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Abstract
Declarative process specifications are defined by a set of behavioural constraints exerted over the execution of
activities. These constraints are rooted in Linear Temporal Logic over finite traces. Declarative process mining
encompasses a collection of techniques based on recorded process executions (event logs), with the objective
of extracting such specifications and enhancing them. This paper presents MINERful, an open-source tool for
declarative process mining in its new, reloaded version. It offers a range of functionalities revolving around the
mining cycle of a process specification: its automated discovery from event logs, its simplification to remove
redundancies and inconsistencies, its simulation to generate synthetic datasets, and fitness checking to gauge its
level of conformance with logs. We showcase its usage with a real-world event log in the healthcare domain.
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1. Introduction

Process mining is a discipline that lies between data mining and computational intelligence, mainly
focused on the discovery, monitoring, and checking of system behaviour based on recorded process
executions [1]. Process mining serves as the basis for Business Process Management and beyond to
understand the actual execution of a process, discover inefficiencies, and suggest improvements [2].
Over the last two decades, a novel approach to process management and mining emerged, namely the
declarative approach [3]. Declarative process specifications consist of rules, also known as constraints,
each restricting the behaviour of the process [4]: any run of the process is allowed, as long as none of
the constraints is violated. Constraints regulate the temporal unfolding of a process without explicitly
specifying the routing of process instances to meet those constraints. Declarative process mining aims
at inferring and enhancing constraints constituting process specifications based on process data.
MINERful is a command-line tool for declarative process mining. A preliminary prototype was

presented more than a decade ago with respect to the time of writing [5]. It has vastly evolved over the
years, and new features have been added alongside updates on the core engine. This paper is the first
one focussing on its fundamental functionalities, up to date with the most recent development.

Next, we provide preliminary information on declarative process specifications (Sect. 2). Equipped
with these notions, we detail the four core functionalities offered by MINERful (Sect. 3). Finally, we
draw conclusions by discussing the toolkit’s maturity and availability (Sect. 4).
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2. Declarative Process Specifications in Brief
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Figure 1: Responsep𝑎, 𝑐q formalised [6, 4]

Declarative process specification languages like De-
clare [7] provide repertoires of constraint tem-
plates. A typical example of constraint template
is Response, which is exerted on two activities, say
𝑎 and 𝑐, and dictates that if 𝑎 is executed, then 𝑐
will eventually follow. As exemplified in Fig. 1, De-
clare constraints are formally grounded in Linear
Temporal Logic on Finite Traces (LTL𝑓 ) [8], which
can be turned into accepting finite state automata
(FSAs) [9] and are hence legitimately expressible in the form of regular expressions [6]. Aside from
the common set operators and propositional logic connectives, we use the following denotations in
the figure: Σ Ě t𝑎, 𝑐u is the alphabet of propositional symbols; G , F , X are the LTL𝑓 temporal
modalities “globally”, “eventually”, and “next”, respectively; ., [^𝑎], and * indicate the occurrence of
a symbol 𝑥 P Σ, an occurrence of 𝑥 P Σzt𝑎u, and the Kleene-star operator to generate strings of any
length, respectively. The detailed explanation of these expressions transcends the scope of this paper.
We refer the interested reader to [6, 4] for further information.

Following the reactive-constraint form proposed in [10], any constraint 𝜅 can be written in an
if-then form. What triggers the constraint, i.e., ifp𝜅q, is named activation [11]. For example, the
occurrence of 𝑎 in the trace is the activation of Responsep𝑎, 𝑐q. The condition to be checked upon the
satisfaction of the activation, i.e., thenp𝜅q, is the target of the constraint (e.g., the eventual occurrence
of 𝑐 in the trace for Responsep𝑎, 𝑐q). Table 1 provides a list of Declare constraints, alongside their
template and a natural-language description of their activation and target.

