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Abstract
Regression type problems are of great interest and importance due to their numerous applications in
modern science and technology areas. Both smooth and nonsmooth models of that type require effective
methods for finding unknown parameters with sufficient accuracy. Presented in the paper is a general model
that covers a few well-known methods, such as LASSO and RIDGE regression. The empq algorithm based on
the Shor’s ellipsoid method for minimizing the model function is proposed. A brief description of the
ellipsoid method is given, as well as convergence theorem, which allows one to estimate computational
complexity of the empq algorithm. Results of three computational experiments of using the general model
for solving 1D total variation (TV) denoising problem are presented. In the first two experiments piecewise
constant and piecewise linear functions are restored, in the third experiment bitcoin open price curve is
denoised. Obtained results show prospects for using the general model and the empq algorithm for solving
regression and image processing problems.
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1. Introduction

Regression-type problems with nonsmooth functions are known to be one of the main areas of
research in mathematical programming and its applications. This is largely motivated by constant
emergence of new application areas and computing technologies progress, which provides new
computing  paradigms  –  cluster  computing  architectures,  grid-  and  cloud  computing,  which
correspond well to mathematical ideas underlying non-smooth optimization [1]. 

Classical regression models, which are an important type of supervised learning problems, have
many practical applications. Now, they are one of the most statistically justified, and intensive work
on their generalizations and improving accuracy of solutions obtained is actively underway [2]. In
particular, one issue of that kind is the study of the family of regression model training methods
between the least moduli method and the least squares method. The least moduli method allows one
to ensure robust estimation of model parameters, but is more difficult to use than the least squares
method due to the nonsmoothness of the loss function.

Using generalized regression models with ability to control several specific parameters permits to
have a qualitative impact on solutions changing them depending on need and external conditions. It
makes  them extremely  useful  in  such areas  as  digital  signal  and  image processing  [3],  image
compression, compressed sensing etc. Noises of different types appear continuously and even small
amounts  of  them can significantly complicate obtaining accurate solutions.  Since these models
remain  to  be  convex  for  all  used  parameter  intervals  (but  may  be  nonsmooth  though),  the
development  of  general  and  special  efficient  methods  for  minimizing  such  models  is  of  great
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importance. Moreover, denoising processes for images require significant computational powers
because of sizes and detailing of images, so these methods must be able to deal with high-dimensional
problems and obtain solutions with sufficient accuracy.

This paper presents a general model that covers some well-known methods like LASSO and
RIDGE  regression,  and  proposes  a  new  algorithm  based  on  Shor’s  ellipsoid  method  for  its
minimization. Further, the total variation (TV) denoising problem is considered, as well as the way it
can  be  formulated  using  the  general  model  proposed.  Finally,  results  of  three  computational
experiments dedicated to 1D TV denoising are presented that show computational possibilities of the
algorithm and the model proposed.

2. Formulation of the general model

Let matrices A={aij}i=1 ,m

j=1 ,n
 and C={cij}i=1 , k

j=1 ,n
, vector y={ y i}i=1 ,m be given. We consider the following

convex optimization problem:

f pq (x )=∑
i=1

m |y i−∑
j=1

n

aij x j|
p

+ λ∑
i=1

k |∑
j=1

n

cij x j|
q

→min
x∈ Rn

, (1)

where  f pq
* =f (x pq

* )=min
x∈ Rn

f pq (x ). Here  x={x i}i=1 ,n
 is a vector of variables;  λ≥0,  1≤ p ,q≤2 are

given scalars. The function f pq (x ) is nonsmooth if p=1 and q=1, and smooth if p>1 and q>1. The
problem (1) can be rewritten in matrix form as follows:

f pq (x )=‖y−Ax‖p
p+ λ‖Cx‖q

q
→min

x∈ Rn

, (2)

where ‖∙‖p
p is a p-th power of Lp-norm of a vector x∈ Rn, which is defined as ‖x‖p

p=∑
i=1

n

|x|p.

