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Abstract 
Requirements Engineering (RE) increasingly relies on semi-structured and multi-format inputs such 
as textual descriptions, stakeholder notes, wireframes, and technical specifications. This paper 
proposes a hybrid methodology that combines structured prompt engineering techniques, a 
conceptual metamodel, and a conceptual agent-based architecture to facilitate requirements 
generation from heterogeneous sources. The approach operationalizes independent, negotiable, 
valuable, estimable, small, and testable (INVEST) framework through prompt templates and applies 
a metamodel to formalize the transformation process, enabling evaluation and refinement of outputs. 
The conceptual architecture introduces modular agents for extraction, validation, and refinement 
tasks, facilitating collaboration and continuous improvement. Initial experiments demonstrate that 
prompt-based elicitation could help in eliciting requirements. The methodology addresses gaps in 
existing Artificial Intelligence (AI) and model-based RE approaches and contributes a framework for 
integrating Large Language Models (LLMs) into Agile requirements workflows. Future work includes 
prototyping, large-scale validation, and domain-specific adaptation. 
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1. Introduction 

Requirements Engineering plays an important role in Agile software development, yet it 
remains a challenging activity due to the informality of inputs, evolving stakeholder needs, and 
time-constrained iterations [1, 2]. Traditional RE methods often lack the flexibility to 
accommodate the dynamic nature of Agile projects, leading to inconsistencies, communication 
gaps, and delayed clarification of requirements [3, 4]. 

Recent advances in AI, particularly the emergence of Large Language Models, have shown 
potential in supporting requirement elicitation, classification, and specification through natural 
language understanding and generation [5, 6, 7]. LLMs can process unstructured information 
and generate requirement artifacts; however, they frequently lack domain adaptation, 
traceability mechanisms, and assurance of output quality [8, 9, 10]. 

Simultaneously, Model-Based Development (MBD) and Engineering (MBE) approaches offer 
structured methodologies for representing, validating, and evolving requirements using models 
such as Unified Modeling Language (UML), domain-specific diagrams, or formal specifications 
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[11, 12]. These methods support traceability and consistency but are often perceived as 
resource-intensive and difficult to integrate into lightweight Agile workflows. 

Despite individual advances, there is limited work on combining the flexibility of LLMs with 
the formal rigor of model-based techniques to support RE in Agile contexts [12, 13]. This paper 
addresses this gap by introducing a hybrid methodology that employs structured prompt 
engineering patterns, a conceptual metamodel, and conceptual agent-based architecture. The 
goal is to support Agile teams in transforming heterogeneous and often informal inputs—such 
as stakeholder notes, wireframes, diagrams, and early technical drafts—into initial requirement 
formulations that are clearer, testable, and traceable. These outputs are not meant to replace 
stakeholder-derived requirements but serve as structured starting points to accelerate 
elicitation and refinement cycles. In Agile contexts, where time and iteration pressure often 
lead to fragmented requirement documentation, such LLM-assisted transformation could 
improve clarity and reduce rework, while ensuring that final validation remains in the hands of 
stakeholders. Importantly, any generated requirement is treated as a proposal—its confirmation 
and adoption would always go through regular stakeholder review and agreement processes, 
preserving the essential human-in-the-loop principle. 

The paper is structured as following: Section 2 defines the problem context and presents the 
research questions; Section 3 reviews related work on AI and model-based approaches in 
Requirements Engineering; Section 4 outlines the research methodology and development 
process of the proposed solution; Section 5 introduces the core components of the methodology 
including prompt templates, metamodel, and agent-based architecture; Section 6 presents 
preliminary results; Section 7 describes the evaluation plan; Section 8 discusses future work 
directions, and Section 9 concludes the paper. 

2. Problem statement and research questions 

Organizations face challenges in managing requirements elicitation, analysis, and specification 
processes in Agile projects. While Artificial Intelligence tools, such as Large Language Models, 
demonstrate potential in automating requirements-related tasks, they often struggle to adapt to 
domain-specific requirements and to support effective stakeholder collaboration [5, 8, 6]. 
Similarly, Model-Based Development practices provide structured methodologies for 
requirements representation and modeling, such as UML diagrams, but can be resource-
intensive and challenging to apply in Agile workflows [11, 12]. This creates a need for an 
integrated approach that leverages AI techniques, in conjunction with MBD practices to 
streamline requirements elicitation, analysis and specification, enhance communication and 
visualization, and generate consistent models that align with Agile methodologies [6, 8]. 

