DCR-JS: An Online Environment for Declarative Process
Mining
Axel K.F. Christfort!, Hugo A. Lopez?

'Department of Computer Science, University of Copenhagen. Copenhagen, Denmark
2DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

This paper presents an enhanced version of DCR-js, a modeling tool for DCR graphs, aimed at supporting novice
users in the most common process mining tasks with declarative process models. Declarative models better
capture business rules and knowledge-intensive processes but lack accessible tooling, limiting their industrial
adoption. Our enriched DCR-JS framework supports modeling, simulation, discovery, conformance checking,
and log generation with DCR graphs. The tool is actively used in academic settings, including BPM courses at
the Technical University of Denmark, promoting an active learning environment for declarative process mining.

Keywords

Declarative Process Mining, DCR Graphs, Process Discovery, Conformance Checking, Event log Generation

1. Introduction

Process Mining is an established discipline with a market share of 871.6 million in 2023'. While most
industrial players provide access to a range of different techniques for discovery and conformance,
they do so based on imperative process models, such as Directly-Follows Graphs, Petri Nets, and BPMN
variants. While valuable, imperative process models excel at describing process flows, processes where
decisions are based on circumstantial information (for instance, compliance rules) are harder to represent
with imperative models. Declarative models have been studied in the BPM literature with multiple
notations, including CMMN, Declare, and DCR graphs [1]. Declarative process notations can discover
the business rules affecting an organization [2]. Moreover, conformance checking techniques based on
declarative models allow us to compare normative rules with logs [3] or other models [4].

Despite their benefits, the uptake of declarative process models is not comparable to their imperative
counterparts, and to a large extent, declarative models have stayed within academic environments, with
only a few examples of industrial adoption [5, 6]. We believe one of the reasons for this phenomenon is
the lack of accessible tools to experiment with declarative process models. While some tools exist [7, 8],
they either require academic licenses, are closed-source, or necessitate complex installation processes.

This paper departs from our DCR-JS [9] modelling tool for DCR graphs, enriching it to create a
mature framework for modelling, simulation, discovery, conformance, and log generation based on
DCR graphs. The framework supports the most important use cases in declarative process mining. It
includes state-of-the-art implementations used as a benchmark in the Process Discovery Challenge?.
DCR-JS is currently being used in the teaching of two BPM courses at the Technical University of
Denmark, supports the discovery of a large set of benchmarking event logs, and includes bug fixes and
features contributed by the students themselves.

Document Structure Section 2 introduces related work. Section 3 introduces DCR graphs via a
modelling example. Section 4 introduces the innovations of the tool. Section 5 comments on the maturity

CEUR-WS.org/Vol-4032/paper-34.pdf

Proceedings of the Best BPM Dissertation Award, Doctoral Consortium, and Demonstrations & Resources Forum co-located with
23rd International Conference on Business Process Management (BPM 2025), Seville, Spain, August 31st to September 5th, 2025.
Q axel@diku.dk (A. K.E. Christfort); hulo@dtu.dk (H. A. Lépez)

& http://lopezacosta.net/ (H. A. Lopez)
® 0000-0001-5681-5936 (A. K.F. Christfort); 0000-0001-5162-7936 (H. A. Lopez)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

Thttps://www.gartner.com/en/documents/5633491
*https://icpmconference.org/2024/process-discovery-contest

CEUR
E Workshop
Proceedings

mailto:axel@di.ku.dk
mailto:hulo@dtu.dk
http://lopezacosta.net/
https://orcid.org/0000-0001-5681-5936
https://orcid.org/0000-0001-5162-7936
https://creativecommons.org/licenses/by/4.0/deed.en
https://www.gartner.com/en/documents/5633491
https://icpmconference.org/2024/process-discovery-contest

of DCR-JS. Section 6 provides links to source code and documentation, and Section 7 concludes.

2. Related Work

DCR-]JS is part of the ecosystem of declarative process modelling tools, including RUM [8], Declare-
js [10], and EasyDeclare [11]. While [10] and [11] focus on modelling, they do not consider process
mining tasks. RUM [8] will be the closest tool from the Declare toolset, with an intended use as a
standalone application. The set of DCR-based tools includes the DCR Portal [7], DCR4Py [12], and our
previous version of DCR-JS [9]. These tools are complementary to us, being the DCR process portal
an authoring tool for executable DCR models, and DCR4Py [12] is a tool for process mining of DCR
graphs for process analysts with coding skills. DCR-JS focus is to render the typical declarative process
mining tasks accessible to novice users, with no installation or coding skills required.

