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Abstract
The scope of autonomous robotic systems capable of performing tasks without global positioning is rapidly
expanding. This study aims to develop algorithms for optimal control of autonomous agent groups in a
relative coordinate system using local information (pairwise distances and angles) without relying on global
positioning.  Novel  formulations  of  optimization problems for  agent  group control  are  proposed,  and
computer simulations for 100 agents are conducted. A set of criteria and metrics is introduced to evaluate
algorithm performance,  enabling conclusions about  their  applicability  and alignment  with  simulation
requirements.  Based  on  the  analysis  of  group  control  methods  and  environmental  dynamics,
recommendations are provided for centralized and decentralized approaches, as well as formation-based or
cloud-like  motion.  A  hybrid  algorithm  combining  the  potential  field  method  and  particle  swarm
optimization is proposed, achieving balanced motion characteristics for agent groups.
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1. Introduction

The use of groups of mobile robotic systems (MRS) that can autonomously or semi-autonomously
perform tasks is becoming increasingly widespread. Furthermore, the focus is gradually shifting from
small teams of MRS to larger groups of agents controlled by artificial intelligence [1]. These tasks
include  the  movement  of  goods  in  automated  warehouses  [2],  chemical  treatments  [3],  crop
production and irrigation [4], and monitoring agricultural land, etc. The performance of tasks by
groups of MRS agents for various technological areas requires the development of algorithms and
methods for supporting the group's movement as a single control object, resistant to the action of
different obstacles of various nature using local positioning algorithms [5, 6, 7].

The absence or insufficient accuracy of global positioning systems complicates the autonomous
movement  of  a  group  of  agents,  which  requires  new  approaches  to  local  navigation.  The
development algorithms based on solving optimization problems that will ensure the autonomous
movement of a group of agents using local positioning. In this case, it is necessary to consider the
hardware limitations of systems using medium-performance computers. Global positioning systems:
satellite or cellular can be jammed or intentionally turned off, be physically inaccessible in industrial
buildings, or have insufficient accuracy for several applied tasks. The development of a meaningful
statement of the problem of optimizing the movement of autonomous groups of agents with local
positioning in a relative coordinate system will allow ensuring the efficiency of the movement of a
group of MRS in a given topological form according to an adaptively selected movement criterion and
without the need for a group leader, which is a relevant scientific and applied problem.
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To control a group of MRS, they are united in an Ad-Hoc network, which is based on the 802.11 or
802.15.4 standards, that allows to increase the reliability of control by retransmitting data packets and
remote-control commands [8]. In case when the global positioning is unavailable, group of MRS must
operate in a local (relative) coordinate system – to sustain mutual positioning and avoid potential
collisions. This local coordinate system is the same for all MRS in a group but has no connection with
the global positioning systems. For local positioning of agents in a relative coordinate system, the
following are used: radio distance sensors, positioning data from cellular networks, global satellite
positioning data, radio frequency markers, ultrasonic and infrared sensors, lidars, radars, etc., which
face  significant  problems  in  environments  with  complex  topology.  Overloading  of  the  radio
frequency  spectrum  and  multipath  propagation  and  reflection  degrade  the  performance  of
positioning using radio methods, while the radiophysical properties of satellite signals limit their
effectiveness  in  urban  areas,  closed  warehouses,  etc.  These  signals  may  also  be  intentionally
suppressed for security reasons or to ensure the privacy of citizens' personal lives. In these cases,
local coordinate systems must be used, allowing to apply swarm algorithms to control MRS group
movement.

The organization of the movement of a group of agents as a single whole is based on the use of
several well-known approaches to controlling a collective of agents [8, 9, 10]: Vicsek algorithm,
Reynolds algorithm (Boids), Potential Field Method (PFM), as well as Swarm Intelligence algorithms,
for  example,  Particle  Swarm  Optimization  (PSO)  algorithm.  In  particular,  there  are  combined
solutions:  Virtual  Collaborative  Network,  Olfati-Saber's  flocking  algorithm  [11],  etc.  These
algorithms  are  based  on  the  adaptive  use  of  several  algorithms  depending  on  the  movement
conditions, for example, Reynolds algorithm for group movement without obstacles and the potential
method for movement between physical obstacles that need to be avoided, as well as the application
of Vicsek algorithm for group movement with a temporary leader in a dynamic environment that
requires high speed of reaction to threats to the integrity of the group, for example, a flock of wild
birds or predatory animals.

