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Abstract 
Mistakes and errors are an integral part of almost any complex enterprise system. Many 
of them face challenges, including limited functionality, data integrity issues, and 
interoperability problems. As a result, user operations may be blocked, requiring manual 
fixes. This paper proposes a method designed to detect such issues and provide AI-
assisted temporary mitigations with user oversight. It has been implemented and 
evaluated by an experimental application, with the open-source code made publicly 
available. The method has been validated within three practical scenarios, 
demonstrating its effectiveness in handling tactical failures in enterprise systems. 
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1. Introduction 

Modern enterprise systems become increasingly complex due to legacy dependencies, evolving 
business logic, and integration with heterogeneous services. Consequently, systems frequently suffer 
from functionality gaps, data integrity violations, and interoperability issues. Such errors may arise 
from edge cases, historic data model changes, or insufficient test coverage, and often remain 
undetected until users are affected in testing or production environments. Software engineers can 
address such issues quickly in development environments. Errors that reach production typically 
require costly, coordinated intervention involving diagnosis, patching, and even modification of 
customer data. This increases operational risk and cost, particularly when errors block users from 
completing their operations. 

Advanced system monitoring tools, such as Sentry [1] or New Relic [2], typically notify software 
engineers only after failures occur. Usually, such a process heavily relies on manual diagnostics and 
code changes. This reactive paradigm often fails to meet modern enterprise resilience demands, 
contributing to increased recovery costs due to late-stage error detection. 

Research on defect repair efficacy in enterprise resource planning (ERP) production systems [3] 
and ERP digital transformation [4] highlights the persistent nature of system repair and architectural 
adaptation challenges. Similarly, interoperability issues in integrated environments such as hospital 
ePrescribing [5] systems are well-documented. Interest in AI-based anomaly detection frameworks 
is increasing. For instance, tools such as ConAnomaly [6], Logformer [7], and HitAnomaly [8] 
demonstrate how AI/ML can proactively identify system log anomalies, indicating a growing shift 
toward autonomous and context-aware system management. 

The systematic review by [9] further confirms the importance of runtime adaptation in self-
adaptive systems, particularly for managing system uncertainty and evolving operational contexts. 
In response, this paper proposes an AI-assisted method for mitigating temporary errors, aimed at 
unblocking user operations in enterprise systems while preserving data and system integrity. The 
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research approach aligns with empirically grounded design practices, as outlined by [10], which 
combines systematic literature reviews, design science, and scenario-based evaluation. 

The research question addressed by the paper is as follows: How can errors that lead to 
functionality gaps, data integrity violations, and interoperability issues in enterprise systems be 
mitigated through automated detection and temporary AI-assisted actions that unblock user 
operations? 

The paper addresses the ongoing challenge of handling complexity within enterprise systems by 
presenting a runtime approach that improves system resilience through AI-supported detection and 
automatic mitigation. The approach aligns with the managed complexity paradigm by addressing 
errors dynamically, reducing manual intervention, and improving the self-healing capabilities of 
enterprise software at the middleware level.  The author proposes error event resolution with log 
anomaly detection as the extended approach. 

An enterprise system refers to an integrated software platform that supports and automates the 
core operational processes, data flows, and information management across an organization. 
Following the Systems Engineering Body of Knowledge perspective on Enterprise Systems 
Engineering (ESE), an enterprise system operates across multiple layers: strategic business processes, 
information processing, and IT/software infrastructure. 

This paper focuses on the software and information processing layers of enterprise systems, 
specifically middleware-level components responsible for runtime error detection, data consistency, 
and interoperability between subsystems, including ERP, CRM, and third-party APIs. The paper 
proposes a method for mitigating functionality gaps, data integrity violations, and interoperability 
issues in enterprise systems through the use of automated detection and agent-based AI techniques 
for temporary mitigation. 