In the problem of finding parameters of regression models  m×n-matrix  A  is usually called a

regression or observation matrix, and the first summand of the function f pq (x ) is a p-th power of

Lp-norm of residuals y−Ax of a regression model. The second summand of the function f pq (x ) is
considered as regularization addition, where λ≥0 is a regularization parameter. Matrix C  of a size

k ×n defines interconnections between variables x j, j=1 , n, of a regularization addition. With some
values of parameters p, q set and defined matrix C  the model (1) covers some well-known models. In
particular, if C=I , p=2 and q=1, we get so called LASSO-regression model [4]:

f 2,1
LASSO (x )=‖y−Ax‖2

2+ λ∑
i=1

n

|xi|→min
x∈ Rn

, (3)

which  is  to  minimize  nonsmooth  function  f 2,1
LASSO (x ) and  uses  L1-regularization.  This  method

assumes that the coefficients of the model are sparse, meaning that few of them are non-zero. LASSO
is closely related to basis pursuit denoising [5] in the field of signal processing and has potential
applications in image compression and compressed sensing. 

If C=I , p=2 and q=2, we get so called RIDGE-regression model [6]:



f 2,2
RIDGE (x )=‖y−Ax‖2

2+ λ∑
i=1

n

xi
2→min

x∈ Rn

, (4)

which is to minimize strictly convex smooth function f 2,2
RIDGE (x ) and uses  L2-regularization. This

model is usually used for estimating coefficients of regression model if the independent variables are
highly correlated. Also, it can be useful for dealing with multicollinearity problems, which commonly
occur in models with large number of parameters [7].

Finally, when λ=0, then the problem (1) corresponds to well-known least squares method (LSM)
if p=2 and the least moduli method (LMM) if p=1. LSM plays a key role in obtaining estimates and
finding  unknown  parameters  in  statistics,  and  LMM  has  proven  to  be  robust  to  anomalous
observations or outliers [8, 9].

The problem (1)  is  a problem of unconditional minimization of the convex function  f pq (x ),
subgradient of which at the point x is calculated using the following formula:

g f pq (x j)=p∑
i=1

m |∑
j=1

n

aij x j− y
i|
p−1

s ign(∑
j=1

n

aij x j− y
i)aij+  

+ λq∑
i=1

k |∑
j=1

n

cij x j|
q−1

s ign(∑
j=1

n

cij x j)cij , (5)

or we can write it in matrix-vector form as follows:

g f pq (x )=p AT (|Ax− y|p−1⊙ sign (Ax− y ))+ λqCT (|Cx|q−1⊙ sign (Cx )) , (6)

where |t| is the modulus (absolute value) of the number t , and ⊙  denotes the elementwise Hadamard
product. 

So, the general model (1) allows us to cover some well-known models and methods with different
properties  and  possibilities.  Since  the  function  f pq (x ) is  convex  and  can  be  both  smooth  or
nonsmooth, we can consider using efficient nonsmooth optimization methods for its minimization. In
particular, the Shor’s ellipsoid method [10, 11, 12] can be used, which is implemented as the emshor
program [13]. In the next section a brief description of the ellipsoid methods is given, as well as
Octave  implementation  of  the  empq  algorithm,  which  is  designed  for  the  function  f pq (x )
minimization.

3. Ellipsoid method and the empq algorithm

Yudin-Nemirovsky-Shor’s ellipsoid method is based on using ellipsoid of the minimal volume in

En, which contains a semi-ball obtained as a result of intersection of n-dimensional ball and half
space, which passes through its center. The ellipsoid has a flattened shape in the direction of normal
to the hyperplane, which passes through the center of the ball with radius r . Its parameters (see
Figure 1) are as follows: a is a length of the minor semi-axis in the direction of normal, which defines
a semi-ball; b is a length of the major semi-axis (the number of such axes equals n−1); h is a distance
from the center of the ball to the center of the ellipsoid in the direction of its minor semi-axis.



Figure 1: Ellipsoid of the minimum volume, which contains a semi-ball in En.

Iteration of the ellipsoid method is to proceed from the current ellipsoid to the next one with
constant coefficient of their volumes decreasing. This coefficient is determined by the ratio of volume
of the ellipsoid with semi-axes a and b to the volume of the ball with radius r  in En and can be
written as follows:

qn=(ar )(br )
n−1

= n
n+1( n

√n2−1)
n−1

<1. (7)

It is shown in [13] that 

qn<exp{−1
2n }<1 , (8)

so, for the big values of n the coefficient qn is approximated by the asymptotic formula

qn≈1− 1
2n

. (9)

To use the ellipsoid method for finding the minimum point x pq
*  of the problem (1) we must provide

it  to  be  localized  in  n-dimentional  ball  of  radius  r0 with  center  at  the  point  x0∈ Rn,  i.e.