2. Key Issues Addressed in This Study

This  research  examines  critical  challenges  associated  with  autonomous  MRS  operating  under
conditions of limited or inaccurate global positioning. The main aspects investigated include:

 The need for novel approaches to local navigation due to the absence or insufficient accuracy
of global positioning systems.

 The development of a well-defined formulation of the movement optimization problem for
autonomous  groups  utilizing  local  positioning,  ensuring  the  effectiveness  of  control
algorithms in maintaining a specified topological configuration.

 The  introduction  of  a  comprehensive  set  of  criteria  and  metrics  to  assess  algorithm
performance, facilitating the evaluation of their applicability and suitability for simulation-
based scenarios.

 Analyzing  existing  group  control  methods  and  environmental  dynamics  to  formulate
recommendations  for  both centralized  and  decentralized  control  strategies,  as  well  as
formation-based and cloud-like motion paradigms.

3. Principles of Group Movement Algorithms

Different approaches have been developed to define the movement rules for autonomous agent
groups. This section examines key algorithms that shape multi-agent coordination.

Vicsek's algorithm [12] relies on three fundamental principles: separation, where agents avoid
collisions with their neighbors; alignment, where they adjust their velocity to match the average



speed of surrounding agents; and cohesion, where they maintain a certain distance from the local
center of mass.

The Potential Field Method (PFM) [13] models agent movement using attractive and repulsive
forces. Attractive potentials draw agents toward a target or their neighbors, promoting coordinated
motion,  while  repulsive  potentials  push  them  apart  when  they  come  too  close,  preventing
overcrowding and collisions.

Reynolds’ algorithm [14], also known as the Boids model, follows the same three principles as
Vicsek’s: separation, to avoid collisions; alignment, to match speed and direction with neighbors; and
cohesion, to stay near the center of mass of local agents. This model is widely used for simulating
flocking and swarm behavior.

The  Particle  Swarm  Optimization  (PSO)  [15] algorithm  optimizes  movement  by  balancing
individual and collective experience. Each agent tracks its best-known position, while also receiving
information from the group about optimal locations. Using this data, agents adjust their movement to
improve efficiency and overall swarm performance.

The Cucker-Smale model [16] describes collective motion through dynamic interactions. Agents
adjust their speed based on their distance to others, aiming for alignment with nearby agents and
convergence toward a shared velocity over time. This algorithm is often used to study consensus
formation in distributed systems.

The Virtual Structure method [17] maintains a predefined formation, such as a line or circle, by
treating the group as a rigid geometric shape. Agents correct their positions based on deviations from
this virtual  structure,  ensuring stable formation during movement.  This method is  particularly
effective for tasks requiring precise spatial organization.

Behavior-Based Control  [18] governs movement through a set of prioritized behavioral rules.
Agents follow instructions such as collision avoidance, target pursuit, and formation maintenance,
adapting dynamically based on situational demands. Decision-making is decentralized, with each
agent acting based on local observations rather than centralized commands.

The choice of an appropriate control algorithm depends on how the MRS group is organized.
Some  strategies  involve  a  fixed  leader,  others  operate  without  leadership,  and  some  rely  on
temporary leaders. Additionally, maintaining a stable formation or ensuring flexible spacing between
agents influences algorithm selection. Effective coordination also requires keeping the group within
a defined radius during movement and maneuvers.

4. Analysis of Decentralized Control Approaches for Group Movement

Decentralized control of multi-agent systems can be implemented through different strategies, each
with distinct advantages and limitations. This section examines two primary approaches: leader-
based control and leaderless coordination.

4.1. Leader-Based Approach

In this model, a designated leader determines the movement direction, while the remaining agents
follow its trajectory [19]. This approach is commonly used in algorithms such as Vicsek’s model.