The intended users of the proposed method are enterprise system administrators, DevOps and 
software engineers, and experts in organizations responsible for maintaining data integrity and 
operational continuity. The method is designed to integrate into existing enterprise IT ecosystems 
as a middleware service, interfacing with ERP/CRM systems via APIs or event listeners. Detected 
errors and proposed mitigations are available through a dedicated administrator dashboard. Data can 
also be forwarded to issue-tracking systems or notification tools. The given design ensures corrective 
actions are traceable, thus minimizing disruption to ongoing operations. The rest of the paper is 
structured as follows: Section 2 describes related work, Section 3 presents the proposed method, and 
Section 4 concludes the paper. 

2. Related Work 

This section discusses related works on strategies, techniques, and methods that address (1) 
functionality gaps, (2) data errors, or (3) interoperability issues in enterprise systems. It also touches 
upon anomaly detection in enterprise systems.  The related works help define the requirements for 
an AI-based method to address the issues mentioned above. 

2.1. Functionality Gaps and Architecture Debts 

Although researchers have focused only limited attention on missing functionality, two main 
observations can be made from the selected documents of the literature review. 

First, functionality gaps appear due to wrong architectural, engineering, or management 
decisions, such as developing a system in an unsustainable manner. The result could be a system 
state where changes to functionality are almost impossible to implement [3], [4]. 

Second, resolving interoperability issues, which indirectly lead to potential functionality gaps, 
has a direct impact on the mitigation or resolution of missing functionality. Documents reviewed 
suggest that functionality gaps can be closed by identifying interoperability gaps and insufficiencies, 
thereby mitigating or resolving missing functionality [5] , [10]. 



 

Selecting documents related to enterprise architecture debts can lead to three main conclusions. 
First, researchers suggest that architectural debts must be identified and documented [11]. Second, 
several approaches to discovering given debts are proposed: special workshops, structured 
interviews, and software analysis [12] , [13] , [14]. Third, solutions must be implemented to prevent 
new debts and repay existing ones [11]. 

2.2. Data Integrity Provisioning Techniques 

The analysis of the reviewed literature revealed limited findings regarding data integrity 
provisioning techniques, including data repair, in enterprise systems. Circular dependency on 
manual corrections and data repair due to poor system functionality, as covered by [3] , [4] , suggests 
the reactive nature of the potential issue. 

From [4] , which explains how undocumented and extensive ERP system customization leads to 
a state with poor data and difficulties for further system development, it can be learned that manual 
and time-consuming data repair is a forced necessity and not a sustainable solution. Data quality 
decreases due to manual data changes, and “the digital transformation connected with the ERP 
change”, by [4] , is a strategy for the organization as a potential solution. 
The defect-repair cycle influence on ERP systems is discussed in [3] , which focuses on codebase 
repairs in the context of desired functionality. Similar conclusions could be reached regarding 
enterprise system repair in general, including data corrections. The source [3] classifies effective and 
defective repairs, where the first addresses the issue with a single attempt, while the second requires 
multiple attempts. The document demonstrates how defective repairs are more prevalent (~51% of 
repair effort dedicated to recurring issues) than effective ones, highlighting potential improvements 
in the repair process. Therefore, the repairs should be minor and have a potential reversible strategy 
to return the system to its previous state. Another suggestion is to assign a special “repair manager” 
to satisfy stakeholder requirements[3]. 

In the context of system migration, [10] explains specific data challenges that arise when 
transitioning from an on-premises system to a cloud-based system, as data migration can be nearly 
impossible. The document suggests that overcoming data model differences could be a solution. [15] 
focuses on the data integration phase of ERP implementation, where researchers propose the 
“extracting, transforming, and loading” method as one of the solutions to ensure successful data 
migration. In addition, the document reviews the list of application tools. As noted in [16], the 
Enterprise Services Bus (ESB) is used to ensure data integrity. 

2.3. Interoperability in Enterprise Integration 

Interoperability-related questions have gained comparatively high attention from researchers. For 
instance, although [5] does not propose technical solutions to improve (hospital) system 
interoperability, it discusses challenges and benefits of improved interoperability, which are 
discussed in other documents in this research. [17] defines the incompatibility of data models and 
the need for some intermediate tables as one of the challenges. [18] explains the intermediate table 
as a solution for interoperability, and both documents demonstrate how different architectural styles 
and design patterns solve interoperability issues. 