‖x0−x pq
* ‖≤r0. The algorithm to be used is called the empq algorithm, description of which is given

below.
The empq algorithm. The input parameter of the algorithm is accuracy  ε f>0, with which

f pq
* =f pq (x pq

* ) is to be found.

Initialization. Let us consider n×n-matrix B and set B0≔ I n, where I n is n×n identity matrix.

We move to the first iteration with values x0, r0 and B0. Let values xk∈ Rn, rk, Bk be found at the

iteration k . Transition to the iteration k+1 consists of the following sequence of steps.

Step 1. Calculate  f pq (xk ) and subgradient  g f pq (xk ) at the point  xk using formula (5) or (6). If

rk‖Bk
T g f pq (xk )‖≤ ε f , then “Stop: k*=k  and x pq

* =xk”. Otherwise, proceed to Step 2.

Step 2. Let ξk≔
Bk
T gf pq (xk )

‖Bk
T gf pq (xk )‖

.



Step 3. Calculate the next point

xk+1 :=xk−hk Bk ξk,   where   hk=
1

n+1
rk.

Step 4. Calculate

Bk+1 :=Bk+(√ n−1
n+1

−1)(Bk ξk )ξk
T     and    rk+1 :=rk

n

√n2−1
.

Step 5. Go to the iteration k+1 with values xk+1, rk+1, Bk+1.

Theorem. Sequence of points {xk }k=0

k*

 satisfy the following inequalities:

‖Bk
−1(xk−x pq

* )‖≤rk,    k=0,1,2 ,…,k*.

On  each  iteration  k>0 the  value  of  decreasing  of  volume  of  the  ellipsoid

Ek={x∈ Rn :‖Bk
−1 (xk−x )‖≤rk}, which localizes point x pq

* , is constant and equal to 

qn=
vol (Ek )
vol (Ek−1)

=√ n−1
n+1 ( n

√n2−1)
n

<exp{−1
2n }<1.

The theorem implies that the ellipsoid method converges with geometric progression rate with

coefficient  qn<exp{−1
2n }<1 [13]. It also allows us to estimate computational complexity of the

algorithm empq for finding x pq
*  and affirm that it can be successfully run on modern computers, if

n=30÷100. Indeed, to decrease in 10 times volume of the ellipsoid localizing the point x pq
* , we need

to perform K  iterations, where K=−ln 10
ln qn

≈ (2 ln 10 )n≈ 4.6n. It means that in order to improve

deviation of found record value of the function f pq (x ) from its optimal value f pq
*  by 10 times, it is

necessary to perform 4.6n iterations of the algorithm for finding x pq
* .

If n=30 and ε f=10−6× f (x0), then the maximal number of iterations of the algorithm is equal to

4.6n2=46×900=41400.  Also,  if  n=100,  the  maximal  number  equals  460 000 iterations.

Therefore, even the straight-up matrix-vector implementation of calculation of the function f pq (x )
value  and its subgradient according to the formula (5) allows to provide fast algorithm work on
modern computers. Below we will confirm this with the results of computational experiments using
Intel Core i7-10750H processor, 2.6 GHz, 16 Gb RAM and GNU Octave 6.3.0 language.

Algorithm for finding an approximation to the point x pq
*  is implemented using Octave language.

Code of the algorithm is given below.

# Input parameters:                                               #com01
# A(m,n) – observation matrix;                                    #com02
# C(k,n) – regularization summand matrix;                         #com03
# y(m,1) – output vector;                                         #com04
# p,q – scalar parameters, 1<=p<=2, 1<=q<=2;                      #com05
# lambda – regularization rate;                                   #com06
# x0(n,1) – starting point;                                       #com07
# r0 – radius of the ball centered at x0 that localizes x_{pq}^*; #com08
# epsf, maxitn – stop parameters:                                 #com09
# epsf – precision to stop by the value of the function fpq,      #com10
# maxitn – maximal number of iterations;                          #com11
# intp – print information for every intp iteration.              #com12
# Output parameters:                                              #com13
# xpq(n,1) – approximation to x_{pq}^*;                           #com14
# fpq – value of the function f_{pq} at the point xpq;            #com15
# itn – the number of iterations;                                 #com16
# ist – exit code: 1 – epsf, 4 – maxitn.                          #com17
function [xpq,fpq,itn,ist] = empq(y,A,C,p,q,lambda,x0,r0,
                                 epsf,maxitn,intp);               #row01
   n = columns(A); xpq = x0; B = eye(n); r = r0;                  #row02
   dn = double(n); beta = sqrt((dn-1.d0)/(dn+1.d0));              #row03
   for (itn = 0:maxitn)                                           #row04
     temp1 = A*xpq - y; temp2 = C*xpq;                            #row05
     fpq = sum(abs(temp1).^p) + lambda*sum(abs(temp2).^q);        #row06
     g1 = p*A'*abs(temp1).^(p-1).*sign(temp1) + ...



