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Abstract
This study considers different approaches to calculating the first singular value of the Singular Value
Decomposition (SVD) transform. The SVD is closely associated with several common matrix norms and
offers an efficient method for their computation. Sum first k singular values called the Ky Fan k-norm. In
our  approach,  the  Ky  Fan  norm is  a  fragment  descriptor.  There  is  no  need  to  do  a  complete  SVD
transformation to obtain the norm value. It is enough to obtain a matrix of singular values. In video
fragment analysis, the number of fragments and their size significantly affect the calculation speed. The
SVD method is  robust but does not necessarily scale well  to larger matrices.  Thus,  to use SVD in a
practical sense with large datasets, we needed a faster algorithm that finds the same dominant patterns as
regular  SVD  but  with  only  a  fraction  of  the  computational  cost.  We  compare  the  effectiveness  of
alternative approaches depending on the size of the fragments and their number.

Keywords
Video stream fragmentation; Fragment processing; Ky Fan norm; Singular value decomposition; UTV;

ULV; Lanczos SVD; Randomized SVD; Power Iteration; Data Analysis 1

1. Introduction

There has been significant interest in the Singular Value Decomposition (SVD) algorithm over the
last few years because of its wide applicability in multiple fields of science and engineering, both
standalone and as part of other computing methods. The singular value decomposition is the most
common and valuable decomposition in computer vision [1]. Computer vision aims to reconstruct
the three-dimensional world from two-dimensional images. These images often result in square
and  non-square  singular  matrices  and  transformations  in  real-world  scenarios.  Reversing
transformations from two to three dimensions cannot be entirely accurate, but it can be effectively
estimated using singular value decomposition. Singular value decomposition will also allow us to
establish a sense of order in objects and is,  therefore, useful whenever attempting to compare.
Іmage denoising [2], image re-scaling [3], image compression [4], motion detection [5], and video
fragment processing are far from a complete list of SVD applications.

We focused on video fragment processing, and in our approach, we consider fragments to be
geometric parts of video frames, represented as matrices with arbitrary dimensions. The research
[6] proposes a singular value decomposition of the matrix and the Ky Fan norm for scene change
analysis. In the context of motion detection, this approach was expanded [7]. Dividing the frame
into 5x5 or 10x10 allowed us to identify the fragments in which motion occurred Figure 1.

In the study [8], increasing the number of fragments to 100x100 allowed us to find the contours
of a moving object Figure 2. 

The SVD transformation is applied to each fragment, and the first singular value is chosen as
the fragment descriptor. If we divide the frame into 5x5, then we need to calculate 25 matrices of a
certain size. Increasing the number of fragments will lead to a decrease in the size of the input
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matrices,  but  the  number  of  SVD  applications  will  increase.  Considering  the  number  of
transformations, optimization of the calculation process comes to the fore.

Figure  1: Motion detection. The result  of frame-by-frame processing is  a new video source in
grayscale model with marked blocks with Ky-Fan norm value for each fragment

Figure 2: Fragment processing result. Man walking through parking. "Heat map" shows threshold
frames. Object-detected frames marked by white spots.

Presently, with the advent of the big data and exascale computing revolutions, the availability of
an efficient, scalable SVD implementation turns out to be an issue of crucial concern  [9] (even
when sometimes the aim is ‘simply’ to fit a huge amount of data into the distributed memory of the
supercomputer, and then apply a parallel SVD). Typically, the SVD acts on a matrix that may be
sparse or dense,  tall-skinny or  fat-shaped,  well-conditioned or very ill-conditioned,  to mention
some frequent scenarios that are commonly linked to the specific fields mentioned above.

