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Abstract

Accurate quantification of the Ki-67 proliferation index is essential in cancer diagnostics, yet manual evaluation
remains time-consuming and prone to inter-observer variability. This study presents a machine vision-based CAD
tool designed to compute Ki-67 proliferation index from digitized histopathological images, aiding diagnostic
workflows at the U. Parini hospital in Aosta. Developed through an interdisciplinary approach integrating artificial
intelligence and computational pathology, the system was validated against expert annotations, demonstrating
strong concordance and clinical reliability. Beyond its scientific contributions, this initiative fosters digital
transformation in healthcare, improving diagnostic accessibility in mountainous regions while promoting local
economic and technological development.
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1. Introduction

Artificial intelligence (Al) is revolutionizing healthcare by enhancing diagnostic accuracy, personalizing
treatments, and expanding access to medical services, particularly in logistically-complex regions. In
rural and mountainous areas, such as Italy’s Aosta Valley, healthcare delivery faces unique challenges,
including geographical isolation and limited medical resources. Implementing Al-driven solutions in
these regions can bridge healthcare disparities by providing advanced diagnostic tools and supporting
clinical decision-making.

Accurate assessment of cellular proliferation is crucial in cancer diagnostics, with the Ki-67 pro-
tein serving as a key biomarker. Traditionally, pathologists manually evaluate Ki-67 expression in
histopathological images, a process that is time-consuming and susceptible to inter-observer variability.
Computer-aided diagnosis (CAD) systems utilizing machine vision (MV) techniques have emerged to
automate this task, offering consistent and efficient analysis of Ki-67 proliferation index.

The integration of such technologies is particularly significant in remote and mountainous regions. By
deploying Al-driven diagnostic tools locally, these areas can undergo digital transformation, enhancing
healthcare delivery and fostering collaborations between research centers, hospitals, and medical
professionals. This synergy not only improves diagnostic practices but also contributes to the overall
quality of life in these communities.
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This paper presents a machine vision tool developed within the CMP3 - 5000 genomi@vda' project, de-
signed to analyse histopathological images of breast cancer and compute the relative Ki-67 proliferation
index. This tool has been implemented and deployed at the local hospital U. Parini in Aosta, enabling
clinicians to utilize it as a supportive CAD system for their diagnostic processes. The objectives of this
paper are to describe the machine vision tool and the CAD infrastructure, and to contextualize their
development within the local setting. We aim to demonstrate how initiatives that link local research
centers with healthcare institutions can promote collaboration, drive scientific and technological re-
search, and enhance diagnostic practices, thereby improving the quality of life in mountainous regions
like the Aosta Valley.

The structure of this paper is as follows: Section 2 contextualizes the scientific and aspects, providing
a literature review on Ki-67 assessment and the need for CAD systems; Section 3 describes the MV
algorithms and the data utilized; Section 4 presents the results, validation, and implementation of the
solution in clinical practice; Section 5 offers a discussion on the findings and their implications; and
Section 6 concludes the paper, summarizing the contributions and future directions.

2. Background and motivation

2.1. Scientific rationale

Early detection of breast cancer is crucial for improving patient survival and quality of life [1]. As the
most common malignancy among women worldwide - with millions of new cases annually - efficient
diagnostic tools are essential for managing clinical workloads and ensuring timely, accurate diagnoses.
Diagnostic approaches include self- and clinical examinations, as well as imaging modalities such as
mammography, ultrasound, and magnetic resonance imaging (MRI) [2, 3]. Mammography is the primary
screening tool, while ultrasound and MRI are particularly useful in cases of dense breast tissue and
complex presentations. Nonetheless, biopsy remains the definitive method for confirming a diagnosis
[4, 5, 6]. However, challenges such as dense tissue and the potential for false-positive or false-negative
results persist [7]. Ongoing research into advanced diagnostic techniques and molecular biomarkers
promises to further improve the diagnosis and treatment of breast cancer [8, 9]. In the clinical practice,
following tissue extraction through biopsy or surgical resection, histopathological analysis is conducted.
This process involves preparing tissue sections and staining them - typically with Hematoxylin and
Eosin (H-E) [10] or alternative markers such as DAB and Ki-67 [11] - to enhance cellular details before
digitizing the slides into high-resolution images that play a vital role in clinical assessment [12].

