
Intelligent adaptive algorithms for solving the algebraic 
eigenvalue problem on modern supercomputers⋆

Oleksandr Khimich 1,†, Oleksii Chystiakov1,∗,†

1 V.M. Glushkov Institute of Cybernetics, NAS of Ukraine, Akademika Glushkova Avenue, 40, 03187, Kyiv, Ukraine,

Abstract
Mathematical modeling of complex objects often reduces to solving of an algebraic eigenvalue problem
(AEP) of extremely large sparse matrices of various structures. The most important parameters of parallel
algorithms are: computational time, used computer resources, and the obtained results reliability. Modern
supercomputers architecture becomes more complicated, their performance increases due to increment the
number of processors and various coprocessors [1]. Computational efficiency issues often arise when using
supercomputers  for  mathematical  modeling.  There  are  significant  differences  between maximum and
operational productivity of modern computers due to losses in the communication component [2, 3] and
other factors. There are also problems with the computer results reliability, related to approximate data,
features of machine arithmetic and rounding. Therefore, it is necessary to provide computer research of
mathematical properties of the problems and analysis of the obtained solution results [4].
The article presents intelligent adaptive algorithms for solving AEP for large sparse matrices of various
structures on modern supercomputers. Based on the results of a computer study of the portrait and structure
of the matrix and the mathematical properties of the problem, using artificial intelligence (neural networks
and knowledge bases), the algorithms automatically determine an effective parallel computing model and
topology, required number of computing elements, and the bit depth of computations to ensure the results
reliability. The general scheme and adaptive algorithms implementation steps are described. Theoretical
studies and numerical experiments confirmed high efficiency and adaptability of the developed algorithms
on various computers architectures, providing stable results in modeling of various processes.

Keywords
Mathematical modeling, intelligent adaptive algorithms, linear algebra algorithms, parallel algorithms, 
algebraic eigenvalue problem1

1. Introduction

Increased computing capabilities (high performance and significant amounts of memory) make it
possible to solve new scientific and technical problems and organize numerous experiments, which
significantly reduce the cost and time of developing modern technology. However, the wide variety
of existing algorithmic software created for modern parallel computers of different architectures in
different programming languages and operating under different operating and hardware platforms,
and the large amount of  documentation on the use of new computing tools -  all  this requires
significant intellectual effort and time from users.

In addition, nowadays there is a significant increase in the requirements for the completeness of
the studied discrete models of objects from different subject areas. Thus, the size of the problems that
have to be solved on computers is significantly increasing. To ensure the reliability of the studied
properties of such modeling objects, it is necessary to develop new numerical methods and parallel
algorithms for solving problems using new programming technologies involving arbitrary bitness,
artificial intelligence tools, etc. In order to effectively use such algorithms on different computer
architectures,  it  is  necessary  to  provide  for  parallelism  that  scales  at  different  stages  of  the
computational process.

⋆International Workshop on Computational Intelligence, co-located with the IV International Scientific Symposium 
“Intelligent Solutions” (IntSol-2025), May 01-05, 2025, Kyiv-Uzhhorod, Ukraine
1∗ Corresponding author.

 khimich505@gmail.com (O. Khimich); alexej.chystyakov@gmail.com (O. Chystiakov)
 0000-0002-8103-4223 (O. Khimich), 0000-0001-6456-2094 (O. Chystiakov)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



Mathematical models of many engineering problems, for example, in mechanics, construction,
aircraft construction, etc., are described by systems of differential equations or difference equations,
the solution of which consists in determining the eigenvalues and eigenvectors of matrices of various
structures [4].

New intelligent algorithms are proposed for solving the algebraic eigenvalue problem with sparse
matrices  of  various  structures  with  automatic  tuning  functions  for  an  efficient  computing
environment, which will ensure obtaining reliable solution results with effective use of computer
resources and time. At the same time, intellectual support for users is increased [5–8].

2. General characteristics of the intelligence of new parallel 
algorithms for solving eigenvalue problems

The algebraic eigenvalue problem (AEP) consists in finding such numbers  for which there exist
non-zero solutions to systems of linear algebraic equations [4]:

Ax=λBx , A ,B∈ M n×n , x∈ Cn , λ∈ C , (1)

where  M n×n , is the set of square matrices of order  n. The numbers  λ are the eigenvalues of
problem (2.1), and the vectors  x are the eigenvectors of this problem. Problem (2.1) is called the
generalized eigenvalue problem.