Due to the complexity of the SVD, many studies have focused on optimizing the transformation
for various tasks. [10,11,12]. Since in our approach we only need to find the first singular value, we
consider alternative approaches to the full SVD. In this study, we evaluate the accuracy and speed
of alternative approaches depending on the number of frame division fragments. The aim of the
study is to evaluate the following approaches in the context of video fragment analysis:

1. SVD
2. Incomplete SVD
3. UTV decomposition
4. ULV decomposition
5. Lanczos SVD
6. Power iteration 
7. Randomized SVD



2. Singular value decomposition

2.1. Singular value decomposition step by step

The process of Singular Value Decomposition (SVD) [13] involves breaking down a matrix A into
the form:

A =U ΣV t, (1)

where U is an m×m complex unitary matrix, Σ is an m×n diagonal matrix with non-negative
real numbers on the diagonal, and V is an n×n complex unitary matrix. If A is real, U and V can be
guaranteed to be also real orthogonal matrices. The singular values (σ i) describe the "energy" or
importance of each corresponding dimension in the matrix. This computation allows us to retain
the important singular values that the image requires while also releasing the values that are not as
necessary in retaining the quality of the image. The singular values of an m × n matrix A are the
square  roots  of  the  eigenvalues  of  the  n  ×  n  matrix  AT A ,  which  are  typically  organized  by
magnitude  in  decreasing  order.  Before  we  apply  the  SVD  to  image  processing,  we  will  first
demonstrate the method using a small (2×3) matrix A: 

A=[4 3 7
2 5 6] (2)

and then follow a step-by-step process to rewrite the matrix A in the separated form U ΣV t :

AT A=[4 3 7
2 5 6][4 2

3 5
7 6]=[20 22 40

22 34 51
40 51 85], A AT=[74 65

65 65]
(3)

Next step is to determine the eigenvalues of  AT A . In order to determine the eigenvalues of

AT A , we need to compute the determinant of the matrix AT A−λI . In general, we compute the
determinant of a 3 × 3 matrix in the following way:

[a b c
d e f
h i j]=a|e f

h i|−d|b c
h i|+g|b c

e f|=a (ej−hf )+d (bi−hc )+d (bf−ec )
(4)

We could extend this computation to an n × n matrix as needed. For our example, we compute
the determinant of AT A−λI  which is:

[20 22 40
22 34 51
40 51 85]−λ[1 0 0

0 1 0
0 0 1]=[20−λ 22 40

22 34−λ 51
40 51 85−λ]

(5)

By setting this determinant equal to zero,

det [20−λ 22 40
22 34−λ 51
40 51 85−λ]=0

(6)



we solve the characteristic equation for λ, and here we see that λ = 0, 4.3444, 134.6556. We
reorder the eigenvalues in decreasing magnitude, so that:λ1=134.6556 , λ2=4.3444 λ3=0.0. The

singular values of 𝜎 are defined as the square roots of the eigenvalues:

σ1=√134.6556≈11.6041 , σ 2=√4.344≈2.0843 , σ 3=√0=0 (6)

To determine the matrix Σ, we list the non-zero singular values,  σ i, in decreasing magnitude

down the main diagonal of Σ, where σ i=√ λi. Then, we add any additional rows and columns of
zeros as needed to retain the original dimension of A in Σ. In our example, we have three singular
values: 11.6041, 2.0843 and 0. We only need to retain the non-zero values, and hence, we form the

matrix:

∑=[11.6041 0
0 2.0843
0 0

0
0
0]

(7)

Next,  find  eigenvectors  (columns  of  𝑈).  The  eigenvectors  𝑢1,  𝑢2  are  determined  from the
equation where λ1=134.67:

(A AT−λI )u=0, [74−134.67 65
65 65−137.67][ x1y 1]=[00] (8)

We have two singular values in our example, and we use them to form the following vectors:

−60.67 x1+65 y 1=0 , x1= 65
60.67

y 1≈1.0713 y 1
(9)

y 1=1 , x 1≈1.0713 , Normalize √(1.0713 )2+12≈1.4656 (10)

u1=(1.07131.4656
,

1
1.4656)=(0.7311,0 .6823 )

(11)

Similarly for λ2=4.33:

u2=(−0.6823 ,0.7311) (12)

And the last matrix U:

U=[0.7311 −0.6823
0.6823 0.7311 ] (13)

Next, we need find matrix V. The eigenvectors 𝑣1,2,𝑣3 are determined from the equation:

(AT A−λI )u=0 (14)

Solving the equation for each eigenvalue, we obtain the normalized eigenvectors:



V=[0.3696 0.6078
0.4830 −0.7719
0.7938 −0.1867

−0.7029
−0.4134
0.5788 ] (14)

Now,  we  understand  the  complexity  of  the  SVD  calculation.  We  can  explore  different
calculating  approaches  since  we  are  only  interested  in  the  first  singular  value.  The  simplest
solution would be to stop the calculation as soon as the first singular value is found. Moreover, we
do not need the matrices U and V. This will be an incomplete SVD. Numpy library is the proposed
parameter “full_matrices” in linalg.svd function. We can set full_matrices =False and hope to find
singular value without full calculation. However, if the dimension of the input matrix is large, this
approach may not give the desired result. 

