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Abstract 
In recent years, monitoring of glacial hazards has gained increasing relevance in the context of climate 
change and associated cryospheric dynamics. Among these hazards, the formation and evolution of 
supraglacial and proglacial lakes represent a growing risk due to their potential for sudden outburst floods. 
This study explores the integration of remote sensing data and artificial intelligence to detect and monitor 
glacial lakes in alpine environments, with a focus on the Italian Alps. After years of manual lake mapping, 
we tested for the first time in 2024 a semi-automated procedure based on thresholding of spectral indices 
(NDWI and NDSI), cloud masking, and spatial filtering to generate a seasonal lake map. The results were 
compared with a manually compiled inventory and a statistical analysis shows a good agreement between 
the two. Although the model demonstrates promising performance, limitations remain due to image 
resolution, weather conditions, and fixed threshold-based constraints. In the final section, we discuss how 
advanced Machine Vision (MV) approaches—such as convolutional neural networks and temporal image 
analysis—can be leveraged to enhance the robustness of lake detection and reduce both false positives and 
false negatives. This work underlines the potential of AI-driven methodologies for improving early warning 
systems and long-term monitoring strategies in glaciated regions. 
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1. Introduction 

Mountain glaciers are the main source of freshwater for human activities in the surrounding regions. 
Furthermore, glaciological processes (e.g., ice break-offs, glacier outbursts, snow/ice avalanches) can 
threaten populations, urban areas and infrastructure 0. In densely populated areas, such as the 
European Alps, the interaction between glaciers and anthropic activities is very frequent  [2] and is 
of crucial importance in the study of glaciers in order to understand their evolution and as a response 
to climate change. Moreover, glaciers are expected to reduce their area coverage and increase their 
instability [3]. The long-term monitoring of glaciological processes is often complicated and 
expensive, especially in remote areas and inaccessible terrains, which are common in mountain 
environments [4]. A practical approach is the adoption of remote sensing instrumentation that 
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allows for the observation of glacial processes with minimal risk for scientists and technicians. On 
the other hand, these instruments and the derived processing produce large amounts of data.  
The Aosta Valley (Italian: Valle d'Aosta) is a mountainous autonomous region in northwestern Italy. 
Covering an area of 3,263 km2 and with a population of approximately 128,000, it is the smallest, least 
populous, and least densely populated region in Italy. The Aosta Valley is an Alpine valley which, 
with its tributary valleys, includes the Italian slopes of Mont Blanc, Monte Rosa, Gran Paradiso and 
the Matterhorn; its highest peak is Mont Blanc (4810 m). With about 40% of the regional territory 
above 2500 m, the presence of glaciers is widespread around the whole region. In this high alpine 
environment, 4% of the Aosta Valley territory is still covered by glaciers (2015). The Regional Glacier 
Inventory, with its update to 2019, counts 184 glaciers.  
In this setting, Aosta Valley region has a large historical record of glacial destabilizations [5] and 
therefore the management of glacial risk has been managed continuously since 2012 with an 
organized Regional Risk monitoring Plan [6]. In this frame, the monitoring methodologies, 
monitoring sensor networks and monitoring data have been continuously evolving and multiplying 
thus generating more and more data, transitioning from an era of qualitative observations into 
numerical analysis generating Big Data flows from monitoring instruments, UAVs and satellites.  
The aim of this paper is to present the current methodologies and datasets used for glacial hazard 
monitoring at a regional scale, highlighting the extensive data collection efforts that have enabled 
analytical approaches to be applied for lake detection. We describe recent results obtained using 
spectral indices, spatial filters, and thresholding techniques to map glacial lakes from satellite 
imagery. Building on these findings, the paper outlines ongoing experimental activities that 
investigate the use of Artificial Intelligence (AI) and Machine Vision (MV) techniques—such as 
convolutional neural networks—for more robust, automated analysis. These approaches are intended 
to improve the detection and temporal monitoring of glacial lakes, ultimately contributing to more 
effective early warning systems and long-term risk management. 

2. Monitoring plan: methodologies and materials 

The Fondazione Montagna sicura has managed a regional glacial risk monitoring plan on behalf of 
the Aosta Valley region since 2012. The first case study of glacial risk in Aosta Valley is, in fact, 
represented by the Whymper Serac ice avalanche monitoring of 1998 [7]. In 2009, the monitoring of 
the Whymper Serac on a 24/7 basis began, becoming the first site-specific, high-frequency glacial 
risk monitoring plan in the Aosta Valley region and in Italy [8]. Together with 

 

Figure 1: localization of the monitoring instruments in the Val Ferret. 

