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Abstract
This  research  examines  lock-free  containers  designed  for  computationally  intensive  multithreaded
intelligent solutions in socially oriented information systems, particularly financial platforms and social
networks during periods of  peak demand.  Effective  handling of  large,  rapidly changing data streams
necessitates efficient buffering mechanisms. An expert evaluation identified queues as the optimal data
structure for such sequential data processing tasks due to their inherent structural suitability. The study
critically  evaluated traditional  lock-based synchronization methods commonly used in multi-threaded
environments, uncovering significant drawbacks, including susceptibility to deadlocks, priority inversion,
increased latency, and poor scalability. Given these limitations, the investigation pivoted towards lock-
free  synchronization  methods,  leveraging  hardware-supported  atomic  operations  and  Compare-And-
Swap (CAS) loops to facilitate concurrency without explicit  locking mechanisms. To further optimize
performance, memory locality principles were applied to lock-free queue implementations. Techniques
such as strategic memory alignment, padding, and sequence numbering were introduced, significantly
reducing  cache  misses  and  improving  its  efficiency.  These  enhancements  aimed  to  minimize
synchronization overhead, thus substantially increasing throughput and scalability under high contention
scenarios. A rigorous benchmarking methodology was developed to evaluate the effectiveness of these
optimizations, explicitly addressing multi-threaded measurement accuracy and correctness testing. Three
distinct queue implementations were tested: a standard baseline lock-free queue, a volatile-based lock-free
queue incorporating memory locality optimizations,  and an atomic-based variant  similarly  optimized.
Experimental  results  clearly  indicated  the  volatile-based  optimized  queue  significantly  outperformed
other implementations.  It  demonstrated notably lower latency, decreased performance variability,  and
superior  scalability,  underscoring  the  effectiveness  of  memory  locality  optimizations.  These  findings
provide critical insights for developing efficient, scalable, and reliable synchronization solutions essential
for contemporary high-load computing environments.

Keywords
cache optimization, computational intelligence, concurrent processing, high-loaded systems 1

1. Introduction

The  rapid  pace  of  globalization  and  the  increasing  digitalization  of  society  have  significantly
amplified the importance of intelligent high-performance socially oriented systems. These systems,
including  social  networks,  financial  platforms,  and  critical  infrastructure  applications,  must
effectively  handle  substantial  and  variable  data  streams.  Furthermore,  the  resilience  and
responsiveness of these systems become particularly crucial during social crises, such as pandemics
or military conflicts, when informational demands peak sharply.
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A  critical  challenge  faced  by  these  systems  is  the  management  of  high-load  scenarios
characterized by extensive concurrent  data  processing demands.  The inability  to  manage such
loads effectively results in back pressure, a phenomenon where data processing throughput cannot
match incoming data rates,  leading to potential  system delays and reliability issues.  Therefore,
addressing  high-load  data  processing  requirements  becomes  vital  for  maintaining  operational
efficiency and data integrity within socially critical applications.

Traditionally,  intelligent  high-load  systems  have  employed  lock-based  synchronization
approaches, extensively researched and widely implemented due to their straightforward semantics
and  ease  of  use.  However,  lock-based  mechanisms  are  inherently  limited  by  issues  such  as
deadlocks,  priority  inversion,  increased  latency,  and  poor  scalability  under  high  concurrency
conditions.  Conversely,  lock-free  synchronization  strategies,  which  avoid  explicit  locking
mechanisms by leveraging atomic hardware operations,  remain relatively underexplored in the
context  of  socially  oriented  high-load  systems,  despite  their  potential  to  offer  significant
performance improvements.

Given  the  aforementioned  context,  this  study  aims  to  comprehensively  investigate  the
applicability and optimization potential of lock-free queue implementations specifically tailored for
high-load socially oriented systems [1]. The primary objective is to evaluate and enhance lock-free
queue structures through strategic memory locality optimizations, ultimately aiming to achieve
maximal performance efficiency and data integrity. To achieve this goal, the following research
tasks were formulated:

 Identification and detailed characterization of the back pressure phenomenon in high-load
systems.

