CEUR-WS.org/Vol-4032/paper-25.pdf

C

CEUR

Workshop
Proceedings

Easy and Efficient Object-Centric Process Querying
with the OCPQ Tool

Aaron Kisters!, Wil M.P. van der Aalst’

Chair of Process and Data Science (PADS), RWTH Aachen University, Germany

Abstract

OCPQ is a framework and graphical tool for querying object-centric process data. Traditional process
querying relies on case-centric event data, which often cannot represent the multiple interacting objects
and perspectives of real-life processes accurately. Querying individual events or cases is no longer
sufficient for object-centric data. The OCPQ tool allows more flexible queries for arbitrary combinations
of objects and events. Queries are represented graphically as node trees in the OCPQ tool, enabling
constructing complex queries visually and without programming experience. The query backend of the
tool is implemented in the Rust programming language with a focus on fast execution.

Keywords

Process Mining, Object-Centric Event Data, Process Querying

1. Introduction

Process Querying research covers various methods, including retrieving and manipulating
process models and data stored in process repositories [1]. In this demo paper, we focus on the
retrieval of information and process instances from stored event data. For traditional event data,
there are a few different approaches, like the Process Instance Query Language (PIQL) [2] and
the Celonis Process Querying Language (Celonis PQL) [3], that allow retrieving cases or events
satisfying specified criteria. For object-centric data, these approaches are not directly applicable
due to the lack of a clear case notion. In [4], the authors present an approach for storing and
retrieving object-centric event data in a graph database using Neo4j and the Cypher querying
language. Similarly, SQL queries can be used to retrieve information from object-centric event
data stored in SQL databases, as specified in [5]. However, general querying languages, like
SQL or Cypher, are often not a good fit for the types of queries needed to explore process data,
and are largely unapproachable for users without programming experience.

Our Object-Centric Process Querying approach, OCPQ, as presented in [6], proposes a novel,
highly expressive querying solution for object-centric process data. Inspired by the classical
Z Notation [7], subqueries are modeled as extensions of the parent queries, with potentially
additional queried entities or filters on top. As such, even more complex queries can be trans-
lated to a tree of simpler query nodes. Notably, the OCPQ method allows querying arbitrary

Proceedings of the Best BPM Dissertation Award, Doctoral Consortium, and Demonstrations & Resources Forum co-located
with 23rd International Conference on Business Process Management (BPM 2025), Seville, Spain, August 31st to September
5th, 2025.

& kuesters@pads.rwth-aachen.de (A. Kiisters); wvdaalst@pads.rwth-aachen.de (W. M.P. van der Aalst)

® 0009-0006-9195-5380 (A. Kiisters); 0000-0002-0955-6940 (W. ML.P. van der Aalst)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:kuesters@pads.rwth-aachen.de
mailto:wvdaalst@pads.rwth-aachen.de
https://orcid.org/0009-0006-9195-5380
https://orcid.org/0000-0002-0955-6940
https://creativecommons.org/licenses/by/4.0

.
ocPQ Object Variables + #1375 @ D, 0O, Fe [p
@ o1: orders
Backend online

Event Variables + [3
OCEL loaded 3 e1: place order
21008 Events

Output Bindings

1375 Bindings
10840 Objects Filters + > 9
Bel@@o1 404 Violations
|Al=a
Labels + Qo1 Be1
Constraints + Y
%

SAT(B) . 404 0-990001 place_0-990001

/ \\ 0-990002 place_0-990002

A

/ _ 0-990008 place_0-990008
Y \ 0-990009 place_0-990009 SAT(B)
Obiect Variables + #3814

items

Event Variables + e— 0-99001 place_0-990011

°
Object Variables + #3814 0-990010 place_0-990010 SAT(B)

es +
Filters + 6 e2: package dellvered 0-990014 place_0-990014 SAT(B)
Qo1 e Filters +
Be1o
Be2¢d

0-990015 place_0-990015
Labels +
s - 0-990019 place_0-990019
Labels +
0-990020 place_0-990020
Constraints + ot
- %
= De1smez o-2w 4z
L]

‘
Figure 1: An example OCPQ constraint: All orders with four or fewer items should be fully delivered
within two weeks after placing the order.

Rows per page 10 Page 10t 138 >

combinations of objects and events, so-called bindings, by specifying their object and event
types, and any additional filter predicates, e.g., that there should be event-to-object (E20) or
object-to-object (O20) relationships between them. In this demo paper, we present the OCPQ
tool implementation in more detail, including new features like general binding annotations,
OCEL filtering, or early-stopping on overload. The OCPQ tool allows visually modeling and
evaluating object-centric process queries on a loaded object-centric dataset. As the result of
each query or subquery, an output table can be explored, where individual entries correspond to
bindings, i.e., combinations of event or object instances, as defined by the query. Each binding
row can additionally be annotated with additional labels or information, for example a violation
indicator or a key performance indicator (KPI) value. Figure 1 shows an example OCPQ query
with integrated constraints. The graphical query is shown on the left and the output table of
the root node is shown on the right.