 



Table 1 
Timeline of the introduction of principal monitoring systems. (*Operative range in terms of 
distance from Planpincieux hamlet/Mont de La Saxe crest). 

Apparatus Monitored Area Survey Period Operative Range 
RTS Whymper Serac October 2010 – present 4800 m 

GNSS Whymper Serac October 2010 – 2012 – 
TLC Montitaz Lobe August 2013 – present 3800 m 
TLC Whymper Serac August 2016 – present 4800 m 

TRI Montitaz Lobe 
9 August 2013 (2h) 
7 August 2014 (2h) 

2500 m/3800 m * 

TRI Whymper Serac 
9 August 2013 (2h) 
8 August 2014 (3h) 

4800 m/5400 m * 

TRI Montitaz Lobe 2 September – 14 October 2015 2500 m 
TRI Montitaz Lobe 13 – 19 June 2016 2500 m 
TRI Montitaz Lobe 26 September 2019 – present 2500 m 
TRI Whymper Serac 16 January 2020 - present 4800 m 

    
 
 
Table 2 
Example of data acquired for single event description. (*These apparatuses belong to the 
monitoring network of the Planpincieux Glacier). 

Monitoring system Products Application 

S2 satellite 
Orthoimage 

NDWI 
Site state before the event 

Pleiades satellite 
Stereo imagery 

Orthorectified image 
DEM 

Site state before the event 

Planetscope 
Orthoimage 

NDWI 
Site state before the event 

 

UAV 
Orthoimage 

DEM 

Site state before and after the event 
Debris flow mapping 

Debris flow volume estimation 
DEM coregistration, Satellite image 

orthorectification 

Aerial Lidar DEM 
Satellite image orthorectification 

 
Aerial 

photogrammetry 
Orthoimage DEM error quantification 

RTK GNSS Ground control points  
AXIS camera* Hourly photographs Site state before and after the event 
Bridge survey 

webcam* 
Live video Timing of the event 

AWS Semi-hourly rainfall data Environmental conditions 
Doppler radar* Ice avalanche detection  

GB-SAR* 
Near-real time glacier 

displacement 
State of glacier activity 

   

TLCs* 
Daily glacier displacement 

Hourly photographs 
State of glacier activity 

Ice avalanche/GLOF occurrence 
 
 



the expertise of Prof. Martin Funk, a full Regional Monitoring Plan of Glacial Risk was set up in order 
to cover the entire regional area with low frequency monitoring and to have a framework to 
implement site-specific, high-frequency monitoring if needed [6]. The structure of the plan was built 
on experience from the Swiss territory, where a certain number of sites and events had been 
monitored in recent decades [9]. The very first large-scale action, started by the Fondazione in 2005, 
was the institution of a regular regional glacier inventory with the aim of having a more frequent 
update with respect to the national and global inventories, and that would serve as the database on 
which to construct the regional glacial risk monitoring plan. The second large-scale action included 
in the plan was the scheduling of a yearly screening of all the glacial bodies in the region, by means 
of a photographic helicopter flight over the whole regional area.  Since 2010, systematic 
implementation (Table 1) of automated time lapse cameras, robotized topographic station, GNSS 
networks, hydrological gauging station, Doppler radar systems, Interferometric radar systems, 
especially in the Grandes Jorasses glacier complex (Figure 1), has increased exponentially the 
quantity of monitoring data. In addition to fixed terrestrial systems, specific surveys, acquisitions or 
processing of data has been introduced for the analysis of single events or the evolution of specific 
processes. Typical data acquired on purpose are summarized in Table 2.  

2.1. Data usage 

In this study, the main data sources, included in the regional glacial risk monitoring plan, have been 
analysed and an overview of the data flows involved in the different operational processes has been 
provided. Figure 2 illustrates the general workflow of the actions implemented within the 
monitoring plan. Additionally, Figure 3 outlines the workflow adopted to periodically update the 
monitoring strategy, integrating new technologies and methodologies as they become available.  
Table 3 summarizes the key data flows currently used in the management of the regional glacial 

 

 

Figure 2: workflow procedure of the monitoring plan. 