2.2. UTV, ULV

The SVD method is robust but does not necessarily scale well to larger matrices. Thus, to use SVD
in a practical sense with large datasets, we needed a faster algorithm that finds the same dominant
patterns  as  regular  SVD,  but  with  only  a  fraction  of  the  computational  cost.  In  search  of  an
alternative approach it would be logical to pay attention on UTV and ULV decomposition. UTV
decomposition [14] is an alternative to SVD that factorizes a matrix A:

A =UT V t (15)

Where U and V are orthogonal matrices (similar to SVD). T is an upper triangular matrix, unlike
the  diagonal  Σ  in  SVD.  This  method  is  often  used  as  a  more  efficient  alternative  to  SVD in
applications where exact singular values are not required, but a good approximation is sufficient.
UTV factorization begins by applying a series of Householder reflections or randomized projections
to transform the given matrix A into an upper triangular or upper trapezoidal matrix T while
preserving  its  dominant  numerical  properties.  This  transformation  ensures  that  most  of  the
essential  information  in  A  is  retained  while  simplifying  its  structure.  The  process  involves
computing orthogonal matrices U and V at capture the column and row spaces of A, respectively,
mapping  it  into  the  triangular  form.  Once  the  factorization  is  complete,  the  result  is  a
decomposition A =UT V t,  where T serves as  a  computationally efficient  approximation of  the
singular structure of A, similar to Σ in SVD but with a triangular shape.

ULV factorization  [15] transforms the given matrix A into a lower triangular or block lower
triangular matrix L while preserving its essential numerical properties. This is achieved through a
series of Householder reflections or Givens rotations, which iteratively reduce A into its structured
form while maintaining orthogonality. The decomposition also produces orthogonal matrices U
and V that encode the column and row transformations, respectively, mapping A into its triangular
form. The result is the factorization:

A =ULV t (16)

which serves  as  a  computationally  efficient  alternative  to  SVD,  particularly  in  cases  where
structured rank-revealing decompositions are beneficial.

2.3. Lanczos SVD

ULV and UTV are providing full  SVD, decomposition and Lanczos SVD  [16] is  not  strictly an
optimization  of  either  ULV  or  UTV,  but  rather  an  iterative  alternative  to  SVD  that  shares
similarities  with  both  approaches.  UTV  factorization  transforms  a  matrix  A  into  an  upper
triangular  matrix  T using unitary  transformations,  maintaining full  orthogonality  in  U and V.
Lanczos SVD, on the other hand, iteratively reduces A to a bidiagonal form instead of a strictly
triangular one. Both methods use orthogonal transformations, but Lanczos is focused on extracting



dominant  singular  values  efficiently,  whereas  UTV  is  more  general  in  preserving  an  upper-
triangular structure. Lanczos SVD, in contrast, uses an iterative Krylov subspace approach to build
a  bidiagonal  matrix  rather  than  a  strict  lower  triangular  matrix.  Given  that  full  SVD  is
computationally expensive, we now turn to Power SVD and Randomized SVD, which efficiently
approximate dominant singular values without performing a complete decomposition.

2.4. Power iteration

Power iteration [17] starts withb0, which might be a random vector. At every iteration this vector
is updated using following rule:

bk+1=
A bk

‖A bk‖
(17)

First, we multiply b0 to compute the matrix-vector product A (A bk) and divide the result with

the norm (|‖A bk‖). We will continue until the result has converged, in other words,  when the

difference  between  iterations  is  below  a  defined  threshold.  The  power  method  has  a  few
assumptions: b0 has a non-zero component in the direction of an eigenvector associated with the
dominant eigenvalue. Initializing b₀ randomly minimizes the possibility that this assumption is not
fulfilled, and matrix  A has a dominant eigenvalue that must be greater in magnitude than other
eigenvalues. These assumptions guarantee that the algorithm converges to a reasonable result. The
smaller the difference between the dominant eigenvalue and the second eigenvalue, the longer it
might take to converge.