Data exchange plays a paramount role in system interoperability. A deep-learning-based 
framework for enhanced data integration is proposed in [19]. Enterprise systems typically comprise 
multiple components, such as microservices, which engineers may want to deploy individually. An 
approach to maintaining compatibility between system parts is proposed in [20], and researchers 
describe their idea as “not to have schemas explicitly modeled by the developer (or API designer), 
but to derive these as well as the internal representations from a set of supported API definitions.” 



 

2.4. Anomaly Detection and Healing Solutions 

While this paper does not directly address anomaly detection, it is included in the related work 
because it provides another perspective on the issues discussed in previous three subsections. Several 
documents discuss log-based and stream-based anomaly detection strategies. Researchers of [8] 
propose an improved “a log-based anomaly detection model utilizing a hierarchical transformer 
structure to model both log template sequences and parameter values” called “HitAnomaly.” A 
different and slightly more advanced approach is proposed by [6] , which introduces “ConAnomaly” 
– “a log-based anomaly detection model composed of a log sequence encoder (log2vec) and multi-
layer Long Short Term Memory Network (LSTMN)”. The third and the most advanced among the 
reviewed is named “Logformer” by [7] , which is “with two cascaded transformer-based heads to 
capture latent contextual information from adjacent log entries, and leverage pre-trained 
embeddings based on logs to improve the representation of the embedding space”.  

The models described in the previous paragraph are examples of AI/ML-driven anomaly 
detection, including transformer-based, sequential, and context-aware approaches, as well as 
anomaly detection without log parsers and pre-trained embeddings for log analysis. Another 
example of ML usage is [21] , where researchers evaluate machine learning-based occupational fraud 
detection approaches by utilizing five ML algorithms. 

A model proposed in [22] enhances graph link prediction, facilitating the detection of missing or 
incorrect relationships and enabling anomaly detection. Researchers in [22] employ “graph neural 
networks” to learn representations of system components, a “graph attention mechanism” to transfer 
knowledge across graphs, and, through inductive knowledge transfer, detect anomalies without 
retraining. Although researchers of [22] do not provide self-healing solutions, the ability to transfer 
knowledge from multiple graphs can aid in anomaly detection and thus address incomplete or 
missing data. 

2.5. Main Findings from the Literature Review 

To address functionality gaps, data integrity, and system interoperability in enterprise systems, the 
gaps or drawbacks of the listed approaches help to identify further potential requirements that could 
address the given issues. 

A robust and at least partly automated solution is needed to address potential gaps and drawbacks 
related to missing functionality or architectural debts. Subjective human decisions or actions can 
lead to missing functionality. Another aspect is the speed of decision-making and acting because 
incomplete or long-lasting processes can introduce or provoke functionality gaps. 

A proactive automated solution is needed to address gaps in data integrity issues, including data 
repair. Maintaining documentation or having a dedicated employee in the organization will not 
guarantee the mitigation of data integrity issues. A scalable solution for ensuring data integrity, 
including data repair, is needed to address the identified gaps and drawbacks of approaches to 
ensuring data integrity. 

The interoperability-related issues cover many challenges, from short-term tactical to long-term 
strategic. This paper focuses on short-term tactical interoperability issues and their mitigation 
approaches. For instance, suppose an intermediate table was used for data synchronization between 
two systems. Still, due to some network issues, it was not executed, resulting in an outdated report 
on one of the systems. To address this interoperability issue, an automated solution is needed to 
detect and resolve synchronization issues. 

In enterprise systems, log-based anomaly detection and graph link prediction approaches can be 
the most suitable; however, user oversight and interaction might be needed to reduce errors and 
increase customer value. 



 

3. AI-assisted Error Mitigation 

The author of the paper divides system issues into two main categories: short-term tactical problems 
and long-term strategic challenges. Short-term issues – like inconsistencies in date formats or 
misalignments in database schemas – are typically fixable by a dedicated feature team within a 
manageable period. In contrast, long-term strategic gaps, such as a lack of multi-tenancy support or 
missing external API integrations, require extensive system-wide modifications and may take several 
teams and months to implement. 