The remainder of this paper is structured as follows: First, we present an overview of the
OCPQ tool and its capabilities in Section 2. Next, in Section 3, we provide a brief description of
the OCPQ tool’s implementation. Finally, we conclude this paper in Section 4, also giving an
outlook on future work.

2. OCPQ Tool

The OCPQ tool is available for download at https://ocpq.aarkue.eu, where the documentation can
also be found. The source code of OCPQ is publicly available at https://github.com/aarkue/ocpq.
A short demo video of the tool is available at https://github.com/aarkue/ocpq-demo.

Initially, an object-centric event log has to be imported. OCPQ supports the OCEL 2.0
specification [5] in any of the three introduced exchange formats (JSON, XML, and SQLite).
After the dataset was imported, some basic information on the OCEL are shown, including the
number of events and objects, as well as all object and event types together with their attributes.

https://ocpq.aarkue.eu
https://github.com/aarkue/ocpq
https://github.com/aarkue/ocpq-demo

(
Object Variables + #15 | @

] @
@ o1: customers Object Variables + 410787

Event Variabl oA 2 @ o1: orders,
X .

vent Variables + QutputBindings items,
Filters + 15 Bindings packages
- 0 Violations Event Variables +
Labels +

o

o

Dol num_reminders reminders_label Filters +
Constraints + Labels +

Constraints +

2 nigh A — B
. an / \

® *
Object Variables + #7196 Object Variables + 42780

4>

o
Object Variables + #566
: orders
Event Variables +
3 e1: payment reminder Event Variables + Event Variables +

Filters + * medum T Betix 13 e1: payment reminder

Qo1
Meld

Labels + Mediterra

Filters + Filters +
43 high T Beld ol T.Beld @ol

Labels + Labels +

Constraints + Rows perpage 10 Page tof2 > Constraints + Constraints +
L) L]

Figure 2: Two advanced features of the OCPQ Tool: On the left, CEL annotations are added, showing
the number of payment reminders per customers (num_reminders), as well as a category label based
on this number (reminders_label). On the right, the filter functionality is shown, for example only
retaining objects of types orders, items, and packages and their events, and E20, but excluding E20
for payment reminder events.

2.1. Features

After importing an OCEL file, the dataset can be explored using queries, constraints, or graph
visualizations of objects, events, and their relationships.

Visual Query and Constraint Tree Editor The query editor appears after creating a new
query and can be used to create and link multiple query nodes to form a query tree. This tree
structure allows easily modeling and nesting of subqueries (e.g., a subquery for all items in
an order). In each node, event and object variables can be added, as well as filter predicates,
determining what combinations of object and event instances to consider. For example, the E20
filter predicate specifies that there should be an event-to-object relationship between variable
values. Figure 1 shows the user interface of the query tree editor on the left. The top node
queries all combinations of orders objects and corresponding place order events. For that,
the node introduces two variables o1 (for the orders object) and e1 (for the place order
event), and also has one E20 filter predicate (visualized as a link icon), specifying that the values
of 01 and e1 should be in an E20 relationship. Queries can be evaluated using the play button
on the top right. After evaluation, the number of queried bindings is displayed in the top right
for every node, indicated with # as shown in Figure 1. Analogously to filters, predicates can also
be used for constraints. For that, bindings that fulfill all constraint predicates are considered
satisfied, and violated otherwise. If constraint predicates are used, the violation percentage of a
node is used to determine its color. For instance, in Figure 1, the root node is colored yellow
because it is violated in around 30% of bindings.

General Annotations and KPIs The violation status is not the only annotation that can
be added to output bindings. For example, KPIs, like the total order volume or the number
of payment reminders per customer, can be augmented to each output binding row. To allow

general annotations, OCPQ uses the Common Expression Language'. In Figure 2, an example
OCPQ query calculating the number of payment reminders per customer is shown.

All output tables can be explored in the tool directly, or also exported as CSV or XLSX files
for usage in other tools and applications, e.g., as input for machine learning techniques.

OCEL Filtering Filtering OCEL datasets and exporting the resulting subset again is also
supported in OCQP. The filtering is implemented using three different configuration modes
for each element (i.e., object, event, or relation): Included (green) which specifies that the
element should be included in the output. Excluded (red) which specifies that the element
should be explicitly excluded, even if it is included somewhere else. Ignored (gray) which does
not influence the output. On the right of Figure 2, a filtering example of OCPQ is shown.