Artificial intelligence (AI) applications in medical imaging have significantly advanced histopathology
through Machine Vision (MV), enabling automated detection and quantification of biomarkers [13,
14, 15, 16]. Our work has focused on digital histological slides of breast cancer as a case study for
developing machine vision systems. In particular, slides stained with H-E and Ki-67 serve as the basis
for evaluating algorithm performance and ensuring diagnostic precision [17]. Additionally, machine
learning has found broad application in digital pathology [18, 19].

The Ki-67 marker is widely recognized as both a predictive and prognostic biomarker in breast
carcinoma. It is commonly used to assess cellular proliferation [20, 21], with elevated levels indicating
a poorer prognosis [22]. Endorsed by the 2009 St. Gallen International Breast Cancer Conference [23],
the use of proliferation markers like Ki-67 informs optimal treatment decisions for early-stage breast
cancer. The Ki-67 index is calculated as the ratio of Ki-67-positive tumor cells to the total tumor cell

count, or:

i Number of cells positive to Ki-67
Ki67 = .

100, (1)

Total number of tumor cells
and it is typically estimated in clinical practice either by an average method, where pathologists count
positive cells across several regions of a slide, or by the hotspot method, which focuses on areas with
particularly intense staining [24]. Recent studies [25] suggest that a Ki-67 level above 10-14% indicates
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a high-risk prognosis, but these thresholds remain a subject of ongoing debate[26], complicating the
standardization of manual and automated scoring systems. The International Ki-67 Working Group
(IKWG) proposes Ki-67 cutoffs of 5% and 30% for prognosis, with intermediate values considered
a “gray zone” [27]. At U. Parini Hospital (Aosta), a 20% threshold is commonly used; around this
level, therapeutic decisions require comprehensive clinical evaluation beyond the Ki-67 index. High
inter-observer variability in classification and differences in threshold selection further hinder reliable
assessment [28]. Threshold variability for risk stratification and inter-laboratory differences—such as
region-of-interest selection—complicate evaluation of automated tools.

Several computational solutions support automated Ki-67 quantification. Among open-source options,
QuPath [29] - which uses the StarDist algorithm for cell detection - has been widely employed in
studies comparing manual scoring and digital image analysis [30, 31, 32, 33]. Our work integrates this
detection model into a custom system tailored for the hospital’s clinical workflow, encompassing data
management, high-performance computing (HPC) processing, and modules for cell normalization and
filtering. Other deep learning approaches (e.g. YOLO[34], VGG networks[35], and U-Net with ResNet
backbones[36]) focus on nucleus-level classification rather than reporting a whole-slide Ki-67 index.
Finally, commercial closed-source platforms (e.g. Visiopharm and DeepBio) designed for clinical use
employ proprietary algorithms, but their methods and validation data are often undisclosed.

2.2. CAD in clinical practice

Computer-Aided Diagnosis (CAD) is an advanced field in medical imaging that uses digital imaging and
artificial intelligence algorithms to support healthcare professionals in interpreting complex medical
images [37, 38, 39]. CAD systems have been widely adopted for the quantitative assessment of im-
munohistochemical staining, facilitating the identification and measurement of biomarkers critical for
diagnosis [12]. Recent developments have expanded these systems to include the analysis of standard
hematoxylin and eosin (H-E) images, which form the foundation of pathological diagnosis [40, 41]. By
integrating advanced algorithms, CAD improves diagnostic accuracy and decision making, enabling the
detection of subtle patterns and anomalies that may be difficult to discern with the naked eye [42, 15].
Furthermore, this approach improves efficiency by streamlining image analysis and allowing clinicians
to devote more time to complex diagnostic tasks.

In the context of local clinical practice, particularly in resource-limited or remote settings, such
as in mountain regions, CAD offers significant benefits by providing reliable and automated support
that complements the expertise of local clinicians. Our system, while innovative, has been designed
with the specific intention of integrating seamlessly into existing clinical workflows without causing
disruption. For this work, our multidisciplinary team has worked closely with clinical partners, notably
the Specialized Unit of Pathological Anatomy?” in Aosta, to translate clinical requirements into effective
CAD tools. This collaboration has ensured that our machine vision algorithms are not only effective in
real-world contexts but also respect and accommodate common clinical practices, reinforcing rather
than interfering with the essential role of clinical judgment in patient care [43, 44, 45].