3. A Primer on DCR graphs

We use a simple DCR graph for a booking pro-
cess in Figure 1 to illustrate the main modelling

constructs. For the formal definition of the con- Arangs Mg

structs used, please refer to [1], and for a full (o) gz (g

overview of the language set in DCR graphs, e T N ¢ =

see [13]. A DCR can be seen as a collection

of events linked by relations. Each event has a Dﬁ_r I c‘
marking, denoting whether the event has been Orgniaton 2 ognatond |
executed, is pending, or has been excluded. Re- S E pccept dates

lations impose constraints on accepting traces.

The type of constraint determines the accepted .

behaviour. A condition relation () defines

precedence, and a response (>—0O) will deter- Figure 1: Booking Process in DCR Graphs

mine obligatory consequences. An exclusion

(»—0©) will remove elements from the environment that can later be included via inclusion relations
(>—@). Milestone relations (>—®) block activities from being executed if their included dependencies
are pending. Finally, relations can be composed via simple conjunction, and a nesting event will denote
the application of the rules to the outermost event to its innermost constituents.

4. Innovations of the Tool

This version of DCR-JS includes major innovations in its five existing modules, illustrated in Figure 2:
Modelling: This is the only prior module in DCR-JS [9]. The current version includes support for three
DCR graphs process notations, including the formal notations [1], as well as support for commercial®
and notations optimized for semantic-transparency [14], and accessibility options for color-blind
users. Moreover, we provide automatic layout capabilities, including alternatives to reduce the graphic
complexity via automated event nestings [15], as well as the capability to do test-driven modeling with
open test cases [16] to ensure compliance throughout modeling and extension.

Discovery: It generates DCR graphs from XES event logs. The module supports the introduction of
multiple DCR discovery algorithms, including DisCoveR [17] and the rejection miner [2], as well as
noise-filtering capabilities [18].

Simulation: It supports the step-based simulation of DCR graphs, providing user feedback on the
execution of disabled events, and allowing the generation of non-conforming traces for testing. User-
based simulations can be stored as XES logs.

*https://dcrsolutions.net/

https://dcrsolutions.net/

Conformance

@ Log Generation

Discovery Log Generation

Simulation N~
_ _ = % m Conformance Checking
Trace 1 ® o x @ > -
= : |

Event Log
580 420 68

Modeliing

Discovery

pattems in healthcare

0030000000000

Figure 2: DCR-JS and its support for declarative process mining tasks

Conformance Checking: This new mode supports rule-based and alignment-based conformance
checking for DCR graphs [12, 19]. Visualization capabilities are based on Gestalt principles, supporting
the user in understanding the rules that have been triggered and fulfilled, violated, or not activated.

Log Generation It allows the generation of XES event logs from a DCR
graph. To support the generation of non-conforming traces, the mode
supports the automatic injection of noise levels for the traces generated.

4.1. DCR-JS Architecture

Greates

DCR-JS is composed of three main modules: oo oo

First, a main interactive web-based tool sup- piscovry Cortmane Geons

ports modelling, simulation, and manipulation oucover || masstonwner| || | Camstani | | volton e

of DCR graphs. Second, the original DCR- . S e

JS [9] editor provides visualization and mod- » F‘MM f:;‘;‘u”.i‘ii Agmn

elling capabilities. Finally, the DCR engine et ’

performs model updates and process mining Hodiing ST

tasks. Figure 3 shows its main modules. o | [z | [2im]| A?‘;;; omornan. | vagonorman -
5. Maturity of the tool i

Greates K
i DCR Graph

DCR-JS has been developed since 2023 [9] and
has grown with major re-engineering efforts
and software engineering projects at the Tech- Figure 3: Component Diagram for DCR-JS
nical University of Denmark and Copenhagen

University. It is currently used in two MSc

courses at DTU, with students contributing to

the tool. DCR-JS supports the following use cases:

Process of Process Mining: Discover a DCR graph from an event log, then use the modeler to modify
the graph (add/remove/change the type of constraints), and use conformance checking to identify the

Event Log Size (MB) Cases Variants Events Time (ms) Constraints Graph

CAISE’17 192,6 100.000 346 894.708 367 11 link
Sepsis log 5,4 1.050 846 15.214 419 91 link
BPIC’20: RFP 15,2 6.886 89 36.796 798 196 link
BPIC’13, incidents 39,6 7.554 2.278 65.533 1.394 7 link
Large reviewer log 69,3 10.000 4118 154.240 2.561 84 link
BPIC’12 74,1 13.087 4.366 262.200 3.135 156 link
BPIC’17, Offer log 109,8 42.995 16 193.849 5.051 30 link
Hospital Billing Log 174,3 100.000 1.020 451.359 8.622 115 link
Bank Transaction Process 162,1 10.000 10.000 678.864 19.524 1375 link
BPIC’19 739,2 251.734 11.973 1.595.923 OoM NA NA
Table 1

Discovery Performance

impact of the changes. Final models can be used as part of a PAIS.

