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Abstract
The Smart Building paradigm promises a future where buildings are intelligent, adaptive, and sustainable, offering
real-time information retrieval that supports decision-making to enhance energy efficiency, occupant comfort,
and security. However, achieving such a paradigm is highly complex, one major reason being the seamless
integration of (a) physical and functional representations of buildings (i.e., Building Information Modeling) and
(b) real-time IoT (i.e., Internet of Things) data. As a contribution to this challenge, we propose a hybrid Artificial
Intelligence approach where, on the one hand, a knowledge graph retains the buildings’ knowledge structures
and a time-series database holds IoT data. On the other hand, a Large Language Model serves as a mediator
between a facility manager and the knowledge graph and IoT data, facilitating data-driven decision-making
processes. The approach has been developed through the Design Science Research methodology. The evaluation
was carried out through a technical prototype that instantiates the novel approach and proves its feasibility.
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1. Introduction

Building Information Modeling (BIM) and the Internet of Things (IoT), while powerful individually,
achieve a new level of significance when their inherent strengths are combined [1]. BIM strives to
provide a comprehensive digital representation of a building’s physical and functional characteristics,
offering a centralized repository of information throughout the building’s lifecycle, from design to
demolition. IoT, on the other hand, furnishes a network of connected sensors and devices that generate
real-time data on a building’s operation and environment. When integrated, this confluence of rich
design data and dynamic operational data enables unprecedented insights. Domain experts like facility
managers can optimize energy consumption based on actual usage patterns, predict maintenance needs
based on sensor readings, and enhance occupant comfort through automated adjustments, leading to
substantial cost savings and improved building performance. However, integrating BIM and IoT remains
challenging. Because they evolved separately, differences in data formats, communication systems,
and interoperability hinder data sharing and collaboration between the fields [1]. Overcoming these
issues is crucial to realizing the full potential of a connected, data-driven approach in construction and
building management. This challenge is often exacerbated by the fact that most IoT devices and sensors
are deployed during the operational phase, while they are not typically integrated into the initial BIM
models created during the design phase [2]. Consequently, real-time data produced by IoT systems
(such as energy usage, environmental conditions, or equipment status) frequently remains excluded
from the BIM models. This exclusion limits the ability to utilize BIM as a dynamic, evolving tool that
accurately reflects the building’s performance and operational conditions throughout its lifecycle.
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As we report in Section 2, while recent works strive to address the challenge of integrating BIM with
IoT, they heavily rely on semantic technologies like ontologies and knowledge graphs. These have
the advantage of overcoming the interoperability issue among data models, but their use for effective
information retrieval still necessitates substantial engineering to develop complex interfaces that aid
stakeholder decisions during building operation. In contrast, this paper proposes a hybrid AI approach
that combines a structured knowledge graph for BIM with IoT-sensed data, leveraging a Large Language
Model to improve information retrieval and improving decision-making for stakeholders during the
building’s operational phase.

The remainder of this paper is as follows. Section 2 describes the related work and motivates the
research question. Section 3 introduces the Design Science Research (DSR) as the followed methodology.
Section 4 describes the proposed hybrid AI architecture. The proof of concept and the discussion on the
current limitations are elaborated in Sections 5 and 6, respectively. Finally, Section 7 summarizes and
concludes the paper.