This paper focuses on addressing short-term tactical issues while considering long-term strategic 
concerns for future research. Based on the main findings of the related work (sub-section 2.5), this 
section presents a high-level method to detect and resolve system deficiencies in enterprise systems. 
The method integrates error or anomaly detection, AI service-based issue mitigation, an automated 
repair application, and human oversight. 

3.1. Method Requirements 

According to the Framework for Evaluation in Design Science (FEDS) framework for Design Science 
evaluation by [23], the method requirements definition employs a “Quick & Simple strategy” that 
focuses on a small set of representative cases defined as addressable issues. Conducting formative 
evaluation on the selected instances enables efficient mitigation of design risks and provides an early 
utility indication of the artifact. 

The functional requirements focus on three addressable issues: a functionality timeout, a data 
integrity violation, and an API attribute mismatch, as derived from the first three subsections of 
Section 2. The selection of addressable issues is methodologically grounded in the principles of 
Design Science Research. According to [23] , “design-science research must produce a viable artifact 
in the form of a construct, a model, a method, or an instantiation". 

Three addressable issues are intentionally selected to reflect distinct categories of problems 
commonly faced in enterprise systems and are sufficient to evaluate the core capabilities of the 
proposed method. Each addressable issue is relevant to at least one finding from the related work's 
main findings (sub-section 2.5): 

• Functionality timeout. Related work explains how functionality gaps occur when a system is 
developed in an unsustainable manner. While the missing functionality issue has received 
minimal researchers’ attention, still, based on the knowledge and insights revealed by [3] , 
basic requirements related to the given addressable issues can be derived. 

• Data integrity violation. As [3] explains: “by not documenting these prior customizations 
correctly, it directly impacts the data quality and indirectly hinders the ongoing ERP change 
because of poor data. Furthermore, there is a lot of data missing within the current system 
solution for the company to go fully digital,” the orphaned records phenomenon matches this 
insight, thus allowing it to be included in addressable issues. 

• API attribute mismatch. Although the API schema matching approach described by [18] can 
improve system interoperability, API changes or attribute mismatches are still risks. Based 
on this insight, they are included in the addressable issues. 

The examples of detection and mitigation requirements are shown for each of the addressable 
issues in Table 1 to illustrate the expectations of the method better. The common functional 
requirement is that an AI service performs detection and mitigation, and the system offers user 
oversight with choices. The given requirements apply to both the base and extended approaches. 

Table 1 
Functional requirements for addressable issues 

# Addressable issue Detection Mitigation User oversight 
1 Functionality gaps: The 

application times out 
When the 
application times 

Evaluate if the 
database query can 

Ask the user to 
choose AI service 



 

when a significant number 
of associated records must 
be loaded 

out after a 
predefined time 
(seconds), flag the 
issue. 

be optimized to 
load data faster. 

action: a) improve 
database query, b) do 
nothing, and report 
this to the 
administrator 
dashboard. 

2 Data integrity: The 
application crashes with 
error 500 due to referential 
integrity violations with 
orphaned records 

When error 500 is 
returned, capture 
an exception to 
detect potential 
orphaned records 
causing 
inefficiencies. 

Optimize the query 
dynamically to 
exclude orphaned 
records. 

Ask the user to 
choose AI service 
action: a) 
temporarily exclude 
orphaned records, b) 
do nothing, and 
report this to the 
administrator 
dashboard. 

3 Interoperability: third-
party API attribute 
mismatch. 

When the model 
validation error is 
returned, capture 
an exception to 
detect potential 
attribute mismatch. 

Modify backend 
code to comply 
with third-party 
attribute 
requirements. 

Ask the user to 
choose AI service 
action: a) agree on 
making code 
changes to match 
the API attributes, b) 
do nothing, and 
report to the 
administrator 
dashboard. 

 

All non-functional requirements are related to the AI service since it is the leading actor in error 
resolution. Here, data integrity, security, and auditing are of paramount importance. Each non-
functional requirement aligns with ISO/IEC 25010 product quality characteristics as explained by 
[24] . 

3.2. High-Abstraction-Level Definition of the Method 

Based on the defined requirements, the “base approach” and the “extended base approach” for the 
method are proposed. Both approaches include three main components: application, Healer service, 
and AI service. The second approach is extended with a log-based anomaly detection service. 

