
BROOM: Toolbox for IoT-Enhanced Process Mining⋆

Christian Imenkamp1,∗, Yannis Bertrand2, Joscha Grüger3,4, Lukas Malburg3,4,
Marco Franceschetti5, Matthias Ehrendorfer6 and Agnes Koschmider1

1University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
2Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium
3Trier University, Universitätsring 15, 54296 Trier, Germany
4German Research Center for Artificial Intelligence (DFKI), Behringstraße 21, 54296 Trier, Germany
5University of St. Gallen, Institute of Computer Science, 9000 St. Gallen, Switzerland
6Technical University of Munich, TUM School of Computation, Information and Technology, 85748 Garching, Germany

Abstract
Internet of Things (IoT)-enhanced process mining faces interoperability challenges due to diverse event log
formats. Addressing this gap, we introduce the CORE metamodel, a unified representation based on the Object-
Centric Event Log (OCEL) standard. We also present BROOM (toolBox foR IOT-enhanced prOcessMining), a
web-based toolbox that seamlessly transforms between log formats. BROOM’s node-based interface simplifies
attribute mapping, significantly improving accessibility and efficiency in IoT-enhanced process analysis.

Keywords
Process Mining, Internet of Things, OCEL

1. Introduction

The increasing integration of IoT technologies into business processes has led to the emergence of
IoT-enriched event logs, as interconnected devices generate granular, time-stamped events. These logs
extend traditional process execution data with contextual information from IoT devices such as sensors
and actuators, allowing more sophisticated analysis and real-time process insights [1]. However, the
lack of standardization among existing metamodels for IoT-enriched event logs, often based on XES
(eXtensible Event Stream), has resulted in significant interoperability challenges. Event logs stored
in different formats are typically not mutually compatible, limiting their reusability and hindering
cross-tool import and exchange.

To address this challenge, we propose a common metamodel for IoT-enriched event logs named the
CORE metamodel [2] that is based on the OCEL standard [3]. The CORE metamodel integrates the
representational features of several already existing log formats into a unified model, thereby enabling
interoperability across corresponding tools and datasets. The metamodel aims to serve as a foundational
abstraction layer, allowing the seamless transformation of event data between heterogeneous log
formats. BROOM complements existing data analytics and process mining platforms (e.g., RapidMiner).
Its primary advantage lies in the high customizability and the ability to produce outputs adhering
to the CORE metamodel. BROOM introduces three key innovations to address the limitations of
the existing tools: (1) The native support for OCEL and therefore the OCEL ecosystem (i.e., using
discovery algorithms for IoT-enhanced process data). (2) An extensible pipeline model for transforming,

Proceedings of the Best BPM Dissertation Award, Doctoral Consortium, and Demonstrations & Resources Forum co-located with
23nd International Conference on Business Process Management (BPM 2025), Seville, Spain, August 31st to 5th September, 2025
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open christian.imenkamp@uni-bayreuth.de (C. Imenkamp); yannis.bertrand@ugent.be (Y. Bertrand); grueger@uni-trier.de
(J. Grüger); malburgl@uni-trier.de (L. Malburg); marco.franceschetti@unisg.ch (M. Franceschetti);
matthias.ehrendorfer@tum.de (M. Ehrendorfer); agnes.koschmider@uni-bayreuth.de (A. Koschmider)
Orcid 0009-0007-4295-1268 (C. Imenkamp); 0000-0002-6407-7221 (Y. Bertrand); 0000-0001-7538-1248 (J. Grüger);
0000-0002-6866-0799 (L. Malburg); 0000-0001-7030-282X (M. Franceschetti); 0000-0002-7739-9123 (M. Ehrendorfer);
0000-0001-8206-7636 (A. Koschmider)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:christian.imenkamp@uni-bayreuth.de
mailto:yannis.bertrand@ugent.be
mailto:grueger@uni-trier.de
mailto:malburgl@uni-trier.de
mailto:marco.franceschetti@unisg.ch
mailto:matthias.ehrendorfer@tum.de
mailto:agnes.koschmider@uni-bayreuth.de
https://orcid.org/0009-0007-4295-1268
https://orcid.org/0000-0002-6407-7221
https://orcid.org/0000-0001-7538-1248
https://orcid.org/0000-0002-6866-0799
https://orcid.org/0000-0001-7030-282X
https://orcid.org/0000-0002-7739-9123
https://orcid.org/0000-0001-8206-7636
https://creativecommons.org/licenses/by/4.0/deed.en