2. Related work

Recent literature reports significant efforts in integrating the two paradigms BIM and IoT for various
purposes, with the tendency to leverage ontologies and knowledge graph technologies. In [3], the
authors introduced a cross-source data management and analysis framework to support evacuation path
planning and emergency response decisions in fire scenarios, supported by a specialized FireEvacuation
ontology. The work in [4] proposed a service-oriented architecture for data-driven smart buildings,
utilising semantic technologies as an integral part of the architecture, essential for adding context to
operational data and creating links between diverse systems. The approach in [5] proposed a flexible
energy modeling framework based on the SAREF ontology and its SAREF4BLDG extension. It offers
models for typical systems and devices, and a method for linking and simulating components using
also the SAREF4SYST extension. Researchers in [6] presented a framework for integrating BIM and
IoT data using an ontology-based mediation mechanism. It enables integrated access to local BIM
and IoT data through query-rewriting processes. The paper [7] introduced the Building Topology
Ontology (BOT), which provides a high-level description of the topology of buildings including storeys
and spaces, the building elements they contain, and their web-friendly 3D models. They also describe
how existing applications produce and consume datasets combining BOT with other ontologies that
describe product catalogues, sensor observations, or Internet of Things (IoT) devices. [8] demonstrates
how the integration of BIM and IoT data can be used to monitor the indoor environmental quality of a
building. With their approach, they were able to query the topology, static, and dynamic properties
from a graph database and then query the corresponding sensor data from a time-series database. The
work in [9] conducted a review of the main ontologies and applications that support the development
of Decision Support Systems and decision making in the different phases of a building’s life cycle. This
study also highlighted that most ontologies lack real-life applications and some applications are focused
mostly on the design phase of a building or its early operation, indicating their early development stage.
Researchers in [10] designed an ontology, called Building Performance Ontology (BOP), that integrates
topological building information with static and dynamic properties for improving the monitoring of
indoor environments. Authors in [11], introduced a novel multi-layer architecture and a comprehensive
framework for smart-building digital twins, with a primary focus on enabling semantic interoperability
among smart-building digital twin applications. The approach provides a semantic static (BIM) and
dynamic (IoT) building data that satisfy the real-time data requirements of smart-building digital twins
while preserving IoT data in its optimal time-series data storage. Similarly, in [12] the authors showcased
the integration of construction documentation, facility management records, and real-time data obtained
from building automation systems within a Cognitive Digital Twin. A W3C-compatible approach was
created, drawing from the BOT ontology and integrating it with the Brick Ontology. [13] developed
a Digital Twin using a micro-service architecture, which facilitates cloud deployment and enables
modularly defined functionalities. The knowledge graph acts as the contextual interface that provides a



comprehensive view of all data and all models. The semantic information is stored in the Neo4j database
and structured as a property graph, following the concepts and relations defined in the IFC schema. [14]
constructed a general City Information Model ontology to integrate heterogeneous building information
modeling (BIM), geographic information system (GIS) and IoT data. A new ontology has been developed
(BIM-GIS Integration Ontology) and mapped with the Brick and SSN ontologies. In [15], the researchers
described a realization of a Semantic Digital Twin through the use of modular knowledge graphs instead
of using monolithic graph architectures. The advantage of the approach lies in the possibility to merge
independently developed knowledge graphs into a single one that is easier-to-understand, better to
reason with, and also reusable. In addition, when integrated with real-life systems, modular graphs
improve performance by loading only the needed segments, eliminating problems with querying and
reasoning in large stores. Although semantic-based approaches have advantages, information retrieval
presents a common challenge, demanding either substantial expertise in ontology design for complex
SPARQL queries or the development of integrated, user-friendly interfaces.

Recent advances in Information Systems suggest combining the strengths of both Knowledge Graphs
and Large Language Models to address these limitations [16, 17]. Such a combination falls into the
research realm of Hybrid Artificial Intelligence, because it considers two approaches from the two sides
of AI: the Symbolic AI (i.e., KG) and Sub-symbolic AI (i.e., LLM). Therefore, the research question we
investigated in this work is the following: How effective is a hybrid artificial intelligence approach that
combines knowledge graphs and LLMs to integrate BIM and IoT data for supporting information retrieval
by domain experts? As mentioned in the introduction, facility managers are examples of domain experts
in Smart Buildings.

3. Methodology

The methodology followed to answer the research question of this work is the Design Science Research
(DSR), which proposes five main phases [18]: problem awareness, suggestion, development, evaluation
and conclusion.

During the problem awareness phase, we aim to deepen the understanding of the problem from
both research and application perspectives. Based on our literature review, we found the architecture
proposed in Donkers et al. [8] (for real-time building performance monitoring using semantic digital
twins) to be the closest to our problem, therefore we decided to build our approach from it. Their
architecture integrates knowledge structures of BIM and IoT data to monitor the indoor environmental
quality (e.g. air quality index) of a building. Specifically, they used an Open Smart Home (OSH) dataset
[19] conformed to the BOT [7] and BOP ontologies [10] and a built a custom-built Python component
to navigate the knowledge graph, pick a property (e.g., temperature, humidity, and illuminance), and
return the corresponding value from a time-series database for an overall calculation.

Differently from [8], we replaced the static Python component with an LLM-based component, to
promote scalability of the approach.

From an application point of view, we focused on the same OSH dataset and analysed it using the
developed prototype.