2.3. European and regional relevance

Mountain regions face significant challenges, notably limited access to specialist care, which necessitates
the adoption of innovative technologies such as Al-driven machine vision and CAD tools. European
best practices and regulatory frameworks support this integration by promoting multi-stakeholder col-
laboration and user-centered design. An European Parliament study [46] proposes engaging clinicians,
patients, social scientists, and regulators throughout the development process while also emphasizing
enhanced education programs to improve Al literacy among healthcare professionals and the public.
Similarly, the new European Al Act calls for the development of harmonized guidelines and standards
through close collaboration between Al developers, healthcare professionals, and patient communities
to ensure effective monitoring of health-related Al applications [47]. Complementing these initiatives,

*Struttura complessa di Anatomia Patologica" is the formal name of the unit at the hospital.
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Figure 1: General workflow of the developed process: from left to right, the normalized extracted tile (A),
followed by the dye separation phase (B) and subsequent grayscale conversion, which serve as inputs for the tile
segmentation phase (C), and finally, cell counting (D). Image from the Dataval dataset.

the Standing Committee of European Doctors (CPME) guidelines® stress that Al systems must be
designed based on actual healthcare demands, and to adhere to ethical and data protection standards.
Finally, the white paper Sustainable Al to Drive Global Health* underscores the transformative potential
of data and Al in addressing global health challenges.

Collectively, these frameworks provide a comprehensive road-map for deploying Al in under-served
mountain regions, ensuring that technological advancements are tailored to overcome local health-
care disparities while aligning with international best practices. Emerging evidence indicates that
the integration of Al-driven machine vision and CAD systems can substantially improve healthcare
outcomes in logistically-complex mountain regions. For example, studies have shown that telemedicine
and Al-assisted diagnostics can enhance diagnostic accuracy and facilitate timely treatment [48, 49].
Emerging evidence indicates that practical implementation of Al in medicine leads to earlier disease
detection and improved patient outcomes, ultimately enhancing quality of life [50]. Moreover, Al
integration streamlines data sharing and promotes interdisciplinary collaboration, strengthening ties
between hospitals and research institutions [51]. Collectively, these advances not only optimize resource
allocation and reduce costs but also contribute to broader economic and social development in mountain
regions.

3. Machine Vision for Computer-Aided Diagnosis

In this Section, we describe the workflow developed for the machine vision tool to segment nuclei and
compute the Ki-67 index. For a detailed overview of the workflow, please see Figure 1.

3.1. Data

A representative dataset of histological samples stained with hematoxylin and Ki-67 was used during
the development phase. This dataset [52], called DataDev consists of Npatapey = 694 images, each
measuring 512x512 pixels, obtained from samples of 32 patients with breast cancer. This dataset was
used to calibrate the system’s parameters based on a semi-qualitative assessment of the segmentation,
combining statistical analysis with visual inspection. For the results and the clinical validation phase,
a different dataset, Dataval, was provided by the U. Parini hospital, with each slide accompanied

*https://www.cpme.eu/api/documents/adopted/2024/11/cpme_ad_09112024_073 final.policy.on.deployment.of.ai.in.
healthcare.pdf
*https://www.feam.eu/wp-content/uploads/Sustainable- Al-to- Drive- Global-Health-white-paper-11-Sep.pdf
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by a Ki-67 index assigned by expert pathologists. This dataset comprises Npataval = 13 anonymised
histological slides from tumor biopsies performed on female patients diagnosed with breast cancer”.
Both dataset represent breast cancer cases at different stages of aggressiveness. The machine vision
system was customised and optimised on the DataDev dataset and subsequently validated in a blinded
manner on the Dataval dataset provided by the hospital; the validation dataset was used exclusively
for evaluation, without any involvement in the calibration phase.