Constraints are verified against finite traces, i.e., runs of a process. Each trace is typically abstracted as
a finite sequence representing a run of the system’s process (e.g., x𝑎, 𝑏, 𝑐, 𝑏, 𝑑y). Each occurrence of a sym-
bol in the sequence (e.g., 𝑎) represents the execution of an activity (event) identified by that symbol. Event
logs (or logs, for short) collect multiple runs of a process, and are usually abstracted as multi-sets of traces.
The following is an example of log: 𝐿 .

“ tx𝑎, 𝑏, 𝑐, 𝑏, 𝑑y10, x𝑐, 𝑎, 𝑏, 𝑑, 𝑏y5, x𝑐, 𝑐, 𝑐, 𝑑y1, x𝑎, 𝑏, 𝑐, 𝑎, 𝑐, 𝑎y4u.
In 𝐿, e.g., trace x𝑎, 𝑏, 𝑐, 𝑏, 𝑑y occurs 10 times. Overall, it consists of 20 traces with 111 events.

We can interchangeably interpret Declare constraints as (i) behavioural relationships among ac-
tivities in a process specification, from a modelling perspective, or (ii) rules governing the occurrence
of events in event logs’ traces, from a mining perspective. Identifying rules that define the most
relevant boundaries of the process behaviour registered in event logs’ traces is the core objective of
declarative process mining. To quantify the interestingness of those rules, a number of measures have
been introduced, inspired by the literature in association rule mining [12, 13]. Here we specifically
focus on three of those. For their computation, we resort to two possible computation schemes [4]:
the event-based interpretation considers the event as the probabilistic case to gauge satisfaction; the
trace-based interpretation considers the whole trace as such, in a more coarse-granular fashion. Table 2
provides formulas for their computation. In the table, we denote with #e a function that takes an
event log (e.g., 𝐿) and a statement (e.g., ifp𝜅q, the activation of constraint 𝜅, or J, i.e., the logical true
value), and returns the count of events that satisfy the statement in the formula. We use #t to indicate a
function that also takes a log and a statement as an input but returns the traces that satisfy the statement
in the log. The computations can be summarised as follows: (1) support is the proportion of cases
that satisfy the activation and the target in the log; (2) coverage is the proportion of cases that satisfy
the activation in the log; (3) confidence is the proportion of cases that satisfy the activation and the
target over the cases that satisfy the activation. Table 3 shows their computation for Responsep𝑎, 𝑐q
given the above event log 𝐿. For example, the trace-based support is 0.5 because in 10 cases out of
20 all occurrences of 𝑎 are eventually followed by 𝑐 in the trace. The denominator of the trace-based
confidence is 19 because 𝑎 never occurs in a trace. The event-based support considers instead that in
18 events out of 111, 𝑎 occurs and is eventually followed by 𝑐. These notions serve as the basis for the
next section, elucidating the core features offered by MINERful for declarative process mining.



Table 1: A selection of Declare constraints

Constraint 𝜅 Template Activation ifp𝜅q Target thenp𝜅q

Initp𝑥q Init The trace starts 𝑥 is the first activity in the trace
AtMostOnep𝑥q AtMostOne The trace starts 𝑥 occurs at most once in the trace
Responsep𝑥, 𝑦q Response 𝑥 occurs 𝑦 eventually follows 𝑎
ChainResponsep𝑥, 𝑦q ChainResponse 𝑥 occurs 𝑦 immediately follows 𝑥
Precedencep𝑥, 𝑦q Precedence 𝑦 occurs 𝑥 precedes at least once 𝑦 in the trace
AlternatePrecedencep𝑥, 𝑦q AlternatePrecedence 𝑦 occurs 𝑥 precedes 𝑦 in the trace and 𝑥 cannot recur between 𝑥 and 𝑦
ChainPrecedencep𝑥, 𝑦q ChainPrecedence 𝑦 occurs 𝑥 immediately precedes 𝑦
CoExistencep𝑥, 𝑦q CoExistence 𝑥 or 𝑦 occur 𝑥 and 𝑦 occur in the trace

Table 2: Computation of interestingness measures for a declara-
tive constraint 𝜅 given an event log 𝐿