 Analysis and comparison of existing synchronization mechanisms (lock-based vs. lock-free)
regarding their performance and limitations.

 Exploration and implementation of memory locality optimization techniques within lock-
free data structures.

 Comprehensive  benchmarking  and  correctness  testing  of  optimized  lock-free
implementations under realistic high-load scenarios.

Importantly, the intent of this research is not to target specific throughput metrics; instead, the
goal is to develop a lock-free queue optimized to deliver maximal efficiency within clearly defined
operational  constraints.  Special  emphasis  is  placed  on  guaranteeing  robust  data  transfer,
maintaining  sequence  integrity,  and  reducing  synchronization  overhead.  This  analysis  will
critically assess optimization strategies tailored to high-throughput data processing and evaluate
the contribution of lock-free data structures toward enhancing performance in relevant high-load
environments.

2. System description

Before proceeding with further analysis, it is critical to establish a clear understanding of high-load
system  characteristics,  as  their  operational  specifics  significantly  influence  the  selection  and
efficiency  of  buffering  mechanisms  and  subsequent  data  handling  methodologies.  High-load
environments  often  encounter  substantial  and  unpredictable  streams  of  data,  necessitating
specialized strategies to ensure stable, responsive, and reliable performance.

2.1. Back pressure problem

A primary challenge encountered by high-load systems is "back pressure." This phenomenon arises
when consumer threads or processes fail  to match the pace at  which data producers generate
information. Consequently, unprocessed data accumulates, potentially leading to significant delays
or  even  system failures.  Effectively  managing  back  pressure  is  crucial,  particularly  in  socially



oriented  and  critical  infrastructure  systems  where  data  integrity,  timeliness,  and  consistent
throughput are non-negotiable requirements.

Typical software architectures address back pressure through several approaches:

 Producer Regulation: Slowing down data generation intentionally at the source.  This is
practical  primarily in scenarios involving user interaction but is ineffective for systems
reliant on automated, continuous data streams.

 Data Dropping: Discarding excess incoming data. Suitable for applications where minor
data loss does not substantially degrade overall functionality, yet inappropriate for critical
systems requiring strict data continuity.

 Data Buffering: Implementing intermediate buffers that temporarily store excess incoming
data, smoothing out transient data surges and preventing overload scenarios. This solution
is optimal for environments prioritizing data consistency and integrity [2].

2.2. Buffering received data

Given  the  limitations  of  producer  regulation  and  data  dropping  in  critical  system  scenarios,
buffering received data (BRD) emerges as the most viable solution for managing back pressure
effectively. As depicted in Figure 1, BRD employs a dedicated producer interface thread responsible
for  continuously  retrieving  and  aggregating  incoming  data  into  a  Shared  Container.
Simultaneously, multiple consumer threads independently access and process data from this shared
container, distributing processing load effectively.

Figure 1: Scheme of buffering received data [created by the authors].

This strategy allows for substantial scalability. Theoretically, the number of consumer threads
can  increase  indefinitely,  provided  sufficient  hardware  resources  are  available.  Practically,
however, hardware constraints impose limits on the number of simultaneous threads, and scaling
beyond certain thresholds may result in diminishing returns or increased complexity related to
synchronization and thread management.

2.3. Buffering received data with memory pool

A further optimization of the basic BRD method includes integrating an external memory pool into
the buffering architecture, as illustrated in Figure 2. By employing a memory pool, operations are
performed on memory pointers rather than directly on buffered data. This approach significantly



reduces container access bottlenecks and improves the overall efficiency and responsiveness of the
data handling process [3, 4].

Figure 2: Scheme of buffering received data with memory pool [created by the authors].

Adopting  this  methodology  necessitates  clearly  defining  data  sizes  provided  by  producer
threads, ensuring consumer threads effectively retrieve and manage data via pointer-based access.
Common implementations utilize circular buffers with fixed capacities, overwriting old data with
new entries without explicit clearing operations. Despite potential security considerations inherent
in this approach, proper data management practices effectively mitigate these risks.