Data preparation and annotation for Dataval dataset. Hematoxylin-Ki-67 stained slides were
prepared by incubating them with a chromogenic substrate, such as DAB, until the desired color
developed (typically 5-10 minutes), with the brown DAB chromogen highlighting proliferating cells.
A light hematoxylin counterstain was then applied to enhance the histological context, binding to
all nuclei to facilitate histological analysis. The slides from the research dataset and the test image
were digitized using the Aperio AT2 scanner®. The process involved setting the scanner parameters,
including a magnification of 20X or 40X and saving images as .svs format. The digitized images
were then assigned a clinical Ki-67 index, determined by medical professionals through microscopic
observation. The combined workflow of histological preparation, staining, digitization, and clinical
annotation ensures the quality and accuracy of subsequent analyses for both diagnosis and research. A
distinctive feature of these images is their pyramidal structure, where each image contains multiple
resolution levels, allowing access to different versions with varying detail. The choice of resolution
level also depends on the magnification used during digitization (20X or 40X) and the specific size of
the acquired slide. For this study, analysis was conducted at level 0 (maximum resolution) to ensure the
highest level of detail for histological sample evaluation. As reference, a magnification of 40X (20X)
corresponds to a resolution of 0.25um/pixel (0.5um/pixel).

3.2. Architecture and algorithm details

The machine vision system is designed as a modular pipeline for processing digitized histological
slides to compute proliferation indices. The libraries used in the pipeline include openslide’ for
opening and managing image files, Scikit-image® for creating masks to remove non-biological tissue
areas, DeepZoom’ for tile extraction, SciPy'’ and Scikit-learn'! for stain separation and other
image processing tasks such as color deconvolution and normalization, finally StarDist for image
segmentation. A workflow of the machine vision pipeline is reproduced in Figure 1.

A.Tile extraction. The images produced by the Aperio scanner are ultra-high-resolution, often too
large to be processed in a single operation. To make processing more manageable, tiling is used to
divide the original image into smaller, more manageable sections, called "tiles." Each tile retains the
original resolution, allowing for detailed analysis without losing important information. During tile
extraction, non-biological regions are removed, focusing only on relevant tissue regions. This step is
crucial as it significantly reduces computational load, enabling subsequent algorithms to operate more
efficiently. To prevent nuclei from being cut at tile boundaries and causing segmentation errors, an
overlap method was implemented. However, final results indicate that this effect does not significantly
impact the final Ki-67 computation.

°All 13 patients provided written informed consent - consenso informato - allowing the use of their sensitive data for research
purposes. In compliance with ethical guidelines, all images were anonymised, ensuring that only the hospital’s medical staff
had access to patients’ identities and sensitive information.

Shttps://www.leicabiosystems.com/sites/default/files/2020- 10/Aperio_AT2_Brochure_USA.pdf
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B. Image pre-processing: stain separation and normalization. Histological images can vary
significantly in coloration due to differences in staining protocols, acquisition conditions, or scanner
types. Tile normalization standardizes image coloration, ensuring comparability across samples and
preventing color variations from affecting automated analysis [53]. This process relies on a reference
image representing the desired chromatic standard, adjusting each tile to match it as closely as possible
by correcting brightness, contrast, and hue. For this work, we used the normalization method as in
[54]. The result is a dataset with uniform chromatic properties, improving the reliability of subsequent
analyses. Histological images are typically stained with specific dyes to highlight different cellular
components. Hematoxylin stains cell nuclei in blue or purple, while eosin colors the cytoplasm,
connective tissue, and other structures in shades of pink. Ki-67 selectively stains proliferating cell nuclei
in brown, making them identifiable within the histological sample (see some examples in Figure 2).
Stain separation, or color deconvolution, isolates the chromatic information associated with each dye.
This technique is particularly useful for converting images into grayscale representations, where each
channel corresponds to a single stain.

C. Nuclei segmentation and feature extraction. After stain separation, each tile produced two
grayscale images: one highlighting Ki-67 staining, and the other emphasizing hematoxylin. Segmenta-
tion is then performed to automatically identify cell nuclei, a crucial step for calculating the Ki-67 index
[55, 56]. The segmentation algorithms detect the darkest areas in the grayscale images, corresponding
to cell nuclei—either those stained with hematoxylin, appearing purple, or those marked by Ki-67,
appearing brown.

