A Library for Detecting Inconsistencies in Declarative
Process Models

Sabine Nagel®*, Patrick Delfmann’

"University of Koblenz, Universitdtsstr. 1, 56070, Koblenz, Germany

Abstract

We present a comprehensive library for detecting and classifying inconsistencies in declarative process models
(DPMs) based on inconsistency structures (i.e., recurring patterns with shared characteristics that describe how
combinations of constraints become inconsistent). Here, we not only focus on inconsistencies in the classic-
logical sense but also on potential inconsistencies that only occur during run-time. Our approach allows for (1)
detecting inconsistency cores based on the previously defined structures, (2) identifying design-time and run-time
inconsistencies by extending these cores, and (3) classifying and measuring inconsistencies. We demonstrate the
applicability of our implementation with real-life datasets.

Keywords

Declare, Declarative Process Model, Declarative Process Specification, Inconsistency Detection

1. Introduction

Declarative process models (DPMs), for example, using the modeling language DECLARE, offer a flexible
alternative to imperative models by implicitly defining process behavior through constraints, rather than
defining exact execution paths [1]. Unfortunately, even a single logical contradiction among constraints
can make an entire model unsatisfiable, which is referred to as inconsistent. Therefore, being able to
detect such inconsistencies is crucial. However, existing approaches are typically limited to checking the
satisfiability of the entire model, without isolating the specific problematic combinations of constraints.
More critically, current approaches [2, 3] are unable to fully identify run-time inconsistencies (i.e.,
inconsistencies that are triggered by activity occurrences in a trace) as they only cover specific templates
or patterns. To address these gaps, we build on previous work [4] and present a library that detects
and classifies inconsistencies based on an extensive collection of inconsistency structures, which are
recurring patterns that explain how combinations of constraints can result in inconsistencies. Our
library enables (1) the detection of inconsistency cores, i.e., minimal sets of activities and constraints
responsible for an inconsistency, (2) the identification of both design-time and run-time inconsistencies
through core extension, and (3) the classification and measurement of cores and inconsistencies. Thereby,
we not only aim to detect inconsistencies, but also to support inconsistency comprehension, as the
underlying inconsistency structures explicitly describe the causes and components of a minimally
inconsistent constraint set. This is especially important when humans are involved in the resolution of
inconsistencies, as shown in related works on inconsistency comprehension [5, 6].

CEUR-WS.org/Vol-4032/paper—-42 .pdf

2. Preliminaries and Related Work

Definition 1 (Declarative Process Model [1]). A declarative process model (DPM) is a tuple DPM =
(T, A, C), where T is a finite, non-empty set of constraint templates, A is a finite, non-empty set of
activities, and C is a finite set of constraints that instantiate the templates in T.

Proceedings of the Best BPM Dissertation Award, Doctoral Consortium, and Demonstrations & Resources Forum co-located with
23rd International Conference on Business Process Management (BPM 2025), Seville, Spain, August 31st to September 5th, 2025.
*Corresponding author.

@) snagel@uni-koblenz.de (S. Nagel); delfmann@uni-koblenz.de (P. Delfmann)

@ 0000-0003-4838-8246 (S. Nagel); 0000-0003-4441-0311 (P. Delfmann)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5Y

CEUR
E Workshop
Proceedings

mailto:snagel@uni-koblenz.de
mailto:delfmann@uni-koblenz.de
https://orcid.org/0000-0003-4838-8246
https://orcid.org/0000-0003-4441-0311
https://creativecommons.org/licenses/by/4.0/deed.en

Generally, we distinguish between existence (e.g., INIT(a), ATLEASTONE(a)) and relation constraints (e.g.,
ResPONSE(a,b), NoTCHAINPRECEDENCE(a,b)). While existence constraints are automatically activated
upon the start of a trace, relation constraints are either activated by their first parameter (forward
constraints; e.g., ALTERNATERESPONSE(a,b)), their second parameter (backward constraints; e.g., PRECE-
DENCE(a,b)) or both parameters (coupling constraints; e.g., SUcCEssioN(a,b)). When a DPM contains
contradictory constraints, it immediately becomes unsatisfiable, which is referred to as inconsistent.

Definition 2 (Inconsistency [7]). An inconsistency is a tuple I = (Act,C), where Act C A is the set of
activities that minimally activate a set of constraints C C C such that C u|J e ot ATLEASTONE(act) F L.
Iis a minimal inconsistency if there is no Act’ C Act or C’ C C such that (Act’,C”) is an inconsistency.