Iterative Modelling/Redesign: Here, the task is to build a process model that abides by a certain set
of constraints. Here, starting in the modeling tool, the modeler adds constraints and verifies them in
a step-wise simulator to generate characteristic logs with compliant/violated traces, and iteratively
adding new constraints or events. Once the modeler is satisfied, they can use the event log generator to
characterize scenarios used for testing in a later process evolution phase.

Test-Driven Modelling: Starting with either a set of events or an existing DCR graph, Test-Driven
Modelling defines several open test cases to ensure compliance of the model before adding constraints
or extending it. Each test case consists of a partial trace, a context, and a polarity. A positive test
ensures that there exists a trace in the model that, when projected onto the context, is exactly the test
trace. A negative test ensures that there is no such trace in the model. By having these partial traces
and contexts, you ensure that old test cases still work, even if the model is extended.

Scalability: The tool has an academic scope, and the design decision of making it easily accessible
has ruled over scalability. DCR-JS is constrained by the memory limitations of the browser being
used. Table 1 reports process discovery times over a range of classical event logs?, showing acceptable
performance in most of them. The largest overhead comes from log parsing, followed by discovery
and layout. Larger logs (e.g., Road Traffic Fines, BPIC’19) would represent a bottleneck, and standalone
implementations [12] should be used instead. Future extensions of the tool will consider the inclusion
of asynchronous threads and standalone versions to remove memory limitations.

6. Availability

DCR-JS can be accessed at https://hugoalopez-dtu.github.io/dcr-js/ and does not require installation.
The code and the user manual are available at https://github.com/hugoalopez-dtu/dcr-js under the MIT
license. A screencast documenting the most important use cases is available at http://tiny.cc/yalo001.

7. Conclusion

DCR-]JS is designed to facilitate the introduction of process modelling and process mining techniques
for novice practitioners interested in learning about the benefits of declarative process modelling. In
future work, we want to extend the support to models including time, data, and object-centric variants.

Acknowledgments

Thanks to A. Andaloussi, K. de Place, M. Al-Helo, J. Nergaard, T. Slaats, and D. Trinh for their suggestions
and/or contributions to the tool. This work is supported by the research grant “Center for Digital

“Tests executed on an Apple M1 Pro with 32 GB RAM, running Mac OS 15.5, and Google Chrome 138.0.7204.93

https://data.4tu.nl/datasets/23717951-a397-4d5e-b9cd-a6a851be39cc/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/log-0-percent-noise.xml
https://www.kaggle.com/datasets/asjad99/sepsis-treatment-careflow
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/Sepsis%20-%20Event%20Log.xml
https://data.4tu.nl/datasets/a6f651a7-5ce0-4bc6-8be1-a7747effa1cc/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/RequestForPayment.xml
https://data.4tu.nl/datasets/0fc5c579-e544-4fab-9143-fab1f5192432/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/BPI_Challenge_2013_incidents.xml
https://data.4tu.nl/datasets/fd934763-2996-47a8-8185-542bfb235036/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/review_example_large.xml
https://data.4tu.nl/datasets/533f66a4-8911-4ac7-8612-1235d65d1f37/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/BPI_Challenge_2012.xml
https://data.4tu.nl/datasets/cc497753-1175-41f6-a107-425787c54266/2
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/BPI%20Challenge%202017%20-%20Offer%20log.xml
https://data.4tu.nl/datasets/6af6d5f0-f44c-49be-aac8-8eaa5fe4f6fd/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/Hospital%20Billing%20-%20Event%20Log.xml
https://data.4tu.nl/datasets/2eaae5ea-f43c-4630-8082-9ba1cf386b22/1
https://github.com/hugoalopez-dtu/dcr-js/blob/main/test_models/Mined%20DCR%20Models/Large%20Bank%20Transaction%20Process.xml
https://data.4tu.nl/datasets/35ed7122-966a-484e-a0e1-749b64e3366d/1
https://hugoalopez-dtu.github.io/dcr-js/
https://github.com/hugoalopez-dtu/dcr-js
http://tiny.cc/ya1o001

CompliancE (DICE)” (VIL57420) from VILLUM FONDEN, and by the Innovation Foundation project
“Explainable Hybrid-AI for Computational Law and Accurate Legal Chatbots” 4355-00018B XHAILe.