3. Buffer implementation

For effectively managing buffered data in high-load systems, an appropriate data structure must be
selected based on its efficiency in handling concurrent data access and processing.

3.1. Container selection

To determine the most suitable container type, an expert assessment was conducted involving 100
specialists  from various  cities,  including Kharkiv,  Kyiv,  Lviv,  Vienna,  Lisbon,  Krakow,  Dnipro,
Odesa, New York, Toronto, and Tbilisi. The survey aimed to identify the most frequently utilized
data structures in data flow scenarios. The majority of experts identified queues and stacks as the
most common, each receiving maximum support (100 votes).

Considering the  characteristics  of  typical  data  handling  scenarios  encountered  in  high-load
systems – particularly where orderly data processing is critical – the queue was selected as the
container type for further investigation. The fundamental principle guiding queue functionality is
"First In, First Out" (FIFO), where data items are inserted at one end (tail) and retrieved from the
opposite end (head). Common queue implementations include:

 Linked  Lists:  Consistently  linked  nodes  that  allow  constant-time  operations  for  data
insertion and removal.

 Dynamic Arrays: Arrays expandable at both ends, requiring memory reallocation during
extension.

 Hybrid Models: Combining linked lists and dynamic arrays, typically in the form of fixed-
size array buckets that dynamically expand as needed.



Due to  their  structured  approach  to  data  management  and  inherent  efficiency  in  handling
sequential processing tasks, queues are widely utilized in information processing systems. Two
fundamental approaches exist for queue implementation in multi-threaded systems: lock-based and
lock-free paradigms.

3.2. Lock-based approach

The  lock-based  approach  involves  securing  exclusive  access  to  critical  code  sections,  thereby
preventing  concurrent  thread  interference.  This  approach  typically  employs  synchronization
mechanisms  such  as  mutexes  or  locks.  A  representative  scenario  is  illustrated  in  Figure  3,
demonstrating protection of a shared resource – such as a global counter – through mutex locking.
The process involves explicitly acquiring a lock before performing the operation and releasing it
afterward, ensuring data consistency at the cost of potential thread waiting times.

Figure 3: Increment with lock [created by the authors].

Another generalized implementation of this approach is shown in Figure 4, highlighting a lock-
based  queue  implementation.  Here,  node  creation  and  insertion  operations  are  explicitly
encapsulated as critical sections. Each thread must obtain exclusive access before modifying shared
structures, thereby ensuring data integrity and preventing race conditions.

Despite its straightforward implementation and clear synchronization semantics, the lock-based
method possesses several inherent drawbacks, including:

 Deadlocks and livelocks: Incorrect handling of locks can lead to situations where threads
become indefinitely blocked, effectively halting system functionality.

 Latency issues: Threads may experience significant delays as they wait for locked resources
to become available, resulting in reduced overall system responsiveness.

 Poor scalability: As the number of threads increases, contention for locks escalates, thereby
degrading performance significantly in high-load environments.

Additionally,  the lock-based approach can introduce priority inversion issues,  where lower-
priority threads hold locks required by higher-priority threads, causing increased waiting times
and reduced predictability in real-time systems. The complexity of managing multiple locks can
also lead to higher chances of programmer errors,  making system maintenance and debugging
more challenging.



Figure 4: Thread-safe queue using mutex [created by the authors].

3.3. Lock-Free approach

To  mitigate  the  limitations  associated  with  lock-based  methods,  lock-free  techniques  employ
atomic  operations  provided  by  hardware,  ensuring  that  data  modifications  occur  indivisibly
without being visible in intermediate states. A fundamental concept in lock-free programming is
the Compare-And-Swap (CAS) operation [5],  illustrated in Figure 5.  CAS loops attempt atomic
updates to shared variables, repeatedly verifying that the expected state remains consistent before
applying modifications.

Figure 5: Lock-free increment [created by the authors].