To differentiate between design-time and run-time inconsistencies, we consider a minimal inconsistency
I = (Act,C) a classic inconsistency if C ¥ L and Act = @ and a potential inconsistency if C £ T.
Furthermore, if |Act| = 1 we say that a potential inconsistency is an actual issue and if |Act| > 1 it
is considered a potential issue [4, 7]. As multiple inconsistencies can share a common underlying
problem, we extend the definition by [4, 7] and define an inconsistency core. Table 1 contains a variety
of exemplary cores representing different inconsistency types. For instance, the example for POS1 is a
classic inconsistency, the one for POS2 an actual issue, and the one for CARD2 a potential issue.

Definition 3 (Inconsistency Core [7]). An inconsistency core is a tuple IC = (Actc, C), where Actc C A
is a non-empty set of activities that minimally activate C and thus serve as core activations, and C C C
is a set of constraints. Additionally, IC must be a minimal classic or potential inconsistency, such that
no proper subset (Act’,C”) with Act’ C A or C’ C C forms a minimal classic or potential inconsistency.

Related works on inconsistency detection focus mainly on LTL, e.g., [8, 9, 10]. For DPMs, most
approaches determine unsatisfiability of an entire model by translating constraints into deterministic
finite automata (DFAs) and constructing a product automaton to assess satisfiability [11]. While
detecting individual, minimal inconsistencies in DPMs using DFAs is theoretically sound, it suffers from
severe scalability issues due to the exponential growth in the number of automata product computations
required. Moreover, DFA-based techniques are inherently limited to classic inconsistencies and cannot
detect potential inconsistencies that depend on specific activity occurrences. As a result, Corea et al. [2]
have implemented a first approach to detect actual issues in DPMs but only consider limited scenarios
(e.g., certain path-based inconsistencies). More recently, Corea and Thimm [3] proposed an approach
for identifying potential issues, but only based on a small subset of templates.

3. Detection Approach

(1) Preparation. Our library was implemented in Java and accepts DECLARE models in various formats
(TXT, JSON, and CSV), which enables seamless integration with the outputs of existing process mining
algorithms. To ensure broad applicability, we support a wide range of DECLARE templates and also
handle naming variations (e.g., ATLEAST1 and PARTICIPATION are treated as ATLEASTONE) to enable
compatibility with different tools and datasets. As an optional preprocessing step, we check for
redundant constraints based on a subsumption hierarchy [1]. Redundant constraints are temporarily
removed from the model but are retained for later use, e.g., to assign responsibility (culpability) to
constraints or to help guide the selection of appropriate weakening strategies during inconsistency
resolution. Although more advanced forms of redundancy exist (e.g., those derived from combinations
of constraints), we intentionally delay such checks until after inconsistency resolution, as this might
distort inconsistency measurement and significantly change the model. Furthermore, detecting and
removing redundant constraints becomes much more feasible after consistency has been restored, as
DFAs can be utilized again (which always have an empty language while inconsistencies are present). To
improve computational efficiency, we pre-compute and store filtered subsets of constraints to be reused
throughout the detection processes. Many inconsistency core detection algorithms rely on graph-based
reasoning, which is why we construct multiple graphs using JGraphT! and utilize both built-in and

'https://jgrapht.org

https://jgrapht.org

Table 1
Inconsistency Structures and Exemplary Cores

ID Structure Exemplary Core

POS1 Multiple Start/End Events {2}, {Init(a), INIT(D)}

POS2 Multiple Direct Predecessors/Successors {a}, {CHAINRESPONSE(a, b), CHAINRESPONSE(a, ¢)}
CARD1 Explicit Contradictory Cardinality {2}, {ATLEASTTWO(a), ATMOSTONE(a)}

CARD2 Implicit Contradictory Cardinality {a, c},{CHAINRESPONSE(a, b), CHAINRESPONSE(c, b)}
COEX Contradictory Co-Existence {a, b}, {NoTCOEXxISTENCE(a, b)}

ORD1 Path-Implied Contradictory Order {a},{RespoNsE(a, b), PRECEDENCE(c, a), NoTRESPONSE(c, b)}
ORD2 Position-Implied Contradictory Order {b},{INniT(a), NoTRESPONSE(a, b)}

ORD3 Contradictory Chain {a},{CHAINRESPONSE(a, b), NOTCHAINRESPONSE(a, b)}
BOUNDT1 Lack of Space {2}, {InrT(a), PRECEDENCE(D, @)}

BOUND2 Loop {a}, {RespoNsE(a, b), REspoNsE(b, a)}

custom graph search algorithms. Custom implementations were necessary to incorporate advanced
validity checks during the search process, which allowed us to improve efficiency by discarding invalid
subtrees early.