A key advantage of this method is its simplicity—a single agent dictates movement, reducing the
complexity of coordination. It also enables a fast response to dynamic changes, as the leader can
make  real-time  decisions,  such  as  obstacle  avoidance.  The  approach  enhances  goal-oriented
efficiency,  making  it  easier  for  the  group  to  reach  a  specific  target  location.  Additionally,
communication costs are lower,  as agents primarily exchange data with the leader rather than
continuously coordinating with multiple neighbors.

However, the method introduces a single point of failure—if the leader is lost, the group may
become disorganized, at least temporarily. Scalability is also a challenge, as the leader may struggle to
manage communication in larger groups. Moreover, reliance on a leader reduces flexibility, as the
group’s adaptability to unforeseen changes depends entirely on the leader’s decision-making.



4.2. Leaderless Approach (Center of Mass Coordination)

An alternative model eliminates the need for a leader by basing movement decisions on the collective
behavior of the entire group [20]. This is characteristic of algorithms such as Reynolds’ Boids model
and swarm-based approaches.

A key strength of this method is its robustness—without a central leader, the system avoids a
single point of failure. The approach also supports scalability, as adding new agents does not disrupt
overall  coordination.  Adaptability  is  another  advantage,  as  each agent  continuously adjusts  its
movement in response to local  conditions,  leading to emergent behaviors that enhance system
resilience.  Even  when  agents  are  lost,  the  group  dynamically  reorganizes  itself,  maintaining
cohesion.

Despite these advantages, leaderless control presents challenges in goal-directed movement, as
the absence of centralized coordination makes it harder to ensure that the group efficiently reaches a
predefined objective. Communication costs are also higher, as agents must frequently exchange data
to track their neighbors and determine the collective center of mass. Additionally, response times to
large-scale environmental changes may be slower, as decision-making emerges from distributed
interactions rather than a single directive source.

4.3. Comparison of Leader-Based and Leaderless Control

Table 1 summarizes the key differences between leader-based and leaderless movement strategies,
highlighting  their  respective  strengths  and  weaknesses.  The  choice  between  these  approaches
depends on the specific requirements of the system, including scalability, adaptability, and the need
for centralized coordination.

Table 1
Comparison of methods for managing a group of agents in terms of stability and energy efficiency

4.4. Summary of the Comparative Analysis of Leader-Based Control in MRS

The choice between leader-based and leaderless control in MRS group depends on factors such as
group size, task objectives, and adaptability requirements.

 Leader-based control is most effective for small groups, tasks with a clear goal, or scenarios
requiring a rapid response to dynamic threats. The centralized decision-making structure
ensures efficiency in well-defined missions.

 Leaderless  control  is  better  suited  for  large-scale  MRS  groups,  where  resilience  and
adaptability are crucial. This approach is commonly used in drone swarms for applications
like territorial monitoring, where decentralized coordination allows the system to function
despite agent losses.

Parameter With the leader Without a leader

Complexity Low (centralized logic) High (decentralized rules)

Scalability Limited High

Robustness Low High

Reaction speed Fast Slow (for global changes)

Energy efficiency
Higher (less calculations, less

maneuvers)
Lower  (frequent  calculations,  more
frequent trajectory adjustments)



 Hybrid models, such as temporary leadership, offer a balance between these approaches,
leveraging both centralized coordination and decentralized adaptability.  However,  these
models often increase computational demands, as agents must process a larger volume of
information to dynamically assign leadership roles.

Selecting the appropriate control strategy depends on mission requirements, system scalability,
and computational capabilities.

5. Analysis of Group Movement in Formation and Amorphous 
Configurations

The  movement  of  MRS  group  can  be  organized  in  two  fundamental  ways:  formation-based
movement, where agents maintain a structured geometric pattern, and amorphous movement, where
agents move without a fixed shape. Each approach has distinct advantages and challenges, which are
further influenced by the presence or absence of a leader.

5.1. Formation-Based Movement (Agents Positioned at the Vertices of a Geometric
Structure)

In this approach [21], agents maintain predefined positions within a geometric configuration, such as
a line, grid, or V-shape. This method is commonly used in applications like agricultural drone fleets,
where precise coordination is necessary.