manipulating and parsing of IoT-enhanced process data. (3) Semantic mapping of IoT-data to process-
aware events.
Given the considerable number of IoT-enriched event logs and software tools currently available

for different IoT-enriched event log formats, a toolbox for IoT-enhanced process mining appears to
be promising; e.g., to convert existing logs into the common metamodel format. To this end, we
have developed BROOM, a Python-based toolbox for IoT-enhanced process mining, which enables the
bidirectional exchange of event logs between XES-based formats and the proposed OCEL-based CORE
metamodel. A central challenge of a common metamodel format lies in the mapping of attributes across
semantically and structurally divergent metamodels.
To make BROOM more accessible, we implemented a web-based user interface that guides users

through the available functions, such as the transformation procedure. The interface provides a node-
based editor that allows the user to construct a transformation pipeline by connecting predefined
nodes.

2. CORE Metamodel for IoT-Enhanced Event Logs

The CORE metamodel [2] offers a unified framework for the representation of IoT-enhanced event logs
by synthesizing core attributes and features from several pre-existing event log formats. It addresses
the harmonization of heterogeneous data generated by IoT devices and process-aware information
systems in the context of business processes (BPs). The metamodel has been designed to fulfill seven
well-defined requirements that emerged from an extensive comparative evaluation of prior approaches
and use cases across diverse application domains.
The CORE metamodel distinguishes between two central constructs: events and objects, adhering

to the object-centric modeling paradigm established by OCEL 2.0. Events are further categorized into
IoT-Events, representing physical observations from sensors, and process events, denoting transitions in
the execution lifecycle of activities. Objects are likewise classified into data source objects (e.g., sensors,
information systems), business objects (e.g., batches, tanks, customer orders), and general objects (e.g.,
subprocesses, resources). Key structural features include:

• Support for different levels of data granularity, enabling representation of low-level sensor
observations and high-level business events.

• A flexible case notion, allowing events to be associated with multiple entities rather than a
single process instance.

• Explicit representation of semantic annotations and metadata, improving the interpretability
and reuse of logs.

• Full traceability across abstraction layers, including derivation links between raw sensor
data, aggregated IoT-Events, and process events.

• Compatibility with the OCEL 2.0 standard to take advantage of existing tools and ensure
widespread adoption.

Compared to previously proposed models, such as DataStream [4], NICE [5], and CAIRO [6], the
CORE metamodel offers several significant advantages:

• Unification and Interoperability: CORE merges and harmonizes features across models,
facilitating interoperability and reducing fragmentation in IoT-enhanced process mining.

• Model Expressiveness: Through its object- and event-type taxonomies, CORE achieves compre-
hensive coverage of heterogeneous data sources and their interactions.

• Tool Support and Extensibility: Implementation within the OCEL 2.0 standard ensures com-
patibility with a growing ecosystem of related tools, while allowing future extensions.

• Data Integration and Transformation: The metamodel explicitly supports derivation chains,
enabling transparent transformation and abstraction of sensor data into higher-level process
information.



• Cross-domain Applicability: The generality and flexibility of the metamodel make it suitable
for a wide range of domains, including manufacturing, healthcare, and smart environments.

In summary, the CORE metamodel provides a modular and extensible foundation for integrated
representation, analysis, and exchange of IoT-enhanced event data, aligning with current standards and
emerging requirements in process mining research.

3. Implementation

BROOM has been developed as a web application using Angular1 for the frontend and Flask2 as REST
functionality. The implementation of the CORE metamodel is developed in Python@3.12. The source
code of BROOM can be found at https://github.com/chimenkamp/IOT-PM-Suite for the frontend and
https://github.com/chimenkamp/IOT-PM-Suite-Backend for the backend, and a deployed version can
be accessed using the following link https://broom-iot-toolbox.onrender.com/.