The segmentation process was performed using StarDist, a deep learning-based algorithm designed
for the detection of star-convex objects, particularly useful for segmenting cell nuclei in histological
images. StarDist utilizes a convolutional neural network (CNN) to predict the shape and location of
nuclei, allowing for precise delineation of overlapping or irregularly shaped nuclei through star-convex
polygons. This method has shown superior performance over traditional segmentation techniques in
various biological image analysis tasks [57]. The code was customized to suit our processing pipeline
and evaluated on DataDev dataset - taken advantages of the pre-trained neural network weights already
present in the code distribution. Validation was then conducted on the Dataval dataset, by comparing
the automated results to manual annotations demonstrating the algorithm’s accuracy and reliability for
segmenting cell nuclei in this study (see Sec. 4). The implementation used in this work is based on the
open-source version of the code'?.

The segmentation algorithm creates a table containing various morphological properties of the
detected nuclei, including area, perimeter, ellipticity, and color intensity. This data is used for filtering,
selecting only nuclei with specific characteristics. Filtering is essential to focus on relevant cells, as
without it, segmentation would produce an inaccurate count, mistakenly identifying all cells in the slide
instead of only those of interest. To ensure the algorithm correctly distinguishes and counts only the
relevant cells, thresholds were applied based on three properties: area, staining intensity, and ellipticity.

D. Proliferation index calculation. To calculate the Ki-67 index, the property tables generated
by the segmentation algorithm were used to automatically count the cells in the segmented images.
Specifically, the numerator of the formula (see Eq (1)) was obtained by counting the segmented elements
from the grayscale image derived from the Ki-67 stain separation. Similarly, the denominator was
calculated by counting the segmented elements from the grayscale image derived from the hematoxylin
stain separation. For some example of nuclei segmentation and index computation see Figure 2.

This system was tested on the High-Performance Computing (HPC) cluster at Pont-Saint-Martin,
utilizing GPU nodes for optimized processing. Execution times for pre-processing and segmentation
were recorded, with an average of 8 minutes for pre-processing and 16 minutes for segmentation and
Ki-67 extraction, both deemed suitable for clinical workflows.

Phttps://github.com/stardist/stardist
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Figure 2: Examples of tiles from the research dataset segmented by the algorithm. The pink circle highlights
the identified nuclei. The colored number in the lower left of each tile represents the automatically calculated
Ki-67 index based on nuclei count. The number’s color reflects the level of the Ki-67 index according to the color
scale shown on the right. Images are from the DataDev dataset.

3.3. CAD implementation

The CAD system is implemented as a web-based application accessible via a secure VPN, restricted
to authorized personnel authenticated through access credentials. It ensures proper data handling
in compliance with current regulations, including GDPR'®. The system is deployed on an HPC clus-
ter and structured using Singularity/Apptainer containers. Web apps were developed using
Dash-Plotly'4, a Python library and framework for publishing and visualizing data through a web-
site. The backend of Dash is built on Flask'’, a lightweight web application framework, while the
frontend consists of a static web page populated with React components, which provide interactivity
to users without the need for a full-page reload'®.

The application features two dashboards: one for image upload and high-resolution preview, and
another interactive viewer displaying processed results, including nuclear segmentation metrics and
Ki-67 values. Upon image upload, metadata is stored in a backend database, and the file is saved on
the HPC. Processing is automated, generating segmentation and proliferation data. The interactive
viewer enables clinicians to select regions of interest (ROIs) and obtain real-time Ki-67 index updates,
facilitating focused analysis. Designed to integrate seamlessly into existing clinical workflows, the
interface provides clear visualizations and actionable data to support clinical decision-making.

Bhttps://www.edps.europa.eu/data-protection/our-work/subjects/health_en

“https://dash.plotly.com/

Bhttps://flask.palletsprojects.com/en/stable/

'%In more details, Dash-Plot 1y handles the frontend and data exchange between the frontend and backend. The lifecycle of
each application is managed by uwSGI, an application server that provides load balancing and health check functionalities.
To complete the stack, Nginx was chosen as the web server for its native support of the WSGI protocol. Nginx also provides
data compression, offloading both the network and the Python application.
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4. Results and validation

The algorithm aims to compute the Ki-67 index for entire whole-slide images. DataDev contains nuclei
annotated for Ki-67 positivity, extracted as cropped regions from externally sourced slides with varying
sizes and quality. To prevent overfitting, we did not retrain the StarDist model on DatabDev. Instead, we
used DataDev to calibrate nucleus detection by tuning post-segmentation filters on mean intensity (>
80 on a 0—255 scale), area (1504000 pixels), and ellipticity (> 0.2). These thresholds were chosen based
on descriptive statistics, qualitative inspection of segmentation results, and expert pathologist feedback.