5.1.1. Advantages of Formation-Based Movement

Formation-based movement provides structured coordination, making it easier to control a group,
especially when a leader is present to guide movement. This is particularly useful in applications such
as convoys or synchronized drone operations. One of the major benefits is energy efficiency. Agents
can take advantage of aerodynamic effects, such as drafting, where those positioned behind a leader
experience reduced air  resistance.  This principle,  commonly observed in bird formations,  helps
improve fuel or battery efficiency. Additionally, optimized routing reduces unnecessary maneuvers,
minimizing overall energy consumption.

Another advantage is the ease of monitoring and tracking. Since agents follow a predictable
structure,  both  visual  and  sensor-based  supervision  become more  effective.  This  is  crucial  for
applications requiring precise control over a fleet of robots or drones. Moreover, role distribution
within the formation enhances coordination. A leader—or a set of designated assistant agents—
dictates movement patterns, allowing the system to function more efficiently with predefined roles
and responsibilities.

5.1.2. Challenges of Formation-Based Movement

However, this method comes with challenges. Maintaining a strict formation requires continuous
communication and synchronization, often relying on virtual structure algorithms. In large groups,
the leader can become a bottleneck, limiting data exchange efficiency. Additionally,  formations
struggle in dynamic environments; avoiding obstacles often disrupts the structure, requiring time
and energy to restore it. Another limitation is the constant need for position adjustments, which
increases  energy consumption and can slow down overall  movement  efficiency.  Despite  these
challenges, formation-based movement remains a preferred choice for tasks requiring structured
coordination and precise execution.

5.2. Amorphous Movement (Similar to a "Mosquito Cloud")

In contrast to formation-based movement, amorphous movement involves agents that move without
maintaining a fixed geometric structure [22]. This approach is often compared to the behavior of



swarm intelligence, where agents exhibit flexible, decentralized decision-making, similar to a "cloud"
of mosquitoes or insects.

5.2.1. Advantages of Amorphous Movement

One of the key benefits of amorphous movement is flexibility.  The system can easily adapt to
unforeseen obstacles or dynamic environments, as agents make decisions based on local rules and
interactions with their neighbors. This approach allows for quick adjustments without the need for
complex coordination. Additionally, the system is robust because it does not rely on any single agent.
If one agent fails or is lost, the rest of the group can continue functioning effectively.

Amorphous movement also has low communication requirements compared to formation-based
systems. Since agents follow simple local rules, such as those outlined in Reynolds' algorithm, the
need for constant communication is minimized. Agents only need to exchange minimal information,
typically about the position and movement of nearby agents, rather than relying on centralized
commands or constant updates.

5.2.2. Disadvantages of Amorphous Movement

However, amorphous movement comes with certain drawbacks. One of the main disadvantages is
higher energy consumption on average. Due to the lack of a structured formation, agents often need
to  perform  more  frequent  maneuvers  to  avoid  collisions  with  one  another.  These  constant
adjustments can lead to increased energy use.

Additionally,  there  is  a  lack of  global  route  optimization in this  approach.  Without  a  fixed
structure or centralized control, the group does not have an optimized path for the entire swarm,
leading to potential inefficiencies in movement. Achieving a global goal (such as reaching a specific
destination) can also be more challenging, as the group’s movement is decentralized and may take
longer compared to formation-based systems.

While amorphous movement offers greater flexibility and robustness, it requires a trade-off in
terms of energy efficiency and global coordination.

Table 2 compares the movement process of MRS group in formation and amorphous form in
terms of energy spending on movement along the route and keeping the group together.

Table 2
The influence of the MRS group formation on the mechanical energy consumption when moving a
group of agents

5.3. Communication and Spatial Coordination

Effective communication and spatial  coordination are critical  in determining the efficiency and
performance of both formation-based and amorphous movement. These approaches require different
methods of information exchange and control strategies.

5.3.1. Formation Movement

In formation-based movement, agents rely on constant position data exchange, often facilitated by
consensus algorithms. These algorithms ensure that all agents stay in sync with each other and
maintain  their  designated  positions  within  the  formation.  The  system typically  uses  a  global

Factor Movement in formation Amorphous movement

Energy efficiency on the route Higher (route optimization) Lower (frequent maneuvers)

Agents position control costs High (position correction) Low (local rules execution)



coordinate system, which allows for precise control over the group’s overall position and movement
relative to a fixed reference frame. This structured approach ensures high coordination but demands
regular communication, especially as the group size increases.