2.5. Randomized SVD

A promising approach for efficient singular value decomposition is  Randomized SVD [18], which
uses a random projection to approximate the column space of a given matrix, reducing it to a target
rank  k before  applying  SVD.  This  method  retains  most  of  the  important  information  while
significantly reducing the computational cost. Given an m×n matrix A, we choose a target rank k<
m, which determines the dimensionality of the subspace for which we will compute SVD. We first
initialize a random matrix P of size n×k and then transform our original matrix A by computing the
matrix product:

Z=AP (18)

This  reduces the column space of A while preserving its  dominant features,  decreasing the
dimensionality from n to k (matching the row dimension of P). However, with high probability, Z
will still retain the most significant column space features of A. QR factorization of Z provides an
orthonormal basis Q, which captures the dominant column space of A:

Q ,R←QR Factorization(Z ) (19)

Next, we project A onto the subspace defined by Q:

Y=Qt A (20)

Now,  Y is an  k by  n matrix and we are computing SVD on a matrix with a column size of  k
rather than m, which should be much less computational cost if we choose a small k.

U Y∑Y V Y
¿ ←SVD(Y ) (21)



Finally, we keep Σ and V from our SVD of Y, and then obtain our final U matrix by:

U=QU Y (22)

This step extends U yback to the original column dimension of A.
We  are  ready  to  compare  the  approaches,  evaluate  their  accuracy  in  calculating  the  first

singular value and speed in the fragment analysis contest.

3. Accuracy of finding the first singular value

In this section, we will consider the results produced by the developed application. Our experiment
used a surveillance camera source Figure 3. Codec is h264, frame size is 1280 x 720. To visualize the
results of utilizing the Ky Fan norm for video analysis, a Python 3.10.11 application was developed
and executed on a system equipped with an Intel Core i5 processor, 16 GB of RAM, and running
the Windows operating system. The application relies on two open-source libraries licensed under
Apache License: OpenCV version 4.10.0 and NumPy version 2.2.1. Frames are converted from RGB
to  a  grayscale  model.  Each  frame  is  divided  into  smaller  fragments  through  a  grid-based
segmentation technique. 

Figure 3: Video source as a sequence of frames. The result of frame-by-frame processing is a new
video source in grayscale model with marked blocks with Ky-Fan norm value for each fragment

3.1. Accuracy of finding the first singular value

Before evaluating the speed of the selected approaches, we need to check the accuracy of finding
the  first  singular  value  for  different  fragment  sizes.  The  results  are  presented  in  Table  1.  All
approaches: SVD, incomplete SVD, Power iteration, UTL, Lanczos SVD and Randomized SVD show
same  singular  values  for  different  fragment  sizes.  The  ULV  approach  showed  no  significant
deviation. This deviation may be because ULV does not explicitly compute singular values like
SVD-based methods,  so minor  deviations are  expected.  If  high precision for  singular  values is
required,  ULV  may  not  be  the  best  choice—methods  like  Power  SVD,  Lanczos  SVD,  and
Randomized SVD are  preferable.  However,  if  the  goal  is  structured  decomposition or  efficient
matrix transformation, ULV remains a valuable alternative.

Table 1
First singular value calculation for different fragment sizes

All approaches
exclude ULV

ULV

5x5 (144x256) 31541.411066 31277.636507

10x10 (72x128) 13581.419741 13419.979837

20x20 (36x64) 5857.278687 5767.989675



50x50 (14x25) 575.184362 572.544123

3.2. Comparison of fragments processing time using different methods

We  compared  the  average  calculation  time  for  fragments  of  different  sizes.  The  results  are
presented on Figure 4. Methods with full decomposition showed the longest time for fragments of
high dimension. Methods optimized for finding the first singular value showed the best time.