Other Features Apart from the previously mentioned functionality, OCPQ also has some
additional features. For example, it supports automatic discovery for some types of constraints
based on an input OCEL. Moreover, some safeguards are in place to stop execution of overloaded
queries early on and inform the user. For more information and feature descriptions, we refer
interested readers to the website of the tool.

3. Implementation

The OCPQ implementation is based on the Rust4PM software library presented in [8], in
particular using its OCEL 2.0 data structures and importers. The backend and frontend of OCPQ
are implemented in a modular way, allowing using the tool both as a desktop application? and
as a hosted web application. After importing an OCEL, it is processed to link object and event
references as indicated by their identifiers in relationships. Multiple implementation details
support fast execution of queries: First, query execution is parallelized, for example, evaluating
subqueries or additional filter predicates in parallel across each considered binding. Second, the
ordering and method for binding new object or event variables to values is optimized, reducing
the number of unwanted constructed bindings. For instance, when binding a customers and a
orders object with an O20 relationship, not all combinations of all customers and all orders
need to be considered. After constructing one binding for each customers object, the 020
relationship can be used to directly construct only those binding extensions that also fulfill the
020 filter predicate. While evaluating the query execution performance in detail is outside
the scope of this paper, we refer interested readers to the evaluation section in [6]. There, we
investigated the runtime of example queries on a real-life dataset with more than one million
events and found that every tested example query finished in less than 85ms (0.085 seconds).

4. Conclusion and Future Work

In this paper, we presented the OCPQ tool for querying object-centric process data. As handling
object-centric processes requires more flexibility, OCPQ not only allows querying individual

"https://cel.dev/
*The desktop application uses the tauri framework from https://github.com/tauri-apps/tauri.

https://cel.dev/
https://github.com/tauri-apps/tauri

events or objects, but any combination of objects and events. Through a graphical constraint
editor, nested queries can be modeled in a tree structure without programming experience. The
result of queries can be explored inside the tool, and can also be exported. Constraints and
other annotations can be added to add additional information and labels to each output binding.

Maturity The first main version of the OCPQ tool was published in September 2024 as v0.5.0.
Since then, more than 15 version updates have been published, including additional functionality,
like allowing general annotation labels, filtering OCEL files, or macOS support. The tool is
stable, and installers for Windows, Linux, and macOS are automatically built for every release.
As described in more detail in [6], the tool also supports larger, real-life datasets well.

Future work We want to open the OCPQ tool up for more use cases and backends, for
example, executing the modeled queries via SQL or allowing custom extensions in the tool.
Moreover, a case study applying OCPQ to a real-life problem would be interesting. For example,
using the situation table export functionality to derive custom features for process outcome
prediction.

Declaration on Generative Al

The authors have not employed any Generative Al tools.

References

[1] A.Polyvyanyy, C. Ouyang, A. Barros, W. M. P. van der Aalst, Process querying: Enabling
business intelligence through query-based process analytics, DSS 100 (2017) 41-56.

[2] J. M. Pérez-Alvarez, A. C. Diaz, L. Parody, A. M. R. Quintero, M. T. Gomez-Lépez, Process
Instance Query Language and the Process Querying Framework, in: Process Querying
Methods, Springer, 2022, pp. 85-111.

[3] T. Vogelgesang, J. Ambrosy, D. Becher, R. Seilbeck, J. Geyer-Klingeberg, M. Klenk, Celonis
PQL: A Query Language for Process Mining, in: Process Querying Methods, Springer, 2022,
pp. 377-408.

[4] S.Esser, D. Fahland, Multi-Dimensional Event Data in Graph Databases, J. Data Semant. 10
(2021) 109-141.

[5] A.Berti, I. Koren, J. N. Adams, G. Park, B. Knopp, N. Graves, M. Rafiei, L. Lif}, L. T. genannt
Unterberg, Y. Zhang, C. T. Schwanen, M. Pegoraro, W. M. P. van der Aalst, OCEL (object-
centric event log) 2.0 specification, CoRR abs/2403.01975 (2024).

[6] A.Kisters, W. M. P. van der Aalst, OCPQ: Object-Centric Process Querying and Constraints,
in: RCIS (1), volume 547 of LNBIP, Springer, 2025, pp. 383-400.

[7] J. P. Bowen, The Z notation: Whence the cause and whither the course?, in: SETSS, volume
9506 of LNCS, Springer, 2014, pp. 103-151.

[8] A. Kiisters, W. M. P. van der Aalst, Rust4PM: A Versatile Process Mining Library for When
Performance Matters, in: BPM (Demos / Resources Forum), volume 3758 of CEUR Workshop
Proceedings, CEUR-WS.org, 2024, pp. 91-95.

	1 Introduction
	2 OCPQ Tool
	2.1 Features

	3 Implementation
	4 Conclusion and Future Work