3.1. Functionality

The goal of the implementation is to smoothly parse an arbitrary log into the CORE metamodel format.
For this, BROOM relies upon a node-based user interface to intuitively create a parsing pipeline (see
Figure 1). In general, the pipeline depends on the use case and dataset, but will subsequently perform
the following steps:

• Reading the data: The source dataset can be of type CSV, XML, YAML, or JSON. Internally, all
different data types are mapped into a data frame structure. This functionality is provided by the
Read File node.

• Data Processing: BROOM offers multiple nodes to process the data (e.g., Data Filter, Data Mapper,
Column Selector, Attribute Selector ). For example, the Column Selector takes the Raw Data output
of the Read File Node as an input and covert it into a Series. The Data Filter and Data Mapper
(Input = Series, Output = Series) can apply filters to the series. The Attribute Selector can be used
to select attributes from these series.

• CORE Model Conversion: Selected attributes are used to construct classes provided by the
CORE metamodel. BROOM offers corresponding nodes: the IoT-Event node, which accepts ID,
Type, Timestamp, and Metadata as inputs, all connectable to the Attribute Selector node; and the
Process Event, which additionally requires an Activity Label. Objects are similarly created with
ID, Type, Class, and Metadata, supported by utility nodes to generate unique IDs or select object
classes.

• Construction of the CORE Model: Finally, outputs from Process Event, IoT-Event, and Re-
lationships nodes are combined into a dataset in CORE format. The data can be displayed or
exported in OCEL format via Output and Export nodes. Leveraging the object-centric process
mining (OCPM) ecosystem also enables discovering object-centric process models by integrating
IoT-Events, Process Events, and Event-To-Event Relationships directly in the browser.

3.2. Architecture of BROOM

BROOM’s architecture is web-based and is therefore structured into two layers (i.e., Frontend and
Backend), as shown in Figure 2. Users interact mainly with the site through the Frontend. The page
layout is structured into two components (i.e., Sidebar and Editor). (1) The Sidebar incorporates the
main functionalities and the collection of usable nodes. The user can drag and drop nodes from the
sidebar into the editor component. Additionally, the sidebar also has the functions to Save/Load a

1https://angular.dev/
2https://flask.palletsprojects.com/en/stable/

https://github.com/chimenkamp/IOT-PM-Suite
https://github.com/chimenkamp/IOT-PM-Suite-Backend
https://broom-iot-toolbox.onrender.com/
https://angular.dev/
https://flask.palletsprojects.com/en/stable/


Figure 1: A partial view of BROOM including an exemplary pipeline

pipeline, upload a dataset to the server, or clear the editor. Mappings can be saved to a JSON file and
later uploaded to restore the pipeline. Lastly, the sidebar contains a small legend containing the available
port types (i.e., the connection between nodes). (2) A node will be displayed in the editor when a user
drags and drops it to a certain position. The node consists of the outer and inner layer. The outer layer
contains the input (left) and output (right) ports. Two ports can be connected by dragging from one
output port to the input port of another node. Only ports of the same color can be connected, and one
output port can be connected to multiple input ports. The inner layer of the node contains different
UI elements to manipulate the behavior (e.g., the column identifier of the Column Selector node). In
addition to the general element of the UI, the frontend also performs rudimentary validation tasks
before the pipeline is forwarded to the backend for processing (i.e., starting with data and ending with
the CORE metamodel, no dangling nodes, all nodes have the required inputs and outputs).

After validation, the pipeline is propagated to the backend via a REST service. The first component
of the Backend is the REST-API, providing routes for posting datasets, pipelines, or pipeline results.
Posting a pipeline definition triggers the Pipeline Executor, which first flattens the pipeline typologically
into sequences of executable steps. Due to potentially unbounded node connections, pipelines may
flatten into multiple, possibly overlapping sequences. During sequence processing, the Pipeline Executor
loads the corresponding Node Implementations—classes describing node behavior—from the store. For
example, the Column Selector node receives a DataFrame and a column identifier, returning the specific
column as a series. The results are stored associated with node IDs. A node is triggered only when all
its predecessors’ results are available. Finally, once all predecessors of the CORE metamodel node are
executed successfully, the required data is passed to the implementation layer, translating the CORE
standard directly into OCEL.