Figure 4: Comparison of the speed calculation of the first Ky Fan norm value (first singular value)
for a single fragment

The best optimized approach Power SVD for different fragment sizes. The best result is marked
in blue, the worst in red in Table 2.

Table 2
Time (seconds) calculation for different fragment sizes

SVD
(complete

decompositio
n)

SVD
(incomplete

decompositio
n)

Power SVD Lanczos
SVD

Randomized
SVD

UTV ULV

5x5 (144x256) 0.017440 0.016400 0.000120 0.001240 0.002181 0.016400 0.020341

10x10 (72x128) 0.004465 0.004320 0.000050 0.000970 0.001545 0.004630 0.001880

20x20 (36x64) 0.000342 0.000280 0.000043 0.000734 0.001160 0.000270 0.000253

50x50 (14x25) 0.000074 0.000066 0.000036 0.000546 0.001058 0.000137 0.000122

The total processing time of the entire frame using different methods is presented in Figure 5. If
the frame is divided into 5x5, then the transformation should be applied to 25 matrices of size
144x256, with a division into 50x50 there will be 250 matrices of size 14x25. The speed is chosen as
average, therefore the processing speed of each fragment depends on the sparsity of the matrix.
Randomize SVD performed the worst on small matrices. This approach was designed for high-
dimensional  matrices  and  is  not  efficient  for  low-dimensional  matrices.  Approaches  using  full
decomposition are quite slow on both small and large matrices.



Figure 5: Comparison of the middle-speed calculation of the first Ky Fan norm value for the frame

The best optimized approach Power SVD for different fragment sizes. The best result is marked
in blue, the worst in red in Table 3.

Table 3
Comparison of the middle-time (seconds) calculation of the first Ky Fan norm value for the frame

SVD
(complete

decomposit
ion)

SVD
(incomplete

decompositio
n)

Power SVD Lanczos
SVD

Randomize
d SVD

UTV ULV

5x5 (144x256) 0.436000 0.409998 0.002999 0.031003 0.054517 0.410002 0.508518

10x10 (72x128) 0.446510 0.431996 0.004992 0.097003 0.154527 0.463000 0.187995

20x20 (36x64) 0.137000 0.112020 0.017002 0.293519 0.464002 0.107834 0.101002

50x50 (14x25) 0.185009 0.165095 0.090012 1.365031 2.644217 0.343357 0.306030

Conclusions

Video  fragment  analysis  involves  dividing  the  frame  into  geometric  regions  of  different  sizes
depending on the task. For motion detection, dividing the frame into 5x5 or 10x10 is enough to
determine the area of interest. That is, find the part of the frame where the movement occurs. Of
course, the object's size must be smaller than the size of the fragment. To determine the contours of
the object, we must increase the scale. And as a result, we will get several high-order matrices or
many low-order matrices. It should also be noted that on fragments of small sizes, but with a large
number of fragments themselves, the worst results were shown by Randomized SVD. At the same
time, with the increase in fragment sizes, the performance of the UTV and ULV algorithms has
deteriorated,  so they are the worst solution for motion detection. For practical  real-time video
analysis, the Power SVD is best suited. For offline analysis, all algorithms will be pretty effective.

Declaration on Generative AI

The authors have not employed any Generative AI tools.



References

[1] J.  Gallier,  J.  Quaintance Linear  Algebra  and  Optimization  with  Applications  to  Machine
Learning - Volume I, World Scientific Publishing Co Pte Ltd, 2020.  doi:10.1142/11446

[2] Q. Guo,  C. Zhang,  Y. Zhang,  H. Liu,  An Efficient  SVD-Based Method for  Image Denoising,
IEEE Trans. Circuits Syst. Video Technol. 26.5 (2016) 868–880. doi:10.1109/tcsvt.2015.2416631.

[3] M. Motylinski,  A. J. Plater,  J. E. Higham,  Re-scaling  images  using  a  SVD-based  approach,
Signal, Image Video Process. 19.3 (2025). doi:10.1007/s11760-025-03825-1.

[4] H. R. Swathi,  S. Sohini,  Surbhi,  G. Gopichand,  Image  compression  using  singular  value
decomposition, IOP Conf. Ser. 263 (2017) 042082. doi:10.1088/1757-899x/263/4/042082.