If B is an identity matrix of order n (i.e. B≡ I n), then the problem

Ax=λx (2)

is called the standard eigenvalue problem. In this case, the numbers λ and the vectors x are called
the eigenvalues and vectors of the matrix A, respectively. There can be the following problems of the
Eigenvalue Problem [8]: a complete eigenvalue problem – find all eigenvalues and all eigenvectors; a
partial eigenvalue problem – find one or more eigenvalues and their corresponding vectors or only
eigenvalues (all or some).

Intelligent parallel algorithms for solving AEP with sparse matrices of arbitrary structure have
been developed:  the  alternating  triangular  method for  calculating  the  minimum eigenvalue  in
problem (1); the generalized conjugate gradient method for calculating the minimum eigenvalue in
problem (2), the subspace iteration method for calculating several minimum eigenvalues and their
corresponding eigenvectors of problem (1). Let's consider their general functional characteristics.

2.1. Computer identification and classification of sparse matrix of unknown 
structures

Nowadays, the concept of a “large” problem is changing radically, involving the use of numerical
methods and algorithms focused on hundreds or thousands of processors of parallel supercomputers
of various architectures. Modern problems of mathematical modeling of physical and mechanical
processes,  which are  reduced  to  solving the  AEP,  most  often have  sparse  matrices  of  various
structures and very large orders. There is a need to determine the matrix structure in the computer
and, if necessary, apply effective methods of reducing them to a regular form [9–11]. Since when
processing a sparse matrix, operations are performed only with non-zero elements, using a certain
rearrangement method, they can be placed in such a way as to reduce the matrix filling and the
number of interprocessor exchanges, as well as to ensure balancing of processes during calculations.

The proposed intelligent algorithms use neural networks to determine the portrait of a sparse
matrix [12]. If the matrix has an arbitrary structure, it is automatically reduced to a regular form. In
[8],  methods  of  processing  sparse  matrices  of  various  structures  for  their  effective  use  in
mathematical modeling problems on computers are considered in detail.

To arrange sparse matrices of arbitrary structure in proposed intelligent algorithms, the parallel
section method is used, as a result of which the sparse matrix has a bordered block-diagonal form.



Such a matrix structure is effective because each individual block will be placed entirely in one
parallel process on the computer.

When solving applied problems, AEP with exact initial data of the form (1) or (2) rarely arise. The
most typical formulation of these problems is to specify the corresponding errors in the initial data:

‖A−A‖=‖Δ A‖≤ ε A‖A‖,‖B−B‖=‖ΔB‖≤ εB‖B‖ (3)

In this case, the structure of the matrices (matrix) of the original problem 1 and the perturbed
problem (1), (3), or (2), (3) does not change. That is, if the original matrix is symmetric, then the
perturbed one remains symmetric, if the original one is strip, then the perturbed one is strip.

Therefore, it is necessary to consider not a problem with exact initial data of the form (1) or (2), but
a problem with approximate data of the form (1), (3) or (2), (3) and to estimate the perturbation of the
solution depending on the perturbation of the initial data (3), because the proximity of the elements A
and A  (as well as B and B for the generalized problem) does not always ensure the proximity of the
eigenvalues. 

In the considered intelligent algorithms, to study the mathematical properties of problems of the
form (1), (3) or (2), (3), the algorithms are adapted to data flows using neural networks [8]. In this case,
the data stream should be understood as sets of input data for the problem and a knowledge base from
a given subject area, on the basis of which the mathematical properties of matrices entered into the
computer  (positive  definiteness,  degeneracy,  etc.)  are  automatically  studied,  as  well  as  the
parallelization model  and computer bit  capacity are determined to ensure the reliability of  the
solution results with the effective use of computing resources. This takes into account factors of the
external environment required for the algorithm. This includes the hardware environment: required
CPU RAM;  required  number  of  GPUs;  application  programs  running  simultaneously  with  the
algorithm, etc.