Declaration on Generative Al

During the preparation of this work, the authors used Grammarly as a grammar and spell-checker.

References

(1]

T. T. Hildebrandt, R. R. Mukkamala, Declarative event-based workflow as distributed dynamic
condition response graphs, arXiv preprint arXiv:1110.4161 (2011).

T. Slaats, S. Debois, C. O. Back, A. K. F. Christfort, Foundations and practice of binary process
discovery, Information Systems 121 (2024) 102339.

A. Burattin, F. M. Maggi, A. Sperduti, Conformance checking based on multi-perspective declarative
process models, Expert systems with applications 65 (2016) 194-211.

H. A. Lopez, S. Debois, T. Slaats, T. T. Hildebrandt, Business process compliance using reference
models of law, in: FASE, 2020, pp. 378—-399.

E. Marengo, P. Dallasega, M. Montali, W. Nutt, M. Reifer, Process management in construction:
Expansion of the bolzano hospital, in: BPM Cases, Springer, 2018, pp. 257-274.

T. T. Hildebrandt, et al., Ecoknow: Engineering effective, co-created and compliant adaptive case
management systems for knowledge workers, in: ICSSP, 2020, pp. 155-164.

M. Marquard, M. Shahzad, T. Slaats, Web-based modelling and collaborative simulation of declara-
tive processes, in: BPM, Springer, 2015, pp. 209-225.

A. Alman, C. Di Ciccio, F. M. Maggi, M. Montali, H. van der Aa, Rum: declarative process mining,
distilled, in: BPM, Springer, 2021, pp. 23-29.

L. K. Tamo, A. Abbad-Andaloussi, D. M. T. Trinh, H. A. Lépez, An open-source modeling editor
for declarative process models, in: CooplS 2023, CEUR-WS, 2023, pp. 1-5.

S. Nagel, E. Amann, P. Delfmann, declare-js: A web-based viewer and editor for declarative process
models., in: ICPM Doctoral Consortium/Demo, 2023.

G. Blasilli, L. S. Ferro, S. Lenti, F. M. Maggi, A. Marrella, T. Catarci, Edd: A web-based editor for
declarative process models using easydeclare (2024).

S. V. Hermansen, R. Jonsson, J. L. Kjeldsen, T. Slaats, V. P. Cosma, H. A. Lopez, DCR4Py: A PM4Py
library extension for declarative process mining in python, in: ICPM, CEUR-WS, 2024.

H. A. Lopez, V. D. Simon, How to (re) design declarative process notations? a view from the lens
of cognitive effectiveness frameworks, in: PoEM 2022, CEUR-WS, 2022.

D. M. T. Trinh, A. Abbad-Andaloussi, H. A. Lopez, On the semantic transparency of declarative
process models: the case of constraints, in: CooplS, Springer, 2023, pp. 217-236.

V. P. Cosma, A. K. F. Christfort, T. T. Hildebrandt, X. Lu, H. A. Reijers, T. Slaats, Improving
simplicity by discovering nested groups in declarative models, in: CAISE, Springer, 2024, pp.
440-455.

A. K. Christfort, V. P. Cosma, S. Debois, T. T. Hildebrandt, T. Slaats, Static and dynamic techniques
for iterative test-driven modelling of dynamic condition response graphs, Data Knowl Eng 157
(2025) 102413.

C. O. Back, T. Slaats, T. T. Hildebrandt, M. Marquard, Discover: accurate and efficient discovery of
declarative process models, International Journal on STTT 24 (2022) 563-587.

A. K. F. Christfort, S. Debois, T. Slaats, Improving declarative process mining with a priori noise
filtering, in: BPM, Springer, 2022, pp. 286-297.

A. K. F. Christfort, T. Slaats, Efficient optimal alignment between dynamic condition response
graphs and traces, in: BPM, Springer, 2023, pp. 3-19.

	1 Introduction
	2 Related Work
	3 A Primer on DCR graphs
	4 Innovations of the Tool
	4.1 DCR-JS Architecture

	5 Maturity of the tool
	6 Availability
	7 Conclusion

