural and Forest Land (DUSAF) land cover dataset.
The SIARL database, which is maintained by the Lombardy Region, contains detailed agricultural data

updated on an annual basis through agricultural funding procedures. It is based on precise geometries
derived from the Italian cadaster, wherein land use is formally assigned by firm declarations for each
cadastral parcel.

The DUSAF dataset is a land use and land cover classification product obtained from the labeling of
aerial photogrammetry. This is available in shape files provided by the Lombardy region.

The objective of combining SIARL and DUSAF data is to map agro-forestry land use across the region.
The integration of these data sources aims to provide a comprehensive cartographic representation of
agro-forestry surface investments.

The final ERSAF dataset is characterized by the classification of land use into 21 distinct categories.
Of these, 16 are derived from SIARL data, representing macro-agricultural land uses of SIARL activities
aggregated from multiple sub-categories. The remaining 5 classes are sourced from the DUSAF and,
with the exception of the “Non-classifiable agricultural land” label, account for non-agricultural land
uses.

The resulting cartographic product represents the dominant land use for each parcel based on declared
surface area. The dataset is available in GRID format, with cells measuring 20x20 meters (m). Further
methodological details can be found at the link https://www.geoportale.regione.lombardia.it/.

For the purpose of this study, the ERSAF data from 2013 and 2018 were extracted and filtered to
obtain only cells covering the Alpine Province of Lombardy. In particular, the number of cells for the
two years are 14,441,192 and 14,421,052, respectively. It is noteworthy that the three municipalities
not associated with the main Alpine Province were excluded from the analysis as lack of direct spatial
adjacency. The resulting raster is shown in Figure 2: left panel (a) refers to 2013, and right panel (b) to
2018. Among the 21 defined land use categories, only 19 have been actually observed in these two years
and their labels are reported on the right side of the figure. “Beet” and “Rice” land use categories were
not observed in these two years (in the area under study).
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Figure 2: Land use in the two considered years.

Our exploratory analysis involves the estimation of two types of statistics, one focused on the stock
and the other on the flow: status and net change, respectively.

The status share is used to describe the proportion of total area that has been classified as a particular
land use category. The status share 𝑠 for a specific category 𝑘 at a certain time point 𝑡 can be defined as:

𝑠𝑘,𝑡 =
1

𝑛

∑︁
(𝑦𝑖,𝑡=𝑘)∈𝐷

𝑦𝑖,𝑡, (1)

where 𝑦𝑖,𝑡 represents the single 𝑖-𝑡ℎ unit classified in the category 𝑘 at time 𝑡, and 𝑛 is the number of
cells belonging to the total area 𝐷.

https://www.geoportale.regione.lombardia.it/


The net change is defined as the difference in the status share for a given land use category 𝑘 between
time points 𝑡 and 𝑡− 𝑐. This can be computed as:

∆𝑘,𝑡,𝑐 = 𝑠𝑘,𝑡 − 𝑠𝑘,𝑡−𝑐. (2)

These two measures are commonly adopted to estimate land use and land cover [5].

3. Results and Discussion

The results pertaining to the status and the net change can be found in Table 1. Based on the status
share (expressed as a percentage of the total cells) for 2013 and 2018, the four most prevalent categories,
namely, Woods and tree crops (35.6 and 40.5 for the two years), Forage (27.0 and 23.2), Natural sterile
areas (13.9 and 11.7) and Natural vegetation (12.8 and 9.8), collectively account for more than the 80% of
the study area.

The dynamics between 2013 and 2018 can be observed by checking the “Change” section (last three
columns of Table 1). In particular, it is reported in net terms, shown by Eq.(2), and, to provide a more
comprehensive analysis, in year-to-year relative change (in percentage) and in squared kilometers (km2)
terms. By examining the net change values, it is possible to observe how Woods and tree crops and
Wasteland are the land use that increased the most, in terms of status share (4.9 and 4.3, respectively),
while Forage, Natural vegetation and Natural sterile areas are those that decreased the most (-3.8, -2.9 and
-2.1, respectively). By considering the year-to-year percentage change, the land use categories subject to
the highest positive changes are Resting land (+3425.0%), Industrial plants and dried legumes (+601.2%)
and Wasteland (+207.4%). Negative signs are observed for Seeds (-67.3%), Natural vegetation (-23.2%),
and Natural sterile areas (-15.6%). Similar conclusions, to those discussed when focusing on net changes,
are obtained by also considering the dynamics in squared kilometers terms between 2018 and 2013,
allowing for a more understandable unit of measurement. The calculation of this value can be achieved
for each land use category by computing the differences between the two years number of cells (#
cells) and by subsequently converting the value from squared meters to squared kilometers. Given that
each individual cell is 20x20 m, the total number of cells is multiplied by 400 and divided by 106. By
employing this method, it is possible to ascertain that moving from 2013 to 2018 the areas dedicated to
Forage, Natural vegetation and Natural sterile areas showed a loss of 222.34 km2, 171.99 km2, and 125.59
km2, respectively. Concurrently, the land dedicated to Woods and tree crops and Wasteland increased by
283.31 km2 and 250.96 km2, respectively.