2.2. Automatic tuning of an efficient computing environment to the mathematical
properties and scope of the problem

The presence of large-scale practical problems that are subject to mathematical modeling and a wide
variety of  powerful  computing equipment of  various architectures  pose the following tasks to
developers of algorithmic and software support: to create adaptive parallel algorithms and programs
with functions for their automatic adjustment to the mathematical properties of the problem and an
effective  (variable)  computer  environment  (multi-level  parallelism,  variable  topology  of
interprocessor connections, multi-bit arithmetic, mixed bitness, etc.), which will ensure the reliability
of computer results for solving problems with approximate data with effective use of computing
resources. [13].

Determining the optimal number of computing devices. This is a non-trivial task, since the time it
takes to solve the problem depends on many factors: the amount of RAM on the nodes of the parallel
computer, the performance of the processors and the communication environment, as well as the
software implementation of the problem-solving algorithm.

According to Amdahl's law, the time to solve a problem consists of two components: the time to
execute sequential operations and the time to execute parallel operations, taking into account the
number of processor elements. However, when solving problems on parallel computers, the time for
performing additional operations necessary to exchange information between computing devices is
added to the time for actually solving the applied problem, i.e., overhead. They directly depend on the
hardware characteristics of the computing system: the data transfer rate in the communication
environment, the performance of processor elements and memory capacity, as well as the number of
transmitted messages to solve the problem.

Increasing the number of computing devices, on the one hand, allows you to reduce the time for
solving a problem by simultaneously processing several blocks of information, but, on the other
hand, the increasing number of transmitted messages on a parallel computer has the opposite effect.



As is known, speedup S p and efficiency E p coefficients are used to assess the quality of a parallel
algorithm [3]:

S p=T 1/T p , E p=S p / p ,

where p is the number of processes used for calculations, T 1 is the time to solve the problem by

one process, T p is the time to solve the same problem by p processes.

For hybrid computers, if we denote: T 1 – the time to solve a problem on the architecture using one

CPU and one GPU, T p – the time to solve the same problem using pCPU and pGPU , then the time to
solve the problem can be calculated by the formulas:

T 1=Ot g ,T p=Ot g+M 1 topg+M 2 topp+Q1 t cpg+Q2 t cpp .

Here we have the following notations: O – the number of algorithm execution operations; t g – the

average execution time of one arithmetic operation on the GPU;  topg – the time of information

exchange between the CPU and the GPU; topp – the time of exchange of one machine word between

two CPU processes; t cpg– the time to establish a connection between the CPU and the GPU; t cpp – the

time to establish a connection between two processes on the CPU; M i and Qi – respectively, the
number of exchanges and synchronizations between the CPU and the GPU on the i-th iteration (
i=1,2 ,…).

Based on such formulas, for each of the considered intelligent algorithms, the acceleration and
efficiency coefficients for various parallel computing models were theoretically proven and tested
when solving experimental and practical problems on parallel computers of various architectures.

Building an effective parallelization model. When creating algorithms for solving problems on
modern supercomputers, it is necessary to take into account the multi-level parallelism model, the
availability of computer memory of various types and volumes, the number and types of processor
elements, and the peculiarities of the connections between them [13].

In intelligent algorithms, it is assumed that two main levels of parallelism are distinguished: the
upper one – macro-operations are performed in parallel (subtasks - logically independent parts of
algorithms) and the lower one - parallelization of the execution of each of the macro-operations) [14].

The first level of the parallel computing model (top level, MIMD model) is process level parallelism
(PLP),  in which processes  execute subtasks in parallel,  using both distributed and shared CPU
memory, synchronizing computations and data exchanges. For parallelizing processes on distributed
memory, the most effective system is MPI [15], and on shared memory, OpenMP [16].

The second level (lower level, SIMD model) is thread level parallelism (TLP) – parallelization of
macro-operations using multiple threads and shared memory. In this case, each of the top-level
macro-operations is parallelized between a number of threads on CPU cores with shared memory
using the OpenMP system, as well as on coprocessors, for example, GPUs using NVIDIA CUDA
technology [17].

The  use  of  distributed  memory  on  a  parallel  computer  creates  certain  problems  with  data
exchanges between CPU processes, as well as between CPU and GPU, which can significantly exceed
arithmetic operations in terms of duration. Intelligent algorithms use a hypercubic topology of
interprocessor connections, a block-cyclic method of matrix parallelization between CPU processes,
and also provide for the execution of data array transfers with simultaneous execution of arithmetic
operations.  Such  implementation  of  parallelization  on  a  hybrid  computer  minimizes  the  total
execution time of the task.