The system’s performance was evaluated using the Dataval dataset. Nuclear segmentation outputs
were assessed both quantitatively and qualitatively by comparing segmented nuclei and their statistical
properties per tile. Visual inspection by expert pathologists at the hospital confirmed accurate identifi-
cation of most nuclei, although some misclassifications occurred with non-tumoral structures (e.g., red
blood cells, lymphocytes). Introducing morphological thresholds significantly improved segmentation
accuracy by excluding these artifacts. Importantly, the Dataval dataset was used exclusively for
evaluation, without any involvement in training or optimization of the machine vision system.

The Ki-67 index computation was validated by comparing system-generated values with those
assigned by pathologists, Figure 3. Due to the limited sample size (n = 13), we compared automated
and annotated Ki-67 indices using a 5% discrepancy threshold, selected in consultation with expert
pathologists. This threshold reflects a clinically meaningful margin and aligns with inter-laboratory
variability and IKWG guidelines [27, 28]. While the automated calculation closely aligned with expert
assessments in most cases, two out of 13 images exhibited discrepancies exceeding 5%: patients 4 (id:
12304166) and 5 (id: 12302878). In patient 4, clinical values remain high (around 70%), while the algorithm
tends to underestimate Ki-67. For patient 5, the clinical value is approximately 10%, whereas algorithm
estimates are 28% at 40X magnification and 37% at 20X. This prompted an exploration of alternative
region selection methods, such as hotspot and bootstrap-based approaches, to refine Ki-67 computation.
Error analysis revealed that a major source of error was the inclusion of regions that are not clinically
relevant or contain tumor cells which should not be counted for Ki-67. This is consistent with the
performance variability depending on whether regions of interest are preselected, as demonstrated
in reported studies using tools like QuPath (see Sec. 2.1). To address this, we kept the automated cell
segmentation and counting system active for index computation while integrating a CAD tool for
selecting relevant areas. This web application enables clinicians to upload images, define regions of
interest, and receive index computations within minutes.

4.1. Clinical validation and impact

The validation of the system demonstrates its significant clinical utility by ensuring accurate, repro-
ducible, and efficient quantification of the Ki-67 index, a key biomarker in breast cancer diagnosis and
prognosis. Through a comprehensive validation process that compared automated Ki-67 calculations
with expert pathologist annotations, the system proved its reliability in assisting routine pathological
assessments. The system was ultimately deployed to hospital via a dedicated web application. This web
app, developed as a CAD tool, enables (only) authenticated clinicians at Parini hospital to access the
system remotely via VPN, providing an interactive platform for uploading, processing, and visualizing
histopathological images. The application allows real-time visualization of whole-slide images, displays
segmentation results, and provides a detailed breakdown of the Ki-67 index for each analyzed region
(for an example, see Figure 4).

By automating and standardizing Ki-67 quantification, the tool significantly reduces inter-observer
variability and minimizes diagnostic subjectivity, enhancing diagnostic confidence, particularly in
borderline cases. Moreover, it improves workflow efficiency, allowing pathologists to focus on more
complex evaluations rather than time-consuming manual quantifications. The validation process also
identified and addressed challenges such as misclassification of non-tumoral cells and discrepancies
in region selection. To enhance accuracy, the system incorporates morphological thresholds to refine
segmentation and enables manual selection of regions of interest (ROI) for Ki-67 calculation, ensuring
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Figure 4: Web app interface of the CAD tool for visualizing histological images and calculating the Ki-67 index.

alignment with clinical best practices. Additionally, the web app’s structured data storage and retrieval
system facilitates longitudinal analysis and integration with hospital databases, potentially supporting
further predictive analytics and research applications.

The deployment of this web-based CAD tool represents a step toward integrating Al-driven solutions
into clinical practice, enabling real-time, evidence-based decision-making. While the system demon-
strated robust performance, ongoing evaluations in clinical settings will further refine its capabilities
and address limitations. Future improvements may include Al-assisted ROI selection and deep-learning
enhancements for more precise segmentation.