This dataset was developed by the Fraunhofer Institute for Building Physics in Nuremberg, Germany
[20] and provides both static and dynamic aspects of a real smart home environment and is intended
to support investigations into energy efficiency, control strategies, and building performance analysis.
The OSH scenario represents a two-story building; the ground floor is shown in Fig. 1. This floor
has a bathroom, kitchen, lobby, and toilet, each enclosed by four walls and a ceiling. Walls include
doors, windows, and sensors. A gas boiler provides hot water to radiators in all rooms except the lobby.
Windows have manual shutters for shading.

Static data is available in IFC and Revit formats, and also in RDF and makes use of concepts from
the BOT and PROPS ontologies. Dynamic data, representing sensor readings, is provided in CSV and
RDF formats, employing the SSN/SOSA ontologies. Measurements from the sensors span the period
from March 9, 2017, to June 6, 2017, with a variable sampling rate up to 15 minutes. The smart home is



Figure 1: Rendering of first building level from Open Smart Home Data [19].

equipped with a system offering the following capabilities:

• Wall-mounted sensors in rooms with space heaters (not in the staircase or lobby), measuring air
temperature, illuminance, and humidity.

• Remote-controlled thermostat valves on each heater, logging the setpoint and local air tempera-
ture.

• A base station that communicates wirelessly with sensors and actuators, connects to the internet
for weather forecasts, and provides a virtual outdoor temperature per room.

• A smartphone application for controlling setpoints, scheduling, and monitoring real-time mea-
surements.

In the suggestion phase, we proposed a novel hybrid AI architecture where an LLM enables the
integration of concepts from a knowledge graph and respective IoT values from a time-series database.
Therefore, we leveraged the architecture in [8] with he same dataset to inform our suggested artifact.

In the implementation phase, we implemented the proposed architecture in a technical prototype,
where the user interface takes the form of a virtual assistant or bot.

Finally, in the evaluation phase, we integrated the OSH RDF-based dataset in the technical prototype
and then answered competency questions that a facility manager would find helpful. The strategy of
answering competency questions is a well-known evaluation technique in ontology engineering [21].
The competency questions have been derived based on the presented dataset and the work of Donkers
et al. [8]. An example for such a competency question is the following: For thermal performance and
maintenance purposes, it is important to know the material composition, the structure and the dimensions
of specific walls.

4. The hybrid AI architecture

In this section, we describe the proposed hybrid AI architecture that combines knowledge graph and
LLM capabilities to support information retrieval for domain experts. The resulting architecture is
reported in Fig. 2.



Figure 2: Overview of the proposed hybrid AI architecture, integrating an LLM with a knowledge graph and a
time-series database to support users in retrieving information from BIM and IoT data.

The hybrid AI architecture relies on a knowledge graph to semantically represent the structure of
both the BIM model and the IoT infrastructure. Accordingly, the selection of the appropriate ontologies
is essential to enable knowledge-driven smart buildings. Following the findings from Donkers et al.
[8], we selected the BOT and the BPO ontologies. The BOT ontology is used to describe the physical
structure of the building, including elements such as spaces, walls, and their topological relationships,
making it suitable for modeling the knowledge structure of the building. The BPO ontology, on the
other hand, is employed to represent knowledge information about sensor and actuator data. This
combination allows us to create a more comprehensive model that can represent the integration of BIM
and IoT information effectively. The combined semantic information including building structure and
IoT infrastructure information are stored into RDF format using the knowledge graph.

While a graph database model is well suited for storing entities and their semantic relationships in
RDF triple stores, it does not scale efficiently when dealing with large volumes of historical IoT data [22].
To handle the actual IoT sensor data, a time-series database is used as a complementary component
to the knowledge graph [23]. Its role is to efficiently store and manage the sensor readings over time,
such as temperature, humidity, and light levels. The database enables fast retrieval of the most recent
sensor values, supports aggregation queries over historical data, and allows for horizontal scalability
when managing large volumes of IoT measurements. The linkage between the two layers is established
via unique sensor identifiers that are consistently represented in both the knowledge graph and the
time-series database.

The combination of the knowledge graph and the time-series database results in two distinct data
storage systems, typically each with its own query such as SPARQL for semantic information retrieval
from the knowledge graph, and dedicated NoSQL-like query languages for accessing the time-series
database [24]. Moreover, having two separate data stores requires the user to define additional aggrega-
tion mechanisms, potentially increasing the complexity of retrieving meaningful insights about the
building.