Algorithm presented in Figure 6 is a basic example of a lock-free queue implementation using
CAS operations. Unlike lock-based approaches, this method significantly reduces thread wait times
and eliminates deadlock conditions by continuously retrying operations without explicit locking
mechanisms.

Moreover,  lock-free approaches inherently provide better adaptability to varying workloads.
Since threads do not wait on locks, they can immediately attempt retries after a failure, allowing
them  to  dynamically  respond  to  system  load  fluctuations.  This  characteristic  substantially
contributes to achieving improved throughput, especially in high-contention environments typical



of high-load applications. Another significant advantage of lock-free methodologies is the inherent
robustness against thread failures.  Unlike lock-based mechanisms, where a thread failure while
holding a lock could stall or degrade the entire system's operation, lock-free techniques ensure that
individual thread failures do not adversely impact overall system performance [6]. This feature is
particularly beneficial in critical real-time applications where uninterrupted service is essential.

Nevertheless, lock-free programming introduces unique challenges, notably the ABA problem,
wherein  memory  states  can  revert  to  previously  observed  conditions  undetected,  causing
erroneous system behavior. Although these challenges require sophisticated handling techniques,
lock-free implementations generally provide superior scalability and responsiveness compared to
lock-based methods.

Figure 6: Lock-free thread safe queue [created by the authors].

The recognition of these nuanced challenges has encouraged further advancements, particularly
incorporating memory locality  optimization into  lock-free  techniques.  Subsequent  sections will
thoroughly examine such advanced lock-free variations, emphasizing the critical role of memory
locality in enhancing performance in high-load, multi-threaded environments.



4. Optimization of lock-free approach

4.1. Memory locality challenges in lock-free implementations

Additional Optimizing memory access patterns is critical to improving the performance of lock-
free algorithms in high-load, multi-threaded systems. Two core principles drive cache efficiency
and memory optimization [7, 8]:

 Temporal Locality: This principle implies that recently accessed data will likely be accessed
again shortly. Effective utilization of temporal locality requires ensuring frequently accessed
data remains available within fast  cache memory,  thus minimizing repetitive and costly
accesses to slower main memory.

 Spatial Locality: Spatial locality refers to the tendency for a program to access data locations
near previously accessed locations. Optimally leveraging spatial locality involves organizing
data  so  that  related  data  elements  are  stored  within  the  same  cache  lines,  thereby
significantly reducing cache misses and enhancing overall processing speed [9].

Lock-free  data  structures  frequently  utilize  linked  list  architectures  due  to  their  inherent
flexibility. However, linked lists pose specific challenges for memory locality optimization. While
they  inherently  offer  some spatial  locality  advantages  when nodes  are  allocated  contiguously,
practical constraints typically require separation of frequently updated components, such as queue
head and tail pointers, to different cache lines. This separation mitigates cache contention and the
false  sharing  phenomenon—an  issue  where  multiple  threads  inadvertently  cause  cache
invalidations due to modifications of adjacent memory locations.

To address false sharing, implementations commonly employ padding techniques, explicitly
isolating frequently modified data by placing them on distinct cache lines.

4.2. Enhancing lock-free algorithms with sequence numbers

An  advanced  optimization  strategy  involves  incorporating  sequence  numbers  into  the  node
structure of lock-free queues. Sequence numbers function as synchronization tools, significantly
reducing unnecessary cache coherence traffic among threads. Proper alignment of node data and
sequence numbers ensures operations by different threads occur on separate cache lines, improving
parallel execution efficiency [10].

The key advantages of integrating padding and sequence numbers into lock-free structures
include [11]:

 Prevention of false sharing by isolating updates to different memory regions.
 Enhanced cache efficiency through optimal data alignment.
 Improved scalability and performance in high-contention, multi-threaded scenarios due to

reduced synchronization overhead.

 Example code illustrating this optimization shown in Figure 7.



Figure 7: Enhanced version of lock-free approach [created by the authors].