5. Discussion: scientific, socio-economic, and community Impact

5.1. Scientific contributions and interdisciplinary collaboration

Our study demonstrates significant advances in Al-driven medical [18, 19] imaging by developing an
innovative CAD system practically implemented within the clinical workflow, that automates high-
resolution histological analysis and precise quantification of the Ki-67 proliferation index [38, 12]. A
first validation against expert pathologist annotations confirmed its clinical utility, notably reducing
inter-observer variability and diagnostic subjectivity [42, 15]. Comprehensive validation of the system
impact will be a key focus of future work, which aims to systematically assess detection performances as
well as clinical utility and user experience. The system is designed to efficiently collect statistical results
and expert-selected regions, enabling future model retraining and optimization for the specific use case,
as well as more meaningful performance evaluations. Moreover, the deployment of a secure, web-based
CAD tool facilitates real-time access and analysis, further bridging the gap between technological
innovation and clinical practice. This work contributes to the expanding research on CAD systems
and exemplifies the power of interdisciplinary collaboration in addressing complex clinical challenges,
particularly in resource-limited settings [47].

5.2. Economic and social benefits

This pilot study underscores the potential for technology transfer and innovative research to drive
local economic growth in mountain regions. By focusing on the computation of the Ki-67 proliferation
index, our CAD platform not only enhances diagnostic accuracy but also lays the foundation for a
comprehensive digital pathology infrastructure - one that can facilitate secure image sharing among
clinicians and spur the development of new digital health services. In line with European regulations
and ethical guidelines governing Al in clinical settings [46], our system was developed following best
practices that ensure both scientific integrity and clinical reliability. Furthermore, the implementation
of such cutting-edge technology can foster job creation and stimulate local markets while significantly
improving the quality of care, community resilience, and sustainable development in mountain territories
like the Aosta Valley.

5.3. Clinical and regional impact

The CAD tool significantly enhances diagnostic accuracy and supports local clinicians in under-
resourced mountain regions by fostering a collaborative environment where machine-based analysis
and expert human judgment work synergistically [43]. Its streamlined platform enables easy sharing of
digital images, facilitating second opinions and external consultation, which is particularly valuable
in small, low-population areas where clinicians may encounter fewer complex cases. This system not
only improves workflow efficiency but also ensures that even rare or challenging diagnostic scenarios
receive expert review, ultimately boosting the quality of care and promoting regional resilience [50].

5.4. Future prospects

Future developments of the CAD system will focus on scalability and expanding its diagnostic capabilities
on other case studies rather than breast cancer, e.g. lung or prostate cancer. One promising direction
is the integration of additional biomarkers, such as the evaluation of PD-L1 expression in tumor
cells, which plays a critical role in immunotherapy decision-making. Incorporating other imaging
modalities and advanced deep-learning techniques could further enhance the system’s clinical utility,
transforming it into a comprehensive digital pathology platform. Strengthening collaborations between
local institutions, research organizations, and industry partners will be essential to driving innovation,
fostering technological advancements, and promoting sustainable healthcare solutions. These efforts will
not only improve diagnostic accuracy and efficiency but also contribute to the long-term development
of digital health services in remote and underserved regions.



In parallel, a more comprehensive evaluation is planned. This will involve a systematic assessment
of the system’s performance in comparison with other software solutions and expert annotations. The
ongoing collection of data and results through the CAD tool usage will enable this evaluation and also
support future model refinement, contributing to the advancement of automated Ki-67 quantification
also from a scientific perspective.

6. Conclusion

This study presented a machine vision CAD tool designed to compute the Ki-67 index from digitized
histopathological images. Developed as a web-based platform, the system facilitates seamless integration
into clinical workflows, enabling automated and standardized quantification. Validation against hospital-
provided images demonstrated strong concordance with expert assessments, confirming its reliability as
a diagnostic support tool. Beyond its clinical impact, the platform fosters interdisciplinary collaboration
and exemplifies how Al-driven innovations can enhance healthcare accessibility in mountainous
regions. By promoting digital pathology, second-opinion consultations, and efficient diagnostics, this
initiative supports both scientific progress and regional healthcare development. Continued research
and collaboration will be key to expanding the system’s capabilities and results validation, ensuring its
long-term impact in both local and broader medical and scientific contexts.
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