To overcome this limitation, we introduce the LLM component with a retrieval-augmented generation
capability [25], which provides uniform access to both data sources. The LLM acts as a mediator
in the information retrieval process, being enhanced with external knowledge retrieved from both
the knowledge graph and the time-series database. We supplemented the LLM with a dedicated user
interface, which acts as a virtual assistant capable of understanding and responding to natural language
queries from domain experts. This assistant enables users to ask complex questions about building
components, their properties, and sensor readings, thus providing a more intuitive and accessible
approach to information retrieval tasks related to the knowledge structure of the building and IoT data.



5. Proof of concept

In this section, we describe both (1) the technical prototype that implements the suggested hybrid
AI architecture, and (2) the evaluation of the approach’s effectiveness. For the latter, we used the
competency questions that, in natural language, have been added as prompts to the virtual assistant.
The results have been compared qualitatively with the OSH dataset, which is the ground truth. The
source code for the implementation is available on GitHub1.

5.1. Artifact development

For storing the BIM and IoT knowledge structures, we used GraphDB by Ontotext,2 a semantic graph
database compliant with W3C standards and designed to store and manage RDF data. GraphDB is fully
compatible with widely used ontology standards and supports the SPARQL query language, which
enables users to retrieve and manipulate data stored in the database.

For storing the IoT data, we used the time-series database InfluxDB 3 by InfluxData. InfluxDB is
optimized for fast ingestion, querying, and aggregation of time-series data, making it well-suited for
monitoring, IoT, and real-time analytics applications. InfluxDB provides Flux, a powerful functional
query language designed explicitly for time-series workloads. It supports data manipulation, statistical
analysis, joins, and integration with external systems.

For the LLM component, we integrated Claude 3.5 Sonnet4, developed by Anthropic, using the
standard cloud API. We selected Claude over other LLMs because, at the time of implementation, it
demonstrated adequate results in graph query generation tasks [26]. Claude allows us to interpret
natural language queries from users by identifying the underlying intent behind questions related to
the knowledge structure of the building and IoT sensor data. It then generates appropriate queries
for both the knowledge graph and the time-series database, processes the raw results, and produces
human-readable explanations.

To integrate LLM and data sources, we employed LangChain5, a popular Python-written framework
designed to facilitate the development of LLM-driven applications. LangChain is based on three core
components: Chains which represent deterministic sequences of steps to handle user inputs such as
prompting, parsing, and transformation; Tools which are custom Python modules used to integrate the
external systems through APIs and allow the LLM to obtain augmented information used to enrich
the responses; Agents which use the LLM to reason over tasks and dynamically decide which Tools or
Chains to invoke based on the available context.

We used the Chain OntotextGraphQAChain from LangChain to interact with GraphDB. We configured
the Chain to automatically generate SPARQL queries using Claude based on the input and retrieve
relevant building information from GraphDB. This is done by passing to the Chain the ontologies as the
input schema of the database and a set of prompts to instruct the LLM. Listing 1 shows an excerpt from
the prompt we defined to query the knowledge graph. The full set of prompts used in the evaluation is
available on the project’s GitHub repository.

1 You are an expert GraphDB Developer translating user questions into SPARQL to answer
questions about a building and the elements contained in it. Use only the provided
relationship types and properties in the schema.

2 Do not use any other relationship types or properties that are not provided.
3

4 Your answers should be concise and to the point. Do not include any additional
information that is not requested. Answer with only the generated SPARQL statement.

5 Try to use meaningful aliases for the nodes and relationships in the query. Here there
are some examples of how to respond to the user’s question:

1BIM-IoT-Assistant: https://github.com/PROSLab/BIM-IoT-Assistant
2GraphDB: https://www.ontotext.com/products/graphdb/
3InfluxDB: https://www.influxdata.com/
4Claude: https://www.anthropic.com/claude
5LangChain: https://www.langchain.com/

https://github.com/PROSLab/BIM-IoT-Assistant
https://www.ontotext.com/products/graphdb/
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6 <example>
7 Tell me about the bathroom in the building
8 PREFIX bot: <https://w3id.org/bot#>
9 PREFIX props: <https://w3id.org/props#>

10 SELECT ?room ?relationship ?value
11 WHERE {{
12 ?room props:longNameIfcSpatialStructureElement_attribute_simple ?name.
13 FILTER(CONTAINS(?name, "Bathroom"))
14 ?room ?relationship ?value
15 }}
16

17 What can be found in the kitchen?
18 PREFIX default1: <https://w3id.org/bot#>
19 PREFIX default2: <https://w3id.org/props#>
20 SELECT ?space ?element
21 WHERE {{
22 ?space default2:longNameIfcSpatialStructureElement_attribute_simple ?name.
23 FILTER(CONTAINS(?name, "Kitchen"))
24 ?space default1:containsElement ?element.
25 }}
26 ....