 
 
 
 



hazard monitoring plan. Given the large volume of data collected annually, the integration of 
Artificial Intelligence (AI) techniques into these workflows is being explored. Three main areas of 
application have been identified:  

i. Digital camera image processing: automatic recognition of three-dimensional features (e.g., 
glacier surfaces and morphological changes) and image enhancement using super-resolution 
techniques. 
We started testing super resolution algorithms instead of classic interpolation methods for the 
up sampling of digital images for the monitoring of glaciers with time lapse cameras. Major 
differences are present in the glaciological features appearance (Figure 4) with sharper pixel 
clusters appearing in the AI approach. This could be relevant in the processing of the images 
for detection of surface displacements and will be the object of further tests and developments.   

ii. Deformation data analysis: automated identification of kinematic domains, aimed at detecting 
areas with significant surface deformation; traditional glacier monitoring methods are limited 
to tracking feature patterns without semantic information, restricting the analysis to 
displacement, velocity, and acceleration of pre-defined areas rather than monitoring specific 
critical features like seracs prone to collapse or crevasses. Additionally, detecting serac failures 
or other critical events is mainly carried out by manual inspection.  Recent advancements in 
computer vision (CV) and deep learning (DL) could significantly enhance monitoring systems' 
accuracy and predictive capabilities. However, while well-established in computer science, these 

 
Figure 4: super-resolution AI algorithms application to glacier monitoring camera image. In the 

lower panel a detail of a crevasse at the front of the glacier. From left to right: the original detail, the 

super-resolution feature, and a classic interpolated up sampling. Major differences appear using the 

2 different approaches. 
 
 

 

Table 3 
Summary of data acquisitions. 

Data source Data type Yearly data flow Expected evolution 
GB-SAR interferometry csv 4 TB 0.2x year 

GNSS csv 0.2 TB steady 
TLC raster 1 TB 1.5x year 
UAV raster 1 TB 2x year 

Satellite imagery raster 2 TB 1.5x year 

 
 

 

Figure 3: workflow adopted to periodically update the monitoring strategy. 

 



advanced techniques are still underutilised in glaciology due to a technical divide between these 
disciplines. 
In the future we could employ cutting-edge DL segmentation and tracking algorithms to enable 
object-level tracking rather than pixel-level. This effectively complements traditional methods 
for deriving movements in challenging dynamic scenes, e.g., with deforming objects or with 
temporary occlusions. Additionally, DL integration could help introduce strong automatization 
in data processing, reducing required supervision. 

iii. Satellite-based water detection: AI-based methods for identifying and monitoring glacial lakes 
from optical satellite imagery. 

Due to the strategic importance and potential impact of the third application, a dedicated analysis 
was conducted to evaluate the performance of a large-scale automated screening process for glacial 
lake evolution using time-series of satellite images. 

3. Glacial lake mapping: analytical method 

Large-scale screening of the evolution of glacial lakes from continuous analysis of optical satellite 
images has been implemented. In fact, in the last decade, the possibility to successfully detect water 
bodies in mountain regions with the use of remotely sensed data grew interest. When dealing with 
freely available datasets, ground resolution and revisit time of Landsat satellites that were available 
before the Sentinels launch (2015) was not suited to the identification of newly formed glacial lakes 
in an alpine environment. With the availability of Sentinel-2 (S2) datasets, we conceived an 
experimental activity of a possible semi-automatic classification of newly formed glacial lakes to be 
possibly integrated into the glacial risk monitoring plan. The development of the research plan was 
inserted into the framework of the WP3 of the Interreg Alcotra 2014-2020 (IT-FR) RISK-ACT-PITEM 
RISK project. This financed the experiments to validate a procedure based on the analysis of updated 
NDWI index maps (Equation 1)[10]: 
 

𝑁𝐷𝑊𝐼𝑆2  =
𝐵03−𝐵08

𝐵03+𝐵08
       (1) 

 
on the regional territory for every low cloud cover percentage image acquired by the S2 satellites. 
The procedure has been integrated in the glacial risk monitoring plan as an experimental monitoring 
procedure and is currently active and ongoing. 