By effectively employing padding and sequence numbers,  lock-free  algorithms can achieve
significant performance improvements through optimized memory locality strategies. With these
foundational concepts established, we can now proceed to a comprehensive evaluation of these
strategies. Before conducting performance evaluations, clearly defining benchmarking principles to
accurately  measure  and  analyze  algorithm  efficiency  under  realistic  high-load  conditions  is
essential [11].

5. Benchmarking

5.1. Methodology and challenges

Accurately  measuring  performance  metrics  represents  one  of  the  critical  challenges  when
evaluating  multi-threaded  applications,  particularly  those  utilizing  lock-free  structures.  A
conventional approach for benchmarking performance involves capturing the execution time of a
particular operation or set of operations. Typically, this approach can be outlined as shown in
Figure 8:

Figure 8: Typical benchmarking procedure [created by the authors].

While  effective  in  single-threaded  scenarios,  this  straightforward  measurement  approach
becomes  unreliable  in  multi-threaded  contexts  due  to  potential  interference  from  concurrent
operations and system scheduling. 



Reliable  performance  measurement  in  multi-threaded  scenarios  necessitates  addressing
concurrent execution challenges and operating system scheduling interference [12].  Techniques
such as  thread affinity  or  "thread pinning"  are  employed to minimize  inaccuracies  by binding
individual  threads  to  specific  CPU  cores,  thereby  preventing  context  switches  and  ensuring
consistent execution contexts. Furthermore, modern computing systems exhibit nondeterministic
behavior  caused  by  scheduling  and  resource  contention,  complicating  reliable  performance
measurements.  Thus,  isolating  benchmark  tests  from external  system processes  is  essential  to
achieving accurate, reproducible results. "Shielding," a strategy involving reserving specific CPU
cores  exclusively  for  benchmark  threads,  significantly  reduces  variability  in  measurements
resulting from external interference.

5.2. Producer-consumer model

Benchmarking  producer-consumer  scenarios,  particularly  those  with  multiple  producers  and
consumers, introduces additional complexities. To ensure accurate and meaningful benchmarking
results, the following considerations are essential:

 Minimizing interference from unrelated system processes.
 Consistent core allocation for benchmark threads.
 Capturing  synchronization  overhead,  as  contention  among  threads  significantly  affects

performance.

For a robust evaluation of performance in real-world settings, the benchmarking framework
should record comprehensive statistical data, including minimum and maximum latencies, standard
deviation, and percentile thresholds (such as the 95th and 99th percentiles). This detailed statistical
approach  provides  a  deeper  understanding  of  system  behavior,  particularly  under  worst-case
conditions and peak load scenarios. Additionally, integer-based data types are commonly utilized in
benchmarks due to their minimal memory overhead and simplicity, mimicking pointer operations
effectively.  External  memory  allocation  strategies,  such  as  memory  arenas,  offer  significant
performance benefits and simplify data management, further enhancing benchmarking reliability.

Correctness  testing  is  equally  critical  to  maintaining  data  integrity  in  concurrent  data
structures.  Verifying  the  correctness  typically  involves  validating  the  order  and  accuracy  of
processed elements. For instance (see Figure 9), one-to-one (1:1) producer-consumer tests involve a
producer sequentially inserting values into a queue and a consumer subsequently retrieving and
verifying the integrity of these values.

Figure 9: One-to-one correctness test [created by the authors].
Two-to-two  (2:2)  correctness  tests  (see  Figure  10)  further  enhance  validation,  where  two

producers concurrently insert data, and two consumers verify the processed data. Such tests help



identify race conditions, synchronization issues, and unexpected behaviors emerging in concurrent
execution environments.

Figure 10: Two-to-two correctness test [created by the authors].

6. Evaluation results

To  thoroughly  assess  the  effectiveness  of  the  lock-free  queue  implementations  optimized  for
memory  locality,  extensive  experiments  were  conducted.  The  evaluation  focused  on  insertion
(enqueue) and retrieval (dequeue) operations within queues, covering internal object sizes ranging
from 1  byte  to  128  bytes.  The chosen size  increments  followed powers  of  two,  aligning with
common cache line sizes in processor architectures, specifically targeting ARM and comparable
systems [13].