(2) Core Detection. We implemented a set of specialized algorithms that are designed to detect
cores corresponding to a specific inconsistency structure. These structures are grouped into four cate-
gories: position, cardinality, relation, and boundary inconsistencies. An overview of the implemented
structures, along with an exemplary core for each, is provided in Table 1. Each algorithm is designed to
comprehensively capture cores related to its respective structure. Due to space limitations, we refer to
our Git repository for additional examples and extended explanations. Depending on the characteristics
of a structure, we apply different algorithmic strategies. For some structures (e.g., POS1, CARD1) the
core can be derived directly from a specific combination of constraints. In contrast, other structures
(e.g., ORD1, BOUND2) require graph-based search to identify valid cores.

(3) Inconsistency Detection. Once cores have been identified, we proceed to detect complete
inconsistencies by analyzing how these cores can be activated within the model. The detection process
is configurable, so users can apply filters to focus on specific types of inconsistencies (e.g., only classic
or only potential ones) or restrict the detection to certain structures. First, we detect all valid activation
paths for all core activations by identifying activating existence constraints in the model (i.e., existence
constraints that imply a minimum cardinality of one) and searching for valid paths in a previously
defined activation graph. An activation path is considered valid if it does not result in an additional
inconsistency when attached to the core, making the resulting constraint set no longer minimally
inconsistent. For cores with more than one activation, we additionally must ensure compatibility of all
path combinations before generating a respective inconsistency, as incompatible paths (e.g., paths that
have an additional activity overlap) also make the resulting inconsistency no longer minimal. Each of
these inconsistencies includes the core, its activation paths, and the (optional) existence activations
required to trigger the inconsistency. This comprehensive detection process enables us to uncover both
design-time (classic) and run-time (potential) inconsistencies across the entire model.

(4) Inconsistency Measurement. Our library also allows basic inconsistency and culpability
measurement. This includes measuring the degree of inconsistency of the entire model by, for example,
counting the number of cores and/or inconsistencies (optionally categorized by type or structure), as
well as measuring culpability of individual constraints, i.e., the number of cores and/or inconsistencies
in which the constraint is involved.

Detecting Inconsistencies in Declare Models

‘ Small Example ‘ Medium Example ‘ Large Example

Choose File No file chosen

OR paste constraints below:

Response(a,b)
ChainResponse(a,b)
NotResponse(a,b)
AtLeastOne(a)

Init(a)
A
Preparation Detection Measurement
@D Remove Redundancies @ Classic Inconsistencies Core Culpability

@ Actual Issues Inconsistency Culpability
@D Potential Issues

Detection Completed! (2 cores and 4 inconsistencies)

‘ Cores Inconsistencies TXT v

[a] -> [NotResponse('a''b'), ChainResponse('a''b')]
[b] -> [NotResponse('a''b'), Init('a')]

Download Results

Figure 1: Core & Inconsistency Detection User Interface

4. Usage and Maturity

To enable easy access to our inconsistency detection library, a basic version can be used directly in
the browser? (cf. Figure 1). Additionally, the code can be obtained by cloning our Git repository>
and executed locally. The latter also allows a direct integration into existing modeling or mining
tools. Additionally, a screencast showcasing our application can be found here*. To demonstrate
the feasibility of our approach, we evaluated our library using DECLARE models mined from real-life
datasets. For the considered datasets, we computed all cores and the corresponding inconsistencies.
We ran our experiments on MacOS with an M2 chip and 16GB RAM. In Table 2 we provide an overview
of the number of detected cores and inconsistencies, along with the run-times for the core and the
inconsistency detection separately.