3.1. Automatic lake detection: procedure 

In summer 2024, in the framework of the PNRR project “Agile Arvier. La cultura del cambiamento”, 
this procedure has been updated. Figure 5 shows a flowchart illustrating the current updated 
procedure for the automatic detection of glacial lakes in the Aosta Valley. This workflow is based on 
a daily-updated archive of S2 satellite imagery, specifically leveraging its multispectral data. The 
analysis is restricted to a buffered area around glaciers, defined as a 500-meter buffer from the glacier 
outlines mapped in 2019. When the procedure is initiated, it automatically searches for the necessary 
spectral bands to compute two key indices: the Normalized Difference Water Index (NDWI) and the 
Normalized Difference Snow Index (NDSI). In particular, bands B3 (green) and B8 (near infrared) are 
used to compute the NDWI (see Equation 1), while bands B3 and B11 (shortwave infrared) are used 
for the NDSI, defined as follows (Equation 2): 

𝑁𝐷𝑆𝐼𝑆2  =
𝐵03−𝐵11

𝐵03+𝐵11
      (2) 

 
It is worth noting that the two indices come with different spatial resolutions, since B11 is not 
available at 10 m resolution. Therefore, a downscaling algorithm from 20 m to 10 m resolution is 
applied to the NDSI. 
S2 data also include a Scene Classification Layer (SCL), which provides useful information about 
cloud cover for each image. Based on this layer, and considering the classes related to clouds 
(specifically 3, 8, 9, 10, 11), a cloud mask can be derived and applied to the buffered NDWI and NDSI 
data. This process results in raster layers with masked (i.e., removed) cloudy areas. Also in this case, 
since the original resolution of the SCL is 20 m, a downscaling to 10 m is required. 
The NDWI is primarily computed to highlight areas containing water. Based on literature, a 

threshold of 0.5 is commonly adopted to identify water bodies. However, due to recent updates in 
the processing baseline of Sentinel-2 Level 1C products, the dynamic range of NDWI values has been 
shrank, and the threshold had to be adjusted. In this implementation, the NDWI threshold was 
lowered to 0.2, which allowed for the identification of a greater number of glacial lakes. Nevertheless, 
this lower threshold also increases the risk of false positives, particularly toward the end of the 
summer season when the glacier surface undergoes significant melt. In such cases, the NDWI may 
erroneously detect portions of glacier ice as lakes. To mitigate this issue, a secondary filtering step 
based on the NDSI is applied. Specifically, areas with NDSI values greater than 0.5—typically 
corresponding to snow or ice—are removed from the lake maps, improving the reliability of the final 

 

Figure 5: flowchart of the actual automatic procedure for glacial lakes detection in Aosta Valley.  



detection. The cloud mask has been applied too, to remove the artefacts produced by water vapour 
or the shadows projected on the ground.  
After the production of the map containing the perimeters of the detected lakes, a filter based on the 
aera has been applied, setting the minimum area at 400 m2, equals to 4 pixels.  
Once the lake map of an image is produced and filtered for snow and cloud cover, the procedure is 
iterated over the full set of available S2 images for the selected period—typically covering the summer 
season, from July to September. For each acquisition, a water mask is generated using the same 
processing steps, resulting in a series of binary lake presence maps over time. 
At the end of this iterative process, a temporal comparison is performed across all the maps to 
identify the most persistent water bodies. The idea behind this post-processing step is to reduce false 
positives, which may occur due to transient artifacts or temporary meltwater on glacier surfaces. For 
example, polygons (i.e., detected lake areas) that appear in only one single image are likely to be false 
detections and are therefore removed. Conversely, features that appear repeatedly in multiple images 
are retained, as they are more likely to correspond to actual glacial lakes. 
The minimum number of occurrences required for a polygon to be considered a "likely lake" can be 
customized. In order to reduce the risk of underestimating lake presence, a conservative threshold 
of 2 has been adopted in this study.  

3.2. Automatic lake detection: results 

After several years of manual mapping of the glacial lakes, the procedure was tested for the first time 
in 2024. Following the steps outlined above, the analysis produced an overall lakes map for the 
timeframe between July and September (just before the first snowfall of the season, which occurred 
between September 10th and 15th). The resultant map successfully identified lakes within the buffer 
zone, which were then compared to the manual cadastre. An example of part of the outcoming map 
is reported in Figure 6, where the inventory and the automatic map are shown in red and yellow, 
respectively. Considering the Aosta Valley, the comparison showed 46 lakes were successfully 
mapped (true positives), 32 lakes were detected by the procedure but not present in the cadastre 
(false positives), and 38 lakes were not detected by the procedure but are present in the cadastre 
(false negatives). 
Statistically, the model's precision, which measures the accuracy of positive predictions, is 59%. The 
recall, which measures the model's ability to identify all actual positive cases but may also lead to 
false positives, is 57%. These metrics indicate a balance between precision and coverage. 
Although the results are promising and give confidence in the procedure, the number of false 
positives and false negatives remains relatively high. Several factors may contribute to this. One of 
the main reasons is the recursive nature of the procedure: when generating the final map, some lakes 
may be excluded due to bad weather conditions (clouds, shadows, snow) in certain images. Another 
limitation is the presence of small lakes manually mapped, which may not be detected due to the 