Accordingly, this research aims to address the following questions: 

1. How can model-based engineering (MBE) principles be integrated into Agile 
requirements engineering workflows supported by large language models? 

2. How can prompt-based interactions with large language models be used to elicit 
requirements from heterogeneous inputs such as textual descriptions, visual diagrams, 
and domain documents? 

3. How can the quality, consistency, and relevance of AI-generated requirements be 
evaluated and improved in Agile workflows using both automated and expert-driven 
criteria? 



4. How can an agent-based tooling architecture coordinate LLM components to support 
continuous elicitation, validation, and refinement of requirements in collaborative 
settings? 

3. Related work 

Recent advancements in Requirements Engineering research have focused on leveraging AI 
technologies and integrating model-based practices to address the limitations of traditional 
methods. 

Umar and Lano [8] provide a systematic review of automation in RE, identifying that 
analysis and elicitation are the most commonly automated phases, with tools often relying on 
Natural Language Processing (NLP) techniques to generate UML models. Arora et al. [6] 
propose using LLMs to enhance RE through requirement extraction and specification, while 
Ronanki et al. [9] explore prompt engineering patterns for RE tasks like classification and 
traceability. Cheng et al. [5] and Norheim et al. [7] emphasize the potential of GenAI and LLMs 
in various RE phases, highlighting both their promise and challenges such as data limitations 
and model interpretability. 

Further studies such as Belzner et al. [14], Vogelsang and Fischbach [10], and Sami et al. [15] 
explore broader applications of LLMs across the software lifecycle, including requirement 
generation, validation, and prioritization. Mehraj et al. [5] present a tertiary review of AI4RE, 
while Spoletini and Ferrari [13] propose integrating formal RE techniques with LLMs to 
improve reliability. 

Regarding model-based integration, Huss et al. [12] introduce the Scrum Model-Based 
System Architecture Process (sMBSAP), demonstrating how MBSE can be embedded into Agile 
workflows. Agile MERODE [11] offers another integration of Agile and MDSE, emphasizing 
user stories and domain modeling to ensure traceability and iterative development support. 

Despite these advancements, there is limited work on combining LLM elicitation with 
structured modeling practices to support Requirement Engineering tasks in Agile 
environments—a gap this research aims to address. 

4. Research methodology 

The research is carried out using the Design Science Research (DSR) method [16, 17]. The 
method consists of developing a solution concept (artifact) for an identified problem and 
evaluating it in a relevant context. The research is carried out in the following steps, combining 
already implemented activities and planned future work: 

Research problem definition. An analysis has been conducted on Agile requirements 
engineering challenges, particularly related to the lack of structure, traceability, and integration 
of AI-generated requirements. The problem is positioned in the context of combining LLM-
based elicitation with modeling. 

Potential of research. The potential of applying AI tools (LLMs, prompt engineering) and 
model-based approaches in Agile requirements engineering has been analyzed to determine 
gaps and improvement opportunities. 

Problem domain analysis. A comparative analysis of literature and tool support in the 
domain of AI-based RE and MBD integration has been initiated. Relevant RE tasks are being 
mapped against possible automation opportunities using AI and prompt techniques. 



Solution conception. A hybrid methodology is being developed that combines structured 
prompt patterns, a conceptual metamodel, and a conceptual modular agent-based architecture. 
The solution is intended to enable the transformation from diverse inputs into user stories. 

Implementation and evaluation. Initial experiments are being conducted to generate user 
stories from various input formats (text, images, diagrams). Prompt patterns are being applied 
and iteratively refined. Output evaluation using the INVEST criteria and expert review is 
planned and partially in progress. 

Evaluation of the application of the solution. The feasibility of applying the 
methodology in Agile RE scenarios will be assessed through structured real-world use case 
scenarios. Planned use cases include extraction and refinement of requirements from diverse 
input types such as stakeholder notes, diagrams, and domain documents. 

Theoretical relevance analysis. The developed methodology will be compared with 
existing RE approaches in the literature. The proposed approach is positioned as a contribution 
toward combining AI-based elicitation with model-based structure in Agile contexts. 

The methodology follows an iterative design-evaluate-refine loop, aligning with the DSR 
process. Although presented sequentially for readability, the development and evaluation of 
artefacts are inherently cyclical and informed by continuous feedback. 