Using arbitrary bit depth calculations. Solving many practical problems with approximate data on
modern supercomputers requires increasing the accuracy of calculation results. The problems of
enormous volume that arise in the modeling of physical and mechanical processes are particularly
critical to the accuracy of computer results. To ensure sufficient accuracy, some practical problems



require a two-fold increase in bit depth, others a four-fold increase, and there are also problems that
require hundreds of bits of calculation. 

One of the easiest ways to minimize errors associated with rounding and loss of precision when
performing computer calculations is to further increase the bit depth. There are various ways to
improve the accuracy of computer results, such as using symbolic calculations. This means that, for
example, when calculating a polynomial, real numbers are not represented in the traditional floating-
point format, but as rational fractions. Among the application packages that provide arbitrary bit
depth of calculations using a character processor, one can note Matlab [18].

The  considered  intelligent  algorithms  use  a  special  GMP (GNU Multiple-Precision  Library)
program library to implement high-precision calculations [19]. Today, the main disadvantage of
using existing methods of increased bit rate is a significant increase in calculation time. To solve such
problems, it is necessary to use exaflop computers.

Fine-Tiling  Algorithms. Despite  the  wide  variety  of  powerful  parallel  computers  of  MIMD
architecture with various types of coprocessors, powerful multi-core computers have been actively
developed and used in recent years. For such computers, American scientists under the leadership of
Prof. J. Dongarra proposed small-tile algorithms for solving SLAE by direct methods based on ¿T ,
LU  and QR – expansion of dense non-degenerate matrices, in which operations on matrices of levels
BLAS, BLAS2,  BLAS3 (matrix-matrix operations) are performed on small  square blocks of data
(“tiles”). on different (mixed) bitness – single and double [20].

Intelligent algorithms for solving AEP provide for their use on multi-core computers. Small-tile
algorithms have been implemented with calculations performed on single and double bitness. This
makes it possible to effectively solve small-scale problems on multi-core computers [7].

In fig. 1 shows the scheme of application of intelligent adaptive algorithms in mathematical
modeling of physico-mechanical processes, which boil down to the solution of the partial generalized
AEP of sparse positive-definite matrices.

Figure 1: Scheme of the application of intelligent algorithms in mathematical modeling of physical
and mechanical processes on parallel computers.



The algorithm starts with entering, checking and evaluating the complexity of the input data
specified by the user (Step 1: Checking input data specified by user). Then the task to be solved is
selected (Step 2: Selection of a problem to solve). In our case, the AEP is solved. In the next step (Step
3:  Selection  of  the  parallelization  model),  the  mechanism  of  parallelization  of  calculations  is
determined. Depending on the size and characteristics of the input data, various parallel computing
models and their combinations can be selected, such as: MPI, OpenMP, CUDA, MPI + OpenMP, MPI +
CUDA, etc.

Next (Step 4: Analysis of sparse matrices structure) the structure of the input matrices is checked
and if the matrices have an irregular structure, they are reduced to a bordered block-diagonal form.
When performing the next step (Step 5: Analysis of mathematical properties of sparse matrices), if it
is determined that the matrix is positive definite, then the computational process begins (Step 6:
Problem solving and analysis of the reliability of the results). Otherwise, if the matrix is not positive
definite, the user will be returned a message about the input data error. If the matrix is singular within
the machine precision, then the bit depth of the computations is increased. Upon completion of the
computations, the results together with the report of the computational process are transferred to the
user interface (Step 7: Output of results to the user interface).

3. Experimental study of the effectiveness of the intelligent algorithm 
of the subspace iteration method for solving the AEP

The study of the new intelligent algorithm was conducted on the SKIT supercomputer complex of the
V.M. Glushkov Institute of Cybernetics [21]. Fig. 1 – 5 presents the time characteristics of solving the
APVZ when using sparse matrices of various structures and volumes from the Florida collection [22]:
G2_circuit – matrix order 150 102, number of non-zero elements 726 674; Bone010 – matrix order 986
703, number of non-zero elements 47 851 783; Emila_923 – matrix order 923 136, number of non-zero
elements 47 851 783. bmwcra_1 – matrix order 148 770, number of non-zero elements –10 641 602.