                  lambda*q*C'*(abs(temp2).^(q-1).*sign(temp2));   #row07
     if((mod(itn,intp)==0)&&(intp<=maxitn))                       #row08
        printf(" itn %4d  fp %14.6e\n",itn,fp);                   #row09
     endif                                                        #row10
     g = B'*g1; dg = norm(g);                                     #row11
     if(r*dg < epsf) ist = 1;  return; endif                      #row12
     xi = (1.d0/dg)*g; dx = B * xi;                               #row13
     hs = r/(dn+1.d0); xpq -= hs * dx;                            #row14
     B += (beta - 1) * B * xi * xi';                              #row15
     r = r/sqrt(1.d0-1.d0/dn)/sqrt(1.d0+1.d0/dn);                 #row16
   endfor                                                         #row17
   ist = 4;                                                       #row18
endfunction                                                       #row19

Core of the empq program is located in the for loop (rows 4–17). First, the value of the function
f  (line 6) and its normalized subgradient at the point x pq (row 11) are calculated. If the stop condition
is satisfied (row 12),  the algorithm stops its  work.  Stop in the empq algorithm occurs when a

condition  rk‖Bk
T g f pq (xk )‖≤ ε f  is  fulfilled,  which  is  equivalent  to  condition  f pq (xk )−f pq

* ≤ ε f .

Otherwise, the next point xk+1 is calculated (row 14), the space transformation matrix Bk+1 (row 15)

and the radius rk+1 (row 16) are recalculated.

4. Total variation denoising

In addition to machine learning (in particular, regression and classification models, SVM etc.),
models of the type (1) are commonly used in various applied fields, such as signal processing. This
domain  belongs  to  an  electrical  engineering  area  and  focuses  on  processing,  analyzing  and
synthesizing signals of different nature, such as scientific measurements, sounds, images, currency
fluctuations [15] etc. 

The problem of interest is total variation (TV) denoising (filtering), which is a noise removal
process. Its main principle claims that signals with excessive and probably incorrect details have
rather  high  total  variation.  The  problem considered  is  to  reduce  the  variation (and  therefore
unnecessary details) subject to staying as close as possible to the original signal and preserving
important details, such as edges. This allows us to achieve, in particular, digital storage efficiency,
since signal preservation in such form requires much less memory, and analysis simplicity. The
concept described is known today as ROF model [16].

The total variation problem can be formulated using the described model of the problem (1). We
need to find approximation xi,  i=1 , n, to known signal y i,  i=1 , n, and the first summand of the

function f pq (x ) denotes the closeness measure of them. The second summand represents the total

variation and can be defined in different ways using matrix C  form. So, the total variation problem
could be rewritten using model (1) in the following way:

f pq (x )=∑
i=1

n

|y i−xi|
p+ λ∑

i=1

k |∑
j=1

n

cij x j|
q

→min
x∈ Rn

, (10)

Here matrix A  is of size n×n and equals to the identity matrix, λ≥0 is a regularization parameter,
which is used to regulate intensity of denoising. For instance, if p=2, q=1, and we use the following

(n−1)×n-matrix C1: 

C1=(
1 −1 0 ⋯ 0
0 1 −1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 1 −1

)
which is two-diagonal with band (1 ,−1) (all the other elements of which equal zero), model f pq (x )
turns into the following model: 



f 2,1 (x ;C1)=∑
i=1

n

( y i−xi)
2+ λ∑

i=1

n−1

|xi−xi+1|. (11)

As  a  result  of  C1 x multiplication,  we  get  vector  C1 x=(x1−x2 , x2−x3 ,…, xn−1−xn)
T ,  which

consists of pairwise differences between consecutive elements of vector xi, i=1 , n. Thus, the second

summand in (11) represents the total variation, and since the function f 2,1 (x ;C1) is to be minimized,

the vector  C1 x  is expected to be sparse if the parameter  λ is big enough. So, we can regulate

denoising level using parameter λ: if λ=0, there is no smoothing and we just restore the signal y i,
i=1 , n, precisely. Otherwise, as  λ→∞, the total variation decreases, and filtering process works
more intensive. As a result of this process, we get piecewise constant function.