pixel threshold. Additionally, since the image resolution is 10 meters, the borders of lakes have lower 
reflectance, which may cause them to fall below the detection threshold. 
All these limitations may be solved with the use of more sophisticated algorithms, using the Artificial 
Intelligence trained by these final maps and inventories.  

4. Future developments and implementation of AI algorithms 

The implementation of advanced Machine Vision (MV) tools for identifying and monitoring 
proglacial, marginal, and supraglacial lakes using satellite data is made possible by the extensive 
dataset and long-term data collection as described in the previous sections. Machine Vision refers to 
the technology and methods which involve capturing visual data through imaging devices, 
processing this data using algorithms to extract meaningful information, and making decisions based 
on the analysis.  In the context of environmental monitoring, MV has been effectively utilized to 
assist in biodiversity preservation[13][14], monitor ecosystems and in the context of glacial lake 
mapping [15][16][17][18]. 
As part of the ERDF-funded project Glarisk-cc, MV will be applied to analyse satellite imagery for 
the identification and monitoring of proglacial, marginal, and supraglacial lakes.  
Traditional methods, such as manual digitization and thresholding techniques, often struggle with 
the complex and variable appearances of glacial lakes, particularly when dealing with small or debris-
covered bodies of water. To overcome these challenges, advanced machine vision approaches, 
particularly those leveraging deep learning, have been developed [19][20]. For instance, 
convolutional neural networks (CNNs) can be trained on annotated datasets to recognize the distinct 
features of glacial lakes, allowing for automated and accurate segmentation [21]. 
Integrating multiple satellite data sources, including optical and radar imagery, further enhances 
detection accuracy. Optical images provide detailed visual information, while radar imagery offers 
the advantage of penetrating cloud cover and detecting surface changes under various weather 
conditions. By employing a supervised learning approach, these algorithms can be trained on 
previously validated datasets, such as those created using the Normalized Difference Water Index 
(NDWI), to improve their performance in accurately identifying and monitoring glacial lakes over 
time. 
The training and validation of these algorithms will be supported through access to satellite images 
and geospatial data. Additionally, automated recognition algorithms will be used to classify lake 

 

Figure 6: Extract of the lake map produced for the summer season 2024. In red, the lakes mapped 
manually. The yellow areas, instead, are the auto-detected water zones.  



characteristics via supervised learning techniques. These models will be trained on existing and 
supplementary datasets to ensure the relevance and reliability of the territorial information. The 
validation process will incorporate technical expertise for model evaluation and may include 
reinforcement learning (see for instance [16][18][21]) benefiting from extensive experience of the 
group in glacier monitoring and geospatial data management. Once validated, the segmentation 
algorithms will be applied repeatedly over time to monitor changes in the formation and extent of 
glacial lakes, using new satellite imagery. This iterative approach will provide updated insights into 
glacial conditions and evolution. Finally, a potential web service may also be developed to integrate 
the algorithms and visualization tools, offering wider access to the monitoring capabilities. 

5. Conclusion 

In this study, we presented the current methodologies employed for monitoring glacial hazards in 
Aosta Valley, focusing on the detection of glacial lakes in the Italian Alps through the analysis of 
optical satellite imagery. We demonstrated a semi-automated workflow based on spectral indices, 
cloud masking, and spatial filtering, and compared its results to manual inventories, showing 
promising alignment. The paper also introduced future directions involving the integration of 
Artificial Intelligence and Machine Vision techniques to enhance the accuracy and scalability of lake 
detection and monitoring over time. 
Given the volume and complexity of data involved in regional-scale environmental monitoring, our 
findings highlight the necessity of adopting AI-based solutions to support the processing, 
interpretation, and operational use of remote sensing datasets. To achieve meaningful progress, 
collaboration between AI developers, field experts, and environmental researchers is essential. Such 
interdisciplinary efforts will be key to developing robust, adaptive tools that support both early 
warning systems and long-term climate resilience strategies in glaciated regions. 
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