4. Availability and Maturity

BROOM is a stable and production-ready tool, designed for use by researchers, practitioners, and
educators. Its functionality has been validated against the DataStream extension for XES [4], and the
CAIRO metamodel [6]. These tests confirm the suitability and comparability of the tool with existing
metamodels. Additionally, the authors of these metamodels have evaluated BROOM and endorsed its
usability and efficiency.
The tool is fully open source under the MIT license, making it suitable for both academic and

commercial applications. It is available on GitHub at https://github.com/chimenkamp/IOT-PM-Suite
for the frontend and https://github.com/chimenkamp/IOT-PM-Suite-Backend for the backend, with
a live instance accessible at https://broom-iot-toolbox.onrender.com/. A “Getting Started” guide and
example projects are provided to ensure smooth onboarding. Additionally, a video showcasing a simple

https://github.com/chimenkamp/IOT-PM-Suite
https://github.com/chimenkamp/IOT-PM-Suite-Backend
https://broom-iot-toolbox.onrender.com/


Figure 2: BROOM Architecture

pipeline can be found here https://github.com/chimenkamp/IOT-PM-Suite/tree/main/docs/
BROOM’s mature state is reflected in its stable performance, complete feature set, and modular,

extensible design. It supports a wide range of data formats and streaming inputs, and produces outputs
compatible with object-centric process mining frameworks. Additionally, for use cases that cannot be
modeled through the frontend, users can directly use BROOM’s Python implementation to select the
desired functionality.

Acknowledgments

This work received funding by the Deutsche Forschungsgemeinschaft (DFG), grant 496119880 and was
supported by the Internet of Processes and Things (IoPT) community: https://zenodo.org/communities/
iopt/about.

Declaration on Generative AI

During the preparation of this work, the author(s) used ChatGPT, Writefull, and LanguageTool in order
to: Paraphrase and reword, improve writing style, and Grammar and spelling check. After using this
tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for
the publication’s content.

References

[1] A. Koschmider, et al., Process Mining for Unstructured Data: Challenges and Research Directions,
in: Modellierung 2024, Gesellschaft für Informatik e.V., Bonn, 2024, pp. 119–136.

[2] Y. Bertrand, C. Imenkamp, L. Malburg, M. Ehrendorfer, M. Franceschetti, J. Grüger, F. Leotta,
J. Mangler, R. Seiger, A. Koschmider, S. Rinderle-Ma, B. Weber, E. Serral, An object-centric core
metamodel for IoT-enhanced event logs, arXiv:2506.21300 (2025).

[3] A. Berti, I. Koren, J. N. Adams, G. Park, B. Knopp, N. Graves, M. Rafiei, L. Liß, L. T. G. Unterberg,
Y. Zhang, et al., OCEL (object-centric event log) 2.0 specification, arXiv:2403.01975 (2024).

[4] J. Mangler, J. Grüger, L. Malburg, M. Ehrendorfer, Y. Bertrand, J.-V. Benzin, S. Rinderle-Ma, E. Ser-
ral Asensio, R. Bergmann, DataStream XES Extension: Embedding IoT Sensor Data into Extensible
Event Stream Logs, Future Internet 15 (2023).

[5] Y. Bertrand, S. Veneruso, F. Leotta, M. Mecella, E. Serral, NICE: the Native IoT-centric event log
model for process mining, in: ICPM, Springer, 2023, pp. 32–44.

[6] M. Franceschetti, R. Seiger, B. Weber, An event-centric metamodel for IoT-driven process monitoring
and conformance checking, in: ICPM, Springer, 2023, pp. 131–143.

https://github.com/chimenkamp/IOT-PM-Suite/tree/main/docs/
https://zenodo.org/communities/iopt/about
https://zenodo.org/communities/iopt/about

	1 Introduction
	2 CORE Metamodel for IoT-Enhanced Event Logs
	3 Implementation
	3.1 Functionality
	3.2 Architecture of BROOM

	4 Availability and Maturity