[5] S. Mashtalir, D. Lendel, Video pre-motion detection by fragment processing, 12th International
Scientific and Practical  Conference “Information Control  Systems and Technologies”,  2024,
https://ceur-ws.org/Vol-3790/paper30.pdf

[6] M. Koliada,  KY FAN NORM APPLICATION FOR VIDEO SEGMENTATION, Her.  Adv.  Inf.
Technol. 3.1 (2020) 345–351. doi:10.15276/hait01.2020.1.

[7] S. V. Mashtalir,  D. P. Lendel,  Video  fragment  processing  by  Ky  Fan  norm,  Appl.  Asp.  Inf.
Technol. 7.1 (2024) 59–68. doi:10.15276/aait.07.2024.5.

[8] S. V. Mashtalir, D. P. Lendel, Moving object shape detection by fragment processing, Her. Adv.
Inf. Technol. 7.4 (2024) 414–423. doi:10.15276/hait.07.2024.30.

[9] M. De  Castro-Sánchez,  J. A. Moríñigo,  F. Terragni,  R. Mayo-García,  Analysis  of  the  SVD
Scaling on Large Sparse Matrices, in: 2024 Winter Simulation Conference (WSC), IEEE, 2024,
pp. 2523–2534. doi:10.1109/wsc63780.2024.10838971.

[10] D. Keyes,  H. Ltaief,  Y. Nakatsukasa,  D. Sukkari,  High-Performance  SVD  Partial  Spectrum
Computation,  in:  SC  '23:  International  Conference  for  High  Performance  Computing,
Networking,  Storage  and  Analysis,  ACM,  New  York,  NY,  USA,  2023.
doi:10.1145/3581784.3607109.

[11] X. Feng, W. Yu, Y. Xie, J. Tang, Algorithm xxx: Faster Randomized SVD with Dynamic Shifts,
ACM Trans. Math. Softw. (2024). doi:10.1145/3660629.

[12] A. Noorizadegan, C. S. Chen, R. Cavoretto, A. De Rossi, Efficient truncated randomized SVD
for  mesh-free  kernel  methods,  Comput.  &  Math.  With  Appl.  164  (2024)  12–20.
doi:10.1016/j.camwa.2024.03.021.

[13] R. Szeliski Computer Vision: Algorithms and Applications, Springer, 2010. 
[14] G. A. Watson, D. F. Griffiths, Numerical Analysis 1993, Taylor & Francis Group, 2020. doi:

10.1201/9781003062257 
[15] M. Vandecappelle, L. D. Lathauwer, Updating the multilinear UTV decomposition, IEEE Trans.

Signal Process. (2022) 1–15. doi:10.1109/tsp.2022.3187814.
[16] T.  Chen,  The  Lanczos  algorithm  for  matrix  functions:  a  handbook  for  scientists.  ,  2024,

doi:10.48550/arXiv.2410.11090
[17] Y. Nakatsukasa, N. J. Higham, Stable and Efficient Spectral Divide and Conquer Algorithms for

the  Symmetric  Eigenvalue  Decomposition and the  SVD,  SIAM J.  Sci.  Comput.  35.3  (2013)
A1325—A1349. doi:10.1137/120876605.

[18] D.  Janekovic,  D.  Bojanjac,  Randomized  Algorithms  for  Singular  Value  Decomposition:
Implementation and Application Perspective, in: 2021 International Symposium ELMAR, IEEE,
2021. doi:10.1109/elmar52657.2021.9550979.

https://www.worldscientific.com/author/Gallier%2C+Jean
https://doi.org/10.1201/9781003062257
https://doi.org/10.1142/11446
https://www.worldscientific.com/author/Quaintance%2C+Jocelyn
https://www.google.com.ua/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Richard+Szeliski%22

	1. Introduction
	2. Singular value decomposition
	2.1. Singular value decomposition step by step
	2.2. UTV, ULV
	2.3. Lanczos SVD
	2.4. Power iteration
	2.5. Randomized SVD

	3. Accuracy of finding the first singular value
	3.1. Accuracy of finding the first singular value
	3.2. Comparison of fragments processing time using different methods

	Conclusions
	Declaration on Generative AI
	References