Experiment  results  are  illustrated  for  Dequeue  and  Enqueue  on  Figure  11  and  Figure  12,
respectively. 

Figure 11: Experimental Results for Dequeue Operations [created by the authors].

Figures 11 and Figure 12 present the performance measurements for the dequeue and enqueue
operations,  respectively,  under  the  2:2  producer-consumer configuration.  Due to  the  structural
similarities between the two operations, both figures exhibit comparable performance trends.



Figure 12: Experimental Results for Enqueue Operations [created by the authors].

Key findings from the experimental data include:

 The  distribution  of  minimum  execution  times  across  varying  data  sizes  remained
consistently  stable  for  each  tested  queue  implementation,  exhibiting  only  slight
performance degradation at the largest size (128 bytes).

 Notable peaks in maximum latency were observed for object sizes of 2 bytes (across all
queue implementations) and at 128 bytes specifically within atomic-based implementations.

The performance degradation at  the 2-byte  size  is  attributed to suboptimal  processor-level
handling, as this size does not align naturally with typical processor architectures [15]. The latency
increase observed at  128 bytes  corresponds to the tested processor's  actual  cache line size  (64
bytes). While volatile-based and traditional lock-free implementations appeared unaffected by this
discrepancy, atomic-based implementations were significantly impacted due to additional atomic
operation overhead. The experimental outcomes underline the considerable advantage of memory
locality  optimizations  in  lock-free  approaches.  Specifically,  improved  data  placement  within
memory  significantly  enhances  access  efficiency,  thereby  directly  influencing  the  fundamental
performance  characteristics  of  lock-free  algorithms  [14].  The  subsequent  section  will  offer  a
comprehensive  discussion  and  interpretation  of  these  performance  results,  considering  their
implications for practical high-load system scenarios.

Aside from synthetic experiments, this optimization approach was also applied to a system
performing statistical analysis of market data from an automated electronic exchange. The results
demonstrated  a  significant  improvement  in  system  stability,  particularly  in  addressing  the
backpressure problem.

7. Conclusion

This  research  conducted  a  comprehensive  analysis  and  evaluation  of  lock-free  queue
implementations,  emphasizing  memory  locality  optimization  strategies.  Extensive  experimental
studies were carried out, assessing performance across various internal queue object sizes, ranging
from 1 to 128 bytes. Three distinct implementations were systematically compared: a conventional
lock-free queue serving as a baseline,  a  volatile-based approach incorporating memory locality
optimizations, and an atomic-based implementation similarly enhanced by locality techniques.

The principal findings indicate that while conventional lock-free queues maintain theoretical
non-blocking  properties,  they  demonstrate  significant  performance  variability  under  high



contention  due  to  inherent  cache  coherence  overhead  and  frequent  synchronization  needs.
Conversely, implementations optimized for memory locality – particularly those leveraging volatile
variables –  exhibited marked performance improvements under intensive concurrent conditions,
attributed  to  reduced  memory  barriers  and  enhanced  cache  efficiency. However,  atomic-based
queues,  despite  benefiting from structured  memory alignment  strategies,  introduced  additional
overhead linked to atomic synchronization operations, thus occasionally diminishing performance
compared to their volatile counterparts. These experimental outcomes underscore the critical role
of memory locality in lock-free queue optimization and highlight the delicate balance required
between cache optimization and synchronization overhead.

Additionally,  the study explored broader aspects relevant to practical deployment,  including
expert evaluations identifying queue data structures as optimal for sequential data processing in
high-load systems. Benchmarking and correctness testing methodologies were rigorously defined
and applied, ensuring comprehensive assessment of performance and data integrity under realistic
multi-threaded scenarios.

In  conclusion,  memory  locality  optimizations  substantially  enhance  the  scalability  and
performance  of  lock-free  queues.  Further  investigations  should  focus  on  developing  hybrid
synchronization  mechanisms  dynamically  adaptable  to  varying  levels  of  contention,  thereby
further enhancing scalability and efficiency in real-world, high-load, multi-threaded environments.
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