Listing 1: An excerpt from the prompt used to generate SPARQL queries over GraphDB.

To retrieve the data from the IoT sensors, we developed a Tool that executes a custom Chain used by
the LLM to retrieve the sensor identifier from the knowledge graph. The LLM then, informed with the
identifier, queries InfluxDB to retrieve the actual time-series values. An Agent orchestrates these two
components by driving user queries based on the inputted context.

Finally, the web user interface has been developed using the Streamlit6, a Python library that supports
the user in the interaction with the virtual assistant. The web application implements a chat-like
interface through which users can submit queries in natural language and receive responses.

5.2. Artifact evaluation

To evaluate the effectiveness of the proposed approach, we used the prototype. Namely, we first
imported the OSH dataset into GraphDB using its RDF representation, which conforms to the BOT and
BOP ontologies. To import the IoT sensor data into InfluxDB, we adopted a strategy similar to that
described in [8]. That is, we first converted the input CSV files into the InfluxDB line protocol format
and then imported them into the time-series database.

We configured the Chain to generate the SPARQL automatically and we passed both the BOT and BOP
ontologies, in TTL format. However, this configuration caused the input to exceed the 200,000-token
limit of Claude 3.5 Sonnet during the query generation. To reduce the number of input tokens, we then
passed only the instances and respective relationships of the dataset, thus omitting the schema. This
reduced the total token count to under 60,000 and allowed us to define a set of prompt examples to
guide the LLM in generating the appropriate SPARQL queries.

We applied a similar strategy in the Chain we developed to retrieve the information about IoT data.
However, Claude consistently failed to generate SPARQL queries to extract the sensor identifiers from
the GraphDB, which was required to then query InfluxDB. More in detail, the LLM attempted to retrieve
sensor measurements directly from GraphDB rather than the sensor identifiers. We believe that this
behavior may be attributed to the excessive amount of contextual information provided, which likely
caused the model to misinterpret the user’s intent.

To address this issue, we modified the custom chain to use only the schema, i.e., classes, object
properties, and data properties. The corresponding SPARQL query is shown in Listing 2. This solution
significantly reduced the amount of contextual information passed to the LLM, lowering the input to

6Streamlit: https://streamlit.io/

https://streamlit.io/


fewer than 5,000 tokens and enabling the generation of SPARQL queries that correctly extracted the
sensor identifiers.

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 CONSTRUCT {
4 ?class a rdfs:Class .
5 ?class ?objectProperty ?relatedClass .
6 ?class ?dataProperty "" .
7 }
8 WHERE {
9 {

10 # Extract classes
11 SELECT DISTINCT ?class
12 WHERE {
13 ?instance a ?class .
14 }
15 }
16 {
17 # Extract object properties for each class
18 SELECT DISTINCT ?class ?objectProperty ?relatedClass
19 WHERE {
20 ?instance1 a ?class.
21 ?instance2 a ?relatedClass.
22 ?instance1 ?objectProperty ?instance2.
23 }
24 }
25 {
26 # Extract data properties for each class
27 SELECT DISTINCT ?class ?dataProperty
28 WHERE {
29 ?instance a ?class.
30 ?instance ?dataProperty ?dataValue.
31 FILTER NOT EXISTS { ?dataValue a ?moreclass.}
32 }
33 }
34 }

Listing 2: SPARQL query used as the schema in the custom Chain to extract sensor identifiers.

As a result of the adjustments described above, the virtual assistant was able to respond to both
building-related and sensor-related queries successfully.

In accordance with the research methodology, we present a set of competency questions used to
evaluate the effectiveness of the approach. Specifically, we engaged with the virtual assistant by asking
the competency questions. In doing this, we simulated the interaction of a facility manager seeking
information about the building structure and the data generated by the IoT infrastructure. Most of
the competency questions have been answered correctly. In the following we described a few of the
competency questions that have been correctly answered. In section 6, we show the only competency
question that the virtual assistant failed to answer. The list of the competency questions is available on
the project’s GitHub repository.