As surveyed in [9] and [25], self-adaptive systems are classified into reactive and proactive types. 
Reactive systems respond only after an issue arises, such as exception handling. Proactive systems 
are anticipating or mitigating issues before they escalate. Citation: 

“Self-adaptive approaches range from static, reactive, parametric solutions to dynamic, proactive, 
structural solutions. The former approaches are based on predetermined plans and configurations, 
while the latter approaches commonly leverage the power of AI/ML” [9]. 

The base approach aligns with reactive adaptation (catching timeouts and exceptions). By 
incorporating log monitoring and analysis, the extended approach is an example of proactive 
adaptation. It leverages runtime information to detect anomalies early and act preemptively—
characteristics highlighted by [9] in the proactive self-adaptive system (SAS) description. 

While the base approach is designed to mitigate errors and exceptions that have already occurred, 
the extended base approach attempts to reduce functionality, data integrity, or system 
interoperability degradation that might occur, according to log data. 

Implementing the Model View Controller (MVC) pattern is a suitable use case for the “base 
approach”. The application MVC framework typically has built-in functionality, allowing it to catch 
timeouts or exceptions at the controller level. A Healer service can be implemented as classes of code 



 

providing given functionality. AI services can be implemented either as an external API service, such 
as OpenAI [26], or as an entirely locally installed service, such as DeepSeek-Coder-V2 [27]. 

Figure 1, with a flowchart-like representation, explains the functions and interactions of the five 
components for the first approach at a high abstraction level. The second, “extended base approach,” 
includes three components from the first approach but extends their functionality and adds the 
fourth component — a log-based anomaly detection service. By adding the log-based anomaly 
detection service, the second approach can be suited for use cases when errors or anomalies cannot 
be detected by the MVC framework, for instance, slow queries within a predefined timeout or silent 
errors in background jobs. 

Figure 2, with a flowchart-like representation, explains the functions and interactions of the six 
components for the second approach at a high abstraction level. A periodic job, for instance, once an 
hour, is triggered to capture the latest system logs for further anomaly detection. If the anomaly is 
detected, relevant log records are sent to the Healer service for further action. If any evidence of an 
error is found, the Healer service collects artifacts like the base approach and continues the process 
to prepare a prompt for the AI service. 

For both approaches, the result is an “ErrorEvent" record with complete information of the error, 
prompt to the AI service, and its proposed method code, which is unit tested. For the new method to 
take effect and thus mitigate the previous error, both approaches must execute the latest code. Figure 
3, with a flowchart-like representation, explains, on a high abstraction level, the functions and 
interactions of the application and the Healer service to find the previously prepared mitigation code 
and execute it to address missing functionality, data integrity, or system interoperability issues. 

 
Figure 1: Error event resolution process for the base approach. 
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Figure 2: Error event resolution process with log anomaly detection. 

 
Figure 3: New method code execution process. 
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has an external API call to the “Catalog” service to simulate potential interoperability issues. The 
code of this practical experiment is made publicly available [28]. The author applied the basic 
approach to the demo application when a third-party API attribute mismatch caused a validation 
error. The system (1) caught the exception and created an ErrorEvent; (2) prepared an AI prompt and 
received a patch to translate the incoming attribute; (3) generated and ran unit tests, which passed; 
(4) displayed the change for user approval; and (5) applied the patch at runtime. After execution, the 
failing request completed successfully, and the view rendered without error. 

3.3. Comparison with Related Frameworks and Tools 

While Section 2 presents a synthesis of functionality gaps, data integrity, and interoperability 
challenges, this section highlights prior work most directly comparable to the proposed method and 
clarifies its distinct contributions. Table 2 presents a summarized structured comparison. 