Another form of matrix C  that can be used is as follows:

C2=(
1 −2 1 0 ⋯ 0
0 1 −2 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 1 −2 1

).
Matrix C2 is tridiagonal matrix of size (n−2)×n with band (1 ,−2,1). If p=2 and q=1, we get the
following model: 

f 2,1 (x ;C2)=∑
i=1

n

( y i−xi)
2+ λ∑

i=1

n−2

|xi−2 xi+1+xi+2|. (12)

In this case, elements of sparse vector C2 x can be interpreted as difference analogues of the second
derivative, and we get piecewise-linear function as a result of filtering process. Moreover, if q=2, we
talk about smooth second derivative approximation, which is used to obtain smoother piecewise
function as a result.

Total variation denoising technique is of particular interest in the field of image processing, where
noisy (stained) or corrupted images are to be cleaned and restored. TV-regularization allows to
smooth  away  noise  and  preserve  edges,  unlike  famous  linear  smoothing  or  median  filtering
techniques [17]. In this case, a 2D signal y i , j is considered, and the total variation, according to [16],
could be written in the following form:

V ( y )=∑
i , j

√|y i+1 , j− y i , j|
2+|y i , j+1− y i , j|

2
, (13)

or as its anisotropic version

V an ( y )=∑
i , j

|y i+1 , j− y i , j|+|y i , j+1− y i , j|. (14)

Such a problem still can be formulated using model (1) with p=2 and q=1. Common methods used
for solving this problem are primal-dual interior-point methods [18] or the split-Bregman method
[19]. It also should be noted that there is a popular approach based on reducing nonsmooth problems
(11) and (12) to saddle form. For instance, we can rewrite (11) as 

min
x∈ Rn

max
p∈ B∞

(‖x− y‖2
2+(C1 x , p)) , (15)

where  B∞={p∈ Rn :max
1≤i≤n

|pi|≤ λ}. Then, to obtain approximate solution of the smooth minmax

problem one could use extragradient type methods [20, 21] or proximal primal-dual algorithms [22].



Since  the  problems  considered  remain  convex  (but  not  necessarily  smooth)  if  p≥1 and
q≥1, some efficient nonsmooth optimization methods can be used for their solving, such as the
ellipsoid method (see Section 3) or Shor’s r-algorithms [12].

5. Computational experiments

In this section, we present the results of computational experiments obtained using the empq
algorithm for 1D TV denoising problem. 

Test 1. Let us consider piecewise constant function f 1 (x ), domain of which is divided into three

intervals  [0,40 ],  [40,70 ], and [70,100 ]. For each of the intervals  j,  j=1,3, value of the function

f 1 (x ) is calculated via the formula

f 1
j (x )=randint j (30 )+sign (u ) (|u|+3) ,

where randint j (30 ) denotes a random integer from the interval [1,30 ], and u is a random number

from the uniform distribution on the interval [−1,1 ]; sign and |∙| are the signum function and the

absolute value function respectively. Such construction of the range of the function f 1 (x ) means that

to each of the constant functions of the intervals j, j=1,3, a random noise is added. To restore the

original piecewise constant function f 1 (x ), model (11) is used, which corresponds to the model (1)

with p=2, q=1 and C=C1. Results of the empq algorithm work for this problem with two values
of λ are presented in Figure 2.

Figure 2: Results of TV denoising of the piecewise constant function f 1 (x ) using the empq algorithm

and model (11) with λ=10 (left) and λ=50 (right) (n=100).

In  Figure 2, the initial piecewise constant function is colored red, its noised version  f 1 (x ) is
colored dark blue, and its denoised version, obtained using the empq algorithm, is colored green. As
can be seen, with λ=10 we get the restored curve being close to the initial noisy curve; it strives to
duplicate ups and downs of the second showing its trend. On the contrary, using parameter value
λ=50 allows one to restore the initial piecewise constant function; selection of λ makes it possible to
regulate the intensity of noise filtering.

Test 2. Consider the following piecewise linear function f 2 (x ):

f 2 (x )={ x , if x∈ [1,30 ]
−3 x+120 , if x∈ [31,60 ]

−60 , if x∈ [61,80 ]
2 x−220 , if x∈ [81,100 ]

.