Table 2
Core and Inconsistency Detection Results

Model ‘ Core Detection ‘ Inconsistency Detection

Event Log Constraints ‘ Cores Time (ms) ‘ Classic Actual Potential Time (ms)

Sepsis 207 15 8 0 7736 62569 694
BPI 2017 305 10 38 0 51021 565795 4087
BPI 2019 52 5 9 0 5 0 31
BPI 2020 357 3554 2445 47 4025 247103 331517

Zhttps://uni-ko.de/detection

Shttps://uni-ko.de/detection-git

*https://uni-ko.de/detection-screencast

*https://data.4tu.nl/search?search=bpi and https://data.4tu.nl/datasets/33632f3c-5c48-40cf-8d8f-2db57f5a6ce7/1

https://uni-ko.de/detection
https://uni-ko.de/detection-git
https://uni-ko.de/detection-screencast
https://data.4tu.nl/search?search=bpi
https://data.4tu.nl/datasets/33632f3c-5c48-40cf-8d8f-2db57f5a6ce7/1

5. Conclusion

In this work, we present a comprehensive library for detecting and classifying inconsistencies in DECLARE
models. Our approach identifies both classic (design-time) and potential (run-time) inconsistencies by
detecting minimal inconsistency cores and exploring their activation paths. The current implementation
is based on a predefined set of DECLARE templates. While this ensures compatibility and simplifies
implementation, it restricts the analysis to models built using these templates. However, additional
templates can simply be added by specifying their activation semantics and linking them to relevant
inconsistency structures. As a next step, we aim to develop a dashboard that offers visualizations of
inconsistencies and improved support for model exploration and diagnosis. Moreover, our detection
algorithms will be integrated directly into declarative process modeling and rule mining tools. This
will allow inconsistencies to be identified and resolved during model design or as part of the mining
process, which, in turn, would improve model correctness and reduce the likelihood of run-time issues.

Acknowledgments

This paper was funded by the Deutsche Forschungsgemeinschaft (grant number DE 1983/9-3).

Declaration on Generative Al

During the preparation of this work, the authors used GPT-40 to check grammar and spelling.

References

[1] C.Di Ciccio, M. Montali, Declarative Process Specifications: Reasoning, Discovery, Monitoring,
in: Process Mining Handbook, volume 448, Springer Int. Publishing, 2022, pp. 108-152.

[2] C. Corea, M. Deisen, P. Delfmann, Resolving Inconsistencies in Declarative Process Models based
on Culpability Measurement, in: In Proceedings der 14. Internationalen Tagung der Wirtschaftsin-
formatik, Siegen, Germany, 2019.

[3] C.Corea, M. Thimm, Towards Handling Potential Issues in Business Rule Bases, Journal of Applied
Logics 11 (2024) 565-592.

[4] S.Nagel, P. Delfmann, Identification, Abstraction and Classification of Inconsistency Structures in
Declarative Process Models, in: ECIS 2023 Research Papers, 2023.

[5] S.Nagel, P. Delfmann, Exploring Cognitive Effects of Inconsistency Characteristics on Understand-
ing Inconsistencies in Declarative Process Models, in: Proceedings of the 57th Hawaii International
Conference on System Sciences (HICSS), 2024.

[6] S.Nagel, P. Delfmann, Investigating Inconsistency Understanding to Support Interactive Incon-
sistency Resolution in Declarative Process Models, in: ECIS 2022 Research-in-Progress Papers,
2022.

[7] S.Nagel, P. Delfmann, Interactive Resolution of Inconsistencies in Declarative Process Models, in:
Proceedings der 19. Internationalen Tagung der Wirtschaftsinformatik (WI 2024), 2024.

[8] A.Ielo, G. Mazzotta, R. Penaloza, F. Ricca, Enumerating Minimal Unsatisfiable Cores of LTLf
formulas, arXiv preprint arXiv:2409.09485, 2024.

[9] M. Roveri, C. Di Ciccio, C. Di Francescomarino, C. Ghidini, Computing Unsatisfiable Cores for
LTLf Specifications, Journal of Artificial Intelligence Research 80 (2024) 517-558.

[10] V. Schuppan, Extracting unsatisfiable cores for Itl via temporal resolution, Acta Informatica 53
(2016) 247-299.

[11] C. Di Ciccio, F. M. Maggi, M. Montali, J. Mendling, Resolving Inconsistencies and Redundancies in
Declarative Process Models, Information Systems 64 (2017) 425-446.

	1 Introduction
	2 Preliminaries and Related Work
	3 Detection Approach
	4 Usage and Maturity
	5 Conclusion