Based on Confidence Coverage Support

Events #ep𝐿, ifp𝜅q^thenp𝜅qq

maxt1,#ep𝐿, ifp𝜅qqu

#ep𝐿, ifp𝜅qq

maxt1,#ep𝐿,Jqu

#ep𝐿, ifp𝜅q^thenp𝜅qq

maxt1,#ep𝐿,Jqu

Traces #tp𝐿, ifp𝜅q^thenp𝜅qq

maxt1,#tp𝐿, ifp𝜅qqu

#tp𝐿, ifp𝜅qq

maxt1,#tp𝐿,Jqu

#tp𝐿, ifp𝜅q^thenp𝜅qq

maxt1,#tp𝐿,Jqu
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Figure 2: MINERful functionalities

Table 3: Responsep𝑎, 𝑐q measures on 𝐿
.
“ tx𝑎, 𝑏, 𝑐, 𝑏, 𝑑y10, x𝑐, 𝑎, 𝑏, 𝑑, 𝑏y5, x𝑐, 𝑐, 𝑐, 𝑑y1, x𝑎, 𝑏, 𝑐, 𝑎, 𝑐, 𝑎y4u

Confidence Coverage Support

Event based 1ˆ10`2ˆ4
1ˆ10`1ˆ5`3ˆ4 “ 18

27 « 0.67 1ˆ10`1ˆ5`3ˆ4
5ˆ10`5ˆ5`4ˆ1`8ˆ4 “ 27

111 « 0.24 1ˆ10`2ˆ4
5ˆ10`5ˆ5`4ˆ1`8ˆ4 “ 18

111 « 0.16

Trace based 10
10`5`4 “ 10

19 « 0.53 10`5`4
10`5`1`4 “ 19

20 “ 0.95 10
10`5`1`4 “ 10

20 “ 0.5

3. The MINERful Toolkit

Figure 2 displays a schematic overview of the core functionalities offered by MINERful: discovery,
simplification, fitness checking, and simulation. For all of those, MINERful provides dedicated APIs,
intended for its usage as a library, and executable scripts, designed for client- or server-side experiments.
Next, we outline how MINERful realises those functionalities, and showcase them with a real-world log.
Automated discovery. Process discovery consists of extracting a Declare specification that effectively
represents the traces found in an event log. To cater for scalability, MINERful applies a two-staged
approach. In the first phase, it builds a knowledge-base extracting the quantitative statistics about
co-occurrences of activities. In the second phase, it queries that knowledge base to compute the
aforementioned interestingness measures related to candidate constraints, and filters out from the
results the constraints having those measures below user-defined thresholds. MINERful accepts as
an input event logs stored as eXtensible Event Stream (XES), Mining eXtensible Markup Language
(MXML) or text files (useful for rapid testing). In addition to the standard process discovery, MINERful
allows the miner to run on consecutive sub-logs, processed in a shifting-window fashion. The obtained
results can be saved in tabular formats (CSV), and tree-like structures (JSON). MINERful can print the
output in the form of finite state automata (saved as Graphviz DOT files), POSIX regular expressions,
and NuSMV LTL𝑓 formulae (see Fig. 1).
Simplification. Simplification of a process specification means reducing the constraints therein to
purge redundancies and inconsistencies while keeping the overall behaviour intact. MINERful supports
this operation by applying the method described in [6], including the sorting heuristics for constraint
fetching, and the single- or double-pass mode (as a trade-off between computation time and accuracy).
Simulation. Starting from a given process specification, MINERful enables the creation of synthetic
event logs (in XES, MXML, and text formats, to allow for a subsequent re-descovery task). MINERful
allows the user to indicate whether some constraints should be violated, and in which percentage, to
cater for a what-if analysis of partial non-conformity of runs with the input specification.