Figure 2 shows the acceleration of the intelligent algorithm when finding the few minimum
eigenvalues and their corresponding eigenvectors of sparse matrices of different structures using
different numbers of computing devices. The experimental results show that the developed adaptive
algorithm provides good scalability, i.e. the task execution time decreases proportionally with the
increase in the number of computing devices.

Figure 2: Acceleration of the subspace iteration algorithm for bordered block-diagonal matrices.

An experimental study of the algorithm's efficiency on computational models of different levels of
hybrid computers was also conducted (Fig. 2 – 4). The results of the research are also given in [6–8].



The graphs (Figure 3) demonstrate the acceleration of the adaptive algorithm of the subspace
iteration method on the MIMD architecture (MPI parallelization) using a different number of MPI
processes.

Figure 3: Acceleration of an intelligent algorithm on a first-level parallelism architecture.

The graphs (Figure 4) show the acceleration of the intelligent algorithm on a multi-core MIMD
architecture  using  different  numbers  of  processes  and  threads  on  the  cores  (MPI+OpenMP
parallelization).

Figure 4: Acceleration of the subspace iteration method algorithm on the first and second level
parallelism architecture.

As can be seen from Figures 2 – 4, the use of multi-level parallelism allows for more efficient use of
computing resources and provides greater acceleration of the algorithm with the same computing
resources. For example, the acceleration obtained for the Bone010 matrix – matrix order 986,703,
number of non-zero elements 47,851,783, increases by an average of 4% – 9% with a multi-level
scheme.

The graphs (Figure 5) show the acceleration of the algorithm on a multi-core architecture of the
first and second levels of parallelism of a MIMD computer when using graphics accelerators.



Figure 5: Acceleration of an intelligent algorithm on the architecture of first and second level
parallelism and using GPU.

The graphs in Figure 6 demonstrate the dependence of the acceleration of the adaptive algorithm
on the block size in the matrix distribution on a multi-core MIMD architecture using different
numbers of processes and cores of a hybrid computer, using one MPI process and 16 OpenMP
threads.

Figure 6: Dependence of algorithm acceleration for block-diagonal matrices on the size of the matrix
block on the architecture of parallelism of the first and second levels.

As  theoretical  and  experimental  studies  have  shown,  for  the  effective  implementation  of
intelligent algorithms for solving AEP of sparse matrices of different structures and volumes, it is
necessary to coordinate the scope of the problem and the effective parallelism model. The proposed
algorithms automatically study the input AEP data and determine the effective parallelism model.
This significantly speeds up problem solving.



Conclusions

The need to develop more refined mathematical models of objects in various subject areas, taking
into account as many factors as possible, ensuring the reliability of computer solutions, automating
the processing of large volumes of data require new conceptual solutions and approaches to the
creation of algorithms and programs for solving the problems of computational mathematics, in
particular,  for  solving  the  algebraic  problem  of  eigenvalues  of  sparse  matrices,  on  modern
supercomputers of various architectures. The proposed intelligent adaptive algorithms meet the
growing requirements for accurate and efficient modeling of complex tasks and processes on parallel
computers of various architectures. Such algorithms, realizing in the computer an automatic study of
the type of sparse matrices and mathematical properties of the problem with approximately given
data, simplify the use of multilevel parallelism, increase the efficiency of processing sparse matrices
of various structures. Theoretical and experimental studies have shown that the proposed algorithms
not  only  increase  the  efficiency  of  computing due  to  scalability  and  optimization of  the  used
resources, but also increase the accuracy of the results obtained by adjusting the necessary bit rate of
computing.  This  makes algorithms in  demand for  solving engineering and scientific problems,
reducing the time of application development and increasing the quality of numerous simulations.

In the future, the proposed intellectualization approaches can be adapted for parallel algorithms
for solving other problems of linear algebra. Also, further improvements of intellectual algorithms
are possible using Regression Neural Networks for forecasting the necessary computing resources, as
well as Reinforcement Learning for the redistribution of computations during a complex and long
computing process.
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