5. Proposed contribution 

The proposed solution is a hybrid methodology aimed at supporting requirements engineers 
during early Agile requirements engineering activities, primarily elicitation and clarification. 
The methodology integrates structured prompt engineering techniques, large language models, 
and conceptual metamodel. Its main components are as follows: 

Prompt engineering patterns 

A set of structured prompt templates is designed to guide LLMs in extracting requirements 
from heterogeneous inputs, including stakeholder descriptions, diagrams, and annotated 
images. These prompts follow repeatable patterns and are adapted to support Agile-specific 
requirements such as INVEST-compliant user stories. An example of a structured prompt 
template can be accessed via the following GitHub repository: 
https://gist.github.com/ntelio/c4c9737576844020fd37e94f9a1037e4. 

The presented prompt template operationalizes Agile requirements engineering principles 
by guiding large language models in the extraction and structuring of user stories from 
heterogeneous input formats. It enforces a consistent user story structure aligned with the 
INVEST criteria and introduces mandatory quality controls such as clarity, testability, and 
business-driven prioritization. The template includes processing strategies for various input 
types (text, wireframes, technical specifications, annotated images), ensuring coverage of both 
functional and system-level requirements. Furthermore, it enhances traceability by requiring 
each user story to include its source and a justification of priority. 

Conceptual metamodel 

A conceptual metamodel (as illustrated in Figure 1) has been developed to represent the 
structure and relationships between the inputs, transformation processes, generated artifacts, 
and evaluation mechanisms involved in the AI-assisted requirements engineering workflow.  



 

Figure 1: Conceptual metamodel for AI-assisted requirements engineering workflow. 

The metamodel includes the following core entities: 

• InputArtifact – represents the original requirement sources (textual documents, images, 
diagrams, wireframes, or specifications). Each artifact is referenced by its file metadata 
and categorized by type. 

• PromptTemplate – defines reusable structured prompt patterns, which guide the large 
language model in transforming raw input into requirements. 

• PromptInstance – represents a single invocation of the LLM using a specific prompt and 
input artifact. It captures the actual prompt text and timestamp of execution. 

• UserStory – the main output artifact generated by the LLM. Each user story follows a 
structured format including role, action, goal, testing scenario, priority level, 
justification, and a reference to its source. 

• EvaluationResult – captures the quality assessment of a generated user story based on 
dimensions such as clarity, testability, completeness, and traceability. It records human 
review status and feedback. 

• TraceLink – maintains traceability between generated user stories and their originating 
input artifacts to ensure requirement coverage and auditability. 

Agent-based architecture (conceptual) 

A conceptual architecture is outlined for future implementation, to support the orchestration 
of AI-assisted requirements engineering workflows as shown in Figure 2. At the center of this 
architecture is a CoordinatorAgent, which manages the overall process and serves as the 
communication point with the human Analyst. The CoordinatorAgent assigns responsibilities 



to modular, task-specific agents, each handling a distinct phase of the requirements 
transformation process.  

 

Figure 2: Conceptual agent-based architecture for orchestrating AI-assisted requirements 
engineering tasks. 

The architecture includes the following agents and artifacts:  

• ExtractorAgent – accesses the initial InputArtifact (e.g., textual descriptions, diagrams, 
images, domain documents) and applies a predefined Prompt Template to formulate 
structured prompts. These prompts are submitted to the large language model, which 
returns generated content. Validator 

• Agent – reviews the Structured Output received from the LLM and produces an 
Evaluation Result based on defined quality criteria. It also forwards feedback to the 
Refiner 

• Agent. RefinerAgent – receives feedback from the ValidatorAgent and refines the 
Prompt Template accordingly. It may also use information from Evaluation Result to 
improve future prompt formulations. Coordinator 

• Agent – orchestrates the entire process by managing task delegation (input analysis, 
validation), linking generated outputs to their sources through Trace Link, and 
returning the final structured results to the Analyst. Trace 

• Link – maintains references between the original Input Artifact and the corresponding 
Structured Output, ensuring transparency and traceability throughout the process. The 
Coordinator Agent manages the flow between these agents and maintains traceability 
by linking requirements to their sources. 



6. Preliminary results 

Initial experimentation was conducted to test the effectiveness of prompt engineering strategies 
for LLM-based user story generation. Experiments were carried out using multiple prompting 
styles: few-shot, one-shot, and zero-shot, across different data sources such as textual 
descriptions, stakeholder notes, and document-based requirements across several real-world 
projects. 