Table 4: A sample of the process specification discovered by MINERful from the Sepsis event log [16]

Constraint Event-based measures Trace-based measures

Confidence Coverage Support Confidence Coverage Support

InitpER Registrationq 0.948 0.069 0.065 0.948 1.000 0.948
ChainResponsepER Registration, ER Triageq 0.925 0.069 0.064 0.925 1.000 0.925
ChainPrecedencepER Triage, ER Sepsis Triageq 0.863 0.069 0.059 0.863 0.999 0.862
AtMostOnepIV Antibioticsq 1.000 0.069 0.069 1.000 1.000 1.000
CoExistencepIV Antibiotics, IV Liquidq 0.956 0.104 0.099 0.915 0.784 0.717
PrecedencepIV Antibiotics, Admission NCq 0.874 0.078 0.068 0.859 0.762 0.654
AlternatePrecedencepAdmission NC, Release Aq 0.999 0.044 0.044 0.999 0.639 0.638

Thresholds 0.850 0.040 0.040 0.850 0.125 0.125

Fitness checking. To evaluate how closely an event log matches a given process specification, MINERful
lets the user compare the log and process behaviour by computing the fitness of the latter with the
former. We consider fitness as defined in [14] while our computation follows the technique described in
[15], to distinguish constraint satisfactions between vacuous and relevant [11, 10], whereby the former
occur when the constraint’s activation is not satisfied.

Showcase with a real-world event log. We showcase the usage of MINERful with a real-world
event log in the healthcare domain: Sepsis [16]. Table 4 shows the results attained by running its
automated discovery and simplification engines, discovered using a laptop equipped with an Apple
M1 with 8GB of RAM in 726msec. We set the thresholds as indicated in the table, and applied the
simplification post-processing with double-pass. The constraints in Tab. 4 show the consistency of
MINERful discovered process specification with the Sepsis process model described in [17]. The process
begins with the patient’s registration (ER Registration), which is immediately followed by patient’s triage
(ER Triage). The patient’s Sepsis triage (ER Sepsis Triage) requires that step immediately before. Moreover,
antibiotics are administered (IV Antibiotics) at most once, together with liquids (IV Liquid) before the
admission to normal care ward (Admission NC). Every time a patient is discharged (Release A), a previous
admission to the normal care is necessary. The average fitness of the specification is 0.93. Finally, we
created an event log including 10% of traces violating InitpER Registrationq, to simulate runs that fully
comply with the discovered specification, except a few traces in which the patients’ data were not
recorded at the start due to a rush dictated by extreme emergency. The log can be used for variant
analysis and is provided in our code repository, described next.

4. Maturity and Availability

MINERful has been adopted in process mining research both as a stand-alone tool and as a library.
Originally developed as the mining core of a tool to extract control flows from knowledge-workers’
email [18], it was later released as a separate software prototype, and integrated in the open-source
process mining platform ProM [19]. Following further refinements and functionality extensions [20, 6],
its APIs were developed to include it in the rule mining RuM suite [21]. Thereafter, tools began including
it as a third-party library. An example is offered by the Visual Drift Detection system VDD [22], for
which the aforementioned window-shifting analysis of sub-logs was initially developed. Also, MINERful
offered the codebase forked by another LTL𝑓 specification mining toolkit, namely Janus [10]. The
various integrations with different tools and research studies provide evidence of MINERful’s versatility.

To date, the description of the different functionalities offered by MINERful was scattered among
different publications, and recent advancements and updates of the tool went undocumented. This
demo paper (bundled with the additional online material illustrated next) is intended to provide a point
of reference for researchers and practitioners who wish to utilise MINERful for their process analytic
tasks. Further functionalities and extensions are in preparation at the time of writing, and will be
included in the project code repository available at github.com/process-in-chains/MINERful.

TheMINERful toolkit’s source code can be downloaded from github.com/process-in-chains/MINERful/

https://github.com/process-in-chains/MINERful
https://github.com/process-in-chains/MINERful/tree/master
https://github.com/process-in-chains/MINERful/tree/master


tree/master. Development builds are available in the dev branch. The Wiki of the repository guides the
installation and usage of MINERful’s functionalities described in Sect. 3. The video demonstration of
MINERful is included in the repository’s read-me file, and can be watched at youtu.be/a6jEWdgS_yY.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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