In summary, an examination of the statistics presented in Table 1 reveals a decline in naturally
vegetated areas (vegetation and sterile areas) and in the land for forage production. Concurrently, there
has been an increase in areas allocated to wood and tree crop production, as well as in wasteland areas.

To obtain a general measure of variability in the land use able to quantify the total variation observed
by moving from 2013 to 2018, we compute a weighted mean of the absolute relative changes using as
weights the number of cells observed for each category in 2013. This statistic, equal to 0.1874, points
out that in 5 years the 18.74% of the cells changed their land use (corresponding to an annual average
percentage of 3.75%). This information is useful for future comparisons between other time points or
windows in order to understand if the observed changes are more or less pronounced.

To further enhance the findings presented herein, it would be beneficial to consider the estimates of
transitional changes in land use categories. This would permit the tracking of a cell’s transition from
one category to another. This approach would improve the comprehension and reconstruction of the
dynamics that the territory have experienced between 2013 and 2018. However, the implementation
of additional data harmonization techniques is necessary, given that a direct overlap of grids referred
to the two years is not feasible. For instance, a possible strategy could be the establishment of a fixed
common cell structure over the years. This can be achieved through the realignment of the cells with
or without transitioning to a lower level of detail, i.e. aggregating 20x20 m cells to obtain a less refined
grid. For these purposes, AI solutions could be a viable option. An example of developed AI strategy
helpful in this framework can be found in the paper of [6]. In such a work, a two-stage convolutional



Table 1
Number of cells (# cells) and status share (*100) for 2013 and 2018; change expressed in Net (Eq.(2)), year-to-year
relative change in percentage (%), and squared kilometers (km2) for land use category.

Land Use Category
2013 2018 Change

# cells Status # cells Status Net (%) km2

1 Anthropized areas 335561 2.324 337103 2.338 0.014 0.5 0.62
2 Corn 19817 0.137 18298 0.127 -0.010 -7.7 -0.61
3 Floral nurseries 302 0.002 424 0.003 0.001 40.4 0.05
4 Forage 3903246 27.029 3347403 23.212 -3.817 -14.2 -222.34
5 Fruits 45428 0.315 48534 0.337 0.022 6.8 1.24
6 Horticultural crops 1559 0.011 2307 0.016 0.005 48.0 0.30
7 Industrial plants and dried legumes 82 0.001 575 0.004 0.003 601.2 0.20
8 Lakes and rivers 170128 1.178 158027 1.096 -0.082 -7.1 -4.84
9 Natural sterile areas 2011747 13.931 1697762 11.773 -2.158 -15.6 -125.60
10 Natural vegetation 1851372 12.820 1421410 9.856 -2.964 -23.2 -171.99
11 Non-classifiable agricultural land 607616 4.208 564154 3.912 -0.296 -7.2 -17.39
12 Olive 400 0.003 877 0.006 0.003 119.3 0.19
13 Other agricultural crops 1065 0.007 1413 0.010 0.002 32.7 0.14
14 Other cereals 304 0.002 617 0.004 0.002 103.0 0.13
15 Resting land 8 <0.001 282 0.002 0.002 3425.0 0.11
16 Seeds 141 0.001 46 < 0.001 -0.001 -67.4 -0.04
17 Vineyards 44523 0.308 38249 0.265 -0.043 -14.1 -2.51
18 Wasteland 302470 2.094 929873 6.448 4.354 207.4 250.96
19 Woods and tree crops 5145423 35.630 5853698 40.591 4.961 13.8 283.31

NN was adopted to align grids available for the same area at different time points. A potential drawback
of this solution is linked to the very big size of the area that we need to re-align. Another solution that
would improve the production of information useful for policy-making is the identification of possible
neighborhood transition patterns (e.g. highlighting clusters of units).

A further research development would focus on distinguishing between structural land use changes
and annual rotation of land use specific of agricultural practices. Finally, as already done in the
literature, the observed categories could be collapsed into a reduced number of broader categories to
better represent the dynamics of land use change [5].

Such a type of results would permit a general coordinated valorization of the whole area, such
as interventions in favor of certain destination use, but also regarding the preservation of the land
heterogeneity and of sustainable use of the territory. For these reasons it is necessary to acknowledge
the importance of such type of data, that actually are available for a limited time window.

Finally, the next step of this research is the modeling of spatial autocorrelation, an aim that comes
with several challenges. Firstly, it is important to note that classic AI algorithms have been developed on
the basis of intrinsic i.i.d. assumptions. Consequently, these algorithms are not able to explicitly model
dependence structures among the data. A variety of strategies for incorporating spatial information into
AI models have been proposed. They range from more immediate approaches, such as the inclusion
of coordinates as absolute spatial references, to more complex and challenging modeling techniques,
involving the integration of the covariance matrix into AI algorithms [7]. The second challenge pertains
to the volume of the adopted data: the estimation of the covariance matrix is computational expensive
when dealing with such a large number of cells.

In conclusion, these efforts may also be oriented towards the development of an AI solution based
on past cells occurred changes and spatial patterns. This method will allow to predict the cell land
use across time points not only generally, but also referring to each specific cell (or neighborhood of
cells). Such a solution would be useful, in a data-driven perspective, to guide policy-makers in setting
regulations or in planning resources according to the expected patterns in land use.
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