Table 2 
Structured comparison 

# Approach/tool Log detection Automated 
repair 

User 
oversight 

Runtime 
action 

Notes 

1 ConAnomaly [6] Yes No No No Detection only 

2 HitAnomaly [8] Yes No No No Detection only 

3 Logformer [7] Yes No No No Detection only 

4 ACMA [21] Partial (metrics) No No No Diagnosis focus 

5 Sentry [1], New 
Relic [2] 

Alerts/telemetry No Human 
in loop 

No Reactive 
monitoring 

6 Author’s proposed 
method 

Yes 
(as extended) 

Yes Yes Yes Validated with 
unit tests 

 

Tools like ConAnomaly [6] , HitAnomaly [8], and Logformer [7] have pushed forward the field 
of system log anomaly detection by incorporating techniques such as LSTM, transformer models, 
and pre-trained embeddings. These approaches are reasonably practical at pinpointing anomalies in 
system logs with high accuracy. Nonetheless, they mainly focus on detection and do not incorporate 
a real-time feedback mechanism to help address or fix issues once they are identified. The proposed 
method builds upon these advancements by coupling log-based detection (in the extended approach) 
with an AI-assisted mechanism that generates and tests resolution strategies in near real-time. 

Similarly, frameworks like ACMA [21] link anomaly detection with root cause analysis by using 
causative metrics. Although effective for diagnosing performance issues, ACMA lacks mechanisms 
for automated repair or mitigation with user involvement. Conversely, the proposed method offers 
automated code patching and enables users to oversee the acceptance, rejection, or monitoring of fix 
execution. 

Enterprise system middleware approaches, including ontology-based integration [29] and 
enhanced interoperability protocols [30], [31], [18], address structural and semantic discrepancies 
between systems. These initiatives typically require extensive, long-term changes to architecture or 
data modeling. Conversely, the proposed method operates in real-time during operation, providing 
immediate solutions for schema mismatches, such as changes to API attributes, without requiring 
major structural overhauls. 



 

Furthermore, although tools such as Sentry [1] and New Relic [2] offer reactive monitoring with 
notifications to developers, they depend on manual remediation and lack autonomous corrective 
functionalities. The proposed method bridges this gap by embedding an AI-assisted repair loop that 
integrates detection, diagnosis, and patch proposal with test-backed validation and optional 
automated deployment. The key differentiators of this work are: 

• Error detection and resolution as a unified middleware solution. 
• Use of AI-generated code changes validated with automated unit tests. 
• User or administrator oversight is built into the runtime process. 
• Practical demonstration through an open-source prototype designed for enterprise systems. 
These contributions address an underexplored gap in the literature on transitioning from 

intelligent error detection to immediate, context-aware mitigation in production environments. 

4. Conclusions 

This paper introduced a high-level method for runtime error detection and AI-assisted resolution 
targeting tactical-level issues in enterprise systems. The method comprises two complementary 
approaches: a reactive base approach and a proactive extended approach, both designed to unblock 
user operations and enhance system resilience. 

The base approach detects errors at runtime, such as timeouts, data integrity violations, and API 
schema mismatches, and immediately proposes mitigation strategies through an AI-assisted 
feedback loop. These corrections are presented for user or administrator oversight and undergo 
automated validation before execution. This enables rapid response to tactical issues with minimal 
disruption to operations. 

To further extend the scope of detection and align with the principles of proactive self-adaptation, 
the extended approach incorporates log-based anomaly detection. This enables identification of 
silent failures, performance degradations, or background anomalies that may not manifest as 
immediate runtime errors. By leveraging system logs, the method can preemptively trigger the 
mitigation workflow before users are affected, thus enhancing coverage and reducing time to 
resolution. 

Together, these approaches address key enterprise challenges outlined in the paper: 
• Functionality gaps: Reactive handling of execution failures and proactive detection of 

emerging usage anomalies, such as long-running queries. 
• Data integrity: Runtime safeguards against data inconsistencies, supported by early 

anomaly signals in background processes. 
• System interoperability: Dynamic adaptation to API changes and early warnings of 

schema mismatch trends. 
This work demonstrates how tactical, AI-supported middleware solutions can alleviate the 
operational burden of complexity in enterprise systems, complementing architectural-level 
approaches emphasized in the research agenda on managed complexity. Future work will focus on 
expanding the method’s scope through log anomaly detection, enhancing the security of corrected 
code execution, and evaluating the method in production-grade enterprise environments. 
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