For example, when we asked for information about the rooms located on the first floor, the assistant
correctly listed all the rooms present in the dataset (see Fig. 3). A similar result was obtained when
we requested information about a specific room, such as the kitchen. The virtual assistant accurately
retrieved the elements contained within it, including the instances of the IoT sensors (see Fig. 4).

Another example involves retrieving information about the material composition of the building
structure. In this case, when we asked for details about a specific wall, the virtual assistant successfully
returned comprehensive information. The virtual assistant successfully retrieved information about the



Figure 3: Answer to the user query "List the rooms located on the first floor".

Figure 4: Answer to the user query "Information about the kitchen room".

IoT infrastructure, providing the user with the sensors installed on the wall (see Fig. 5).

Figure 5: Answer to the user query "Details of a specific element of the building structure".

We then asked the assistant to provide information about the values recorded by a specific sensor
installed on a wall. As the OSH dataset does not include real-time data, we specified a time range in
2017 for which measurements were available. Once again, the virtual assistant successfully responded
to the query, providing the user with the temperature measurement alongside the time stamp of the
observation (see Fig. 6).



Figure 6: Answer to the user query "Which is the lowest temperature registered in the kitchen?"

6. Discussion and limitations

Given the positive output in the evaluation, we regard the proposed hybrid AI architecture as a promising
approach to overcome the integration issues between BIM and IoT in a scalable way. In fact, the virtual
assistant is able to interact with the user, interpret their questions, generate appropriate queries for the
databases, retrieve the data, and present the results to the user in a natural language.

The evaluation proved that the virtual assistant is capable of answering the majority of the queries. It
showed some difficulties to retrieve information that involve relationships and hierarchies. For instance,
when we asked questions involving building structures such as identifying rooms adjacent to another
room, the assistant failed to answer meaningfully (see Fig. 7). We observed that this behavior stems
from the way the building structure is represented: rooms are not directly connected to one another, but
are instead linked through intermediary elements such as walls and slabs. However, in all the generated
queries, the LLM attempted to retrieve elements directly adjacent to the room, thereby overlooking the
actual structural hierarchy.

Figure 7: Answer to the user query "Rooms adjacent to another room".

To address these issue, we are currently investigating the design of additional prompts to help the
LLM reason over such fine-grained representations of building topology.

Furthermore, we observed that accessing the knowledge structure of the building stored in GraphDB
often requires the LLM to execute multiple SPARQL queries to retrieve certain properties. This is due
to the granular representation of the knowledge structure in GraphDB, which makes the information
retrieval process more complex. As a consequence, the LLM must be instructed to generate more
complex SPARQL queries to retrieve these properties, which involves providing additional examples in
the prompt and increases the overall complexity of the query generation process.



7. Conclusion

In this paper, we proposed a novel hybrid artificial intelligence approach that combines a structured
knowledge graph for BIM with IoT-sensed data, leveraging both semantic technologies and Large
Language Models (LLMs).

We adopted a Design Science Research strategy to address the research question of how such a
combination can support information retrieval for domain experts. In result, the proposed architecture
has been implemented in a technical prototype, which takes the form of a virtual assistant.

The open OSH RDF-based dataset has been selected as a suitable real-world case for a BIM and IoT
integration. This dataset served as a ground truth in the evaluation of the proposed architecture. In
result, the approach proved to be effective as most of the competency questions have been correctly
answered.

Future works are multiple. Firstly, it would be interesting to replicate the evaluation by considering
other datasets as ground truth. We also plan to integrate and compare the performance of other LLM
models to assess the effectiveness of our prototype. Next, given the evolution of LLMs towards reasoning
capabilities, as future work, we aim to go beyond information retrieval and leverage the LLM to make
calculations that can be regarded as useful by facility managers such as the indoor environmental
quality of the building.

Another interesting future direction concerns the use of Labeled Property Graphs (LPGs), which
have already been applied in similar contexts [27]. The goal is to assess whether LLMs can provide
comparable support when used with LPGs instead of RDF-based knowledge graphs. This investigation
will also raise questions regarding the effectiveness of LPGs in addressing some of the limitations
discussed in this paper.
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