The experiments included two distinct cases: 
Case 1 – Small-scale project: A domain with 34 user stories. The input set consisted of 8 files, 

including stakeholder notes, diagrams, and wireframes. All three prompting strategies—zero-
shot, one-shot, and few-shot—were applied to the same input data. 

Case 2 – Larger system: A more complex domain with 70 user stories. The input set included 
over 60 diverse files such as stakeholder notes, screenshots, diagrams, and structured 
documentation. Again, all three prompting strategies were tested for comparative purposes. 

In both cases, prompts were executed using the ChatGPT web interface. A golden standard 
set of reference user stories was manually constructed based on original domain requirements, 
and used as ground truth for comparison. Generated outputs were evaluated by comparing 
requirement coverage. Some key results include: 

• Few-shot prompting demonstrated higher alignment with the golden standard than one-
shot or zero-shot strategies. 

• Input sensitivity was observed: clearer, more structured inputs led to more accurate 
outputs. 

• In one of the evaluated projects, few-shot prompting achieved up to 94% requirement 
coverage, with results varying based on the applied prompting strategy. 

• Challenges included variability in LLM output phrasing, redundancy, and hallucination 
of features. 

These findings suggest that prompt design influences output quality and provide a 
foundation for further evaluation and iterative refinement of the methodology. 

7. Evaluation plan 

The evaluation of the proposed methodology will be conducted in several phases. The goal is 
to assess the feasibility of prompt-based requirement extraction and the usability of the 
methodology in Agile Requirements Engineering contexts. The evaluation will focus on the 
following dimensions: 

Prompt effectiveness evaluation 

Experiments will compare different prompt strategies (few-shot, one-shot, zero-shot) 
applied to various input formats such as textual descriptions, stakeholder notes, and diagrams. 
The generated requirements will be evaluated against a manually constructed golden standard 
by domain experts. The evaluation criteria will include: correctness of extracted requirements, 
alignment with INVEST framework, usefulness in real-world Requirements Engineering 
scenarios. 



Scenario-based usability testing 

Structured scenarios will simulate realistic Agile meetings and documentation workflows. 
Analysts will be provided with multi-format input artifacts and will assess the usability of the 
generated outputs in activities such as decision-making, requirement clarification, and backlog 
formulation.  

Comparison with baseline methods 

Where applicable, baseline methods—such as manually written requirements or LLM-
generated outputs without prompt guidance—will be used for comparative analysis to evaluate 
the added value of the structured methodology. 

Feedback-driven iteration 

Expert and analyst feedback will be used to identify opportunities for improving prompt 
templates, metamodel structures, and process workflows. This refinement loop aims to ensure 
the methodology remains adaptable and context-aware. 

8. Future work 

The current research has focused on developing the core components of the methodology: 
prompt templates, a conceptual metamodel, and initial experimentation with LLM-based 
requirement generation. Future work will extend and deepen the evaluation and 
implementation of these components in the following directions: 

Agent-based architecture framework 

The proposed agent-based framework will be described and demo could be implemented. 
Each agent (Extractor, Validator, Refiner) will be assigned distinct roles and integrated through 
structured interaction protocols. 

Tool prototype development 

A working prototype will be developed to support input submission, prompt execution, 
output visualization, and traceability mapping. The interface will be designed for Requirement 
Engineering analysts working in Agile contexts. 

Expanded evaluation scenarios 

Additional use cases from different domains will be used to test generalizability. Structured 
interviews and usability feedback will help refine the tool. 

9. Conclusion 

This paper presented a hybrid methodology that combines structured prompt engineering, a 
conceptual metamodel, and a conceptual agent-based architecture to support requirement 
elicitation from heterogeneous sources in Requirements Engineering. The proposed approach 
addresses the lack of structure, traceability, and quality control in current LLM-based 
requirement generation by integrating prompt patterns and traceable transformation 
workflows. Preliminary experiments demonstrate that prompt design impacts output coverage 
and quality, while the conceptual architecture provides a foundation for modular orchestration 
and continuous improvement. Future work will focus on implementing a working prototype, 
expanding evaluation scenarios, and exploring domain-specific adaptations to further validate 
the methodology and its applicability in real-world software development environments. 
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