To simulate noise, we use the same value sign (u ) (|u|+4 ) from the previous test, where u is a random

number from the uniform distribution on the interval  [−1,1 ]. We use model (12), i.e. parameters

p=2,  q=1 and  C=C2.  Results of filtering of noisy piecewise linear function using the  empq
algorithm for two values of λ are presented in Figure 3. Here, the initial piecewise linear function is

colored red, its noisy version f 2 (x ) is colored blue, and the denoised version of the initial function is
colored green. 

Figure 3: Results of TV denoising of the piecewise linear function f 2 (x ) using the empq algorithm

and model (12) with λ=10 (left) and λ=50 (right) (n=100).

As can be seen from Figure 3, using of matrix C2 works better, if a piecewise linear function is
denoised rather than a piecewise constant one. With λ=10 we observe how the denoised curve tends
to duplicate the noised one (left picture in Figure 3), but with λ=50 we get denoised piecewise linear
function being much closer to the initial one (right picture in Figure 3). It should be also noted that
choosing parameter  q=2 in model (1) means using smooth 2-derivative approximation, so the
denoised curve obtained has edges smoothed away.  So,  using parameters  p and  q,  as  well  as
regularization coefficient λ and matrix C  allows one to control the level of denoising process.

Test  3.  Along  with  a  bit  synthetical  examples,  which  are  though  quite  important  for
demonstration  of  structure  of  the  models  described,  let  us  consider  results  of  computational
experiments with real datasets, namely bitcoin price evolution. The dataset taken has been collected
from the Binance API with open price data captured at one-minute intervals from 11:40 to 13:19 on

01/08/2023. We use model (1) with  p ,q=1,2,  λ∈ {10,30,50,70 },  and matrix  C={C1 ,C2}.  The

results of using the empq algorithm for given bitcoin dataset denoising is presented in Figure 4 and
Figure 5. Here, bitcoin open price data is colored blue, and denoised curve is colored green.



Figure 4: Result of TV denoising of bitcoin open price dataset using the empq algorithm and model
(1) with p=2, q=1, λ=30, and C=C1 (n=100).

Figure 5: Result of TV denoising of bitcoin open price dataset using the empq algorithm and model
(1) with p=2, q=1, λ=30, and C=C2 (n=100).

As mentioned before, using matrix C=C1 we obtain piecewise constant function as a result of

denoising  process  (see  Figure  4),  and  using  matrix  C=C2 we  get  piecewise  linear  function

approximation (see Figure 5), which fits the data much better. In the first case, further increase of λ
leads to ignoring important details and edges in data, since the resulting curve tends to be just
constant. In the second case, this tendence remains, but we get more details preserved in the ups and
downs  of  a  piecewise  linear  function.  Finally,  using  smooth  2-derivative  with  p=2,
q=2 and matrix C=C2 gives us smoothed curve as a result (see Figure 6).



Figure 6: Result of TV denoising of bitcoin open price dataset using the empq algorithm and
model (1) with p=2, q=2, λ=30, and C=C2 (n=100).

Conclusion

The use of different smooth and nonsmooth regression models is rather common not only in
modern areas of artificial intelligence and machine learning, but also in a number of applied fields,
such as image processing and compression, compressed sensing, noise reduction etc. Problems that
appear in these fields are often formulated as nonsmooth or convex optimization problems,  so
corresponding methods of that kind can be applied. 

Proposed empq algorithm, which is based on the ellipsoid method, is capable of solving convex
optimization problems corresponding to total variation denoising problems if the number of points in
signal sample is not greater than n=100÷120. This number is possible to be increased to some level
via  using more  advanced computing capabilities.  The general  model  considered allows one to
regulate denoising level and smoothness of a resulting curve by changing parameters p, q, coefficient
λ and choosing the proper form of matrix  C  to determine interconnections between elements of
variables vector in regularization summand. Results of computational experiments demonstrate the
prospect and flexibility of such models.

As mentioned before, for solving the problems considered it is appropriate to use other types of
methods, such as splitting methods [23], various extragradient schemes, Shor’s r-algorithms [11, 12]
etc.  The last  ones  are  based on using space transformation procedure in  the direction of  two
successive subgradients and provide accelerated convergence while minimizing nonsmooth convex
functions of thousands of variables. But the main advantage of the algorithm proposed is obtaining a
solution  with  any  given  accuracy,  whereas  other  methods  are  usually  limited  in  this  aspect.
Nevertheless, the applications of these methods to the problem considered are of a great interest;
investigation and comparison of methods efficiency will be conducted in further publications.
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