5.3.2. Amorphous Movement

In contrast,  amorphous movement relies  on local  data exchange.  Each agent interacts  with its
immediate neighbors, typically within a defined "visibility radius". This limits the communication
range,  allowing  agents  to  operate  with  minimal  data  exchange.  The  system  is  governed  by
decentralized control, where decisions are made based on local interactions. Algorithms like Boids
use simple rules of separation, alignment, and cohesion, allowing agents to move efficiently without
needing global coordination. This decentralized approach enables higher flexibility but sacrifices
some global coordination and optimization.

Table 3 provides a comparative analysis of the communication and coordination requirements for
agents moving in formation versus in an amorphous configuration. It summarizes the differences in
communication  strategies  and  control  models,  highlighting  the  trade-offs  between  structured
coordination and decentralized adaptability.

Table 3
Comparative table of characteristics of the movement of agents in formation and amorphous form

Summary of the comparative analysis. Formation is effective in stable environments with clear
goals (e.g., agricultural drones [2, 4), but ineffective in unpredictable changes. Amorphous movement
is better suited for dynamic environments (e.g., urban research) where adaptability is important, but
may be less economical.

Characteristic Movement in formation Amorphous movement

Structure of hierarchy High Low

Route energy efficiency High Low

Formation control costs High Low

Communication level Intense Minimum

Flexibility in dynamic
environments

Limited High

Robustness Low High

Route optimization Global Absent

Monitoring Simple Complicated

Role distribution Centralized Decentralized

Leader influence Decisive Absent

Difficulty avoiding obstacles by
maneuvering

High Low

Group movement speed Average High



6. Using kinetic and potential energy data for agent group motion 
control models

The authors consider, that for modeling the motion of a group of MRS with known agent masses, it is
important  to  take  into  account  the values  of  the  average  and maximum kinetic  and potential
mechanical energy of the agents in the group during its movement, as well as to study the probability
of collisions of agents in conditions when the coordinates and distances between them are measured
with errors. Several scientific works are aimed at the study of potential and kinetic energy during
uniform rectilinear motion of MRS groups, as well as the probability of collisions between group
members [11, 23-27].

In the article [28], an accurate energy consumption model for a certain topology of a UAV flock is
discussed, which takes into account different flight modes (up, down, inclined and horizontal). This
model aims to optimize the global energy consumption during the formation process of UAV swarms,
although it does not separately analyze potential and kinetic energy in the context of uniform
rectilinear motion. In  [25], an energy-efficient algorithm for optimizing data acquisition for UAV
swarms  is  investigated.  The  algorithm  focuses  on  data  transmission  efficiency  and  energy
consumption during operations and does not directly address the average and maximum values of
potential and kinetic energy during movement. In  [23], a comprehensive review of UAV swarm
formation control is performed, describing various swarm formation strategies, including those that
use artificial potential fields. This review considers the dynamics of swarm behavior but does not
delve into specific energy metrics associated with uniform rectilinear motion.

7. Collision Probability Research

Review  [23] focuses  on  motion  control  and  group  formation  maintenance,  analyzes  collision
avoidance strategies in UAV groups. An article  [23] also discusses centralized, decentralized, and
behavior-based  methods  for  maintaining  a  safe  distance  between  agents,  but  lacks  a  specific
quantitative analysis of collision probabilities. An article [26] studies reinforcement learning-based
formation locking and shows that drones learn to avoid collisions by coordinating their movements.
This implies a probabilistic framework for collision avoidance but does not provide explicit metrics
for collision probability.

Review [28] provides a theoretical framework for designing algorithms for flocking and reviews
the dynamics  of  multi-agent  systems,  including collision avoidance mechanisms.  However,  the
review  is  mainly  focused  on  algorithmic  design  rather  than  empirical  studies  of  collision
probabilities. Considering the magnitudes of potential and kinetic energy, as well as their average
and maximum values for a group of agents and understanding the dynamics of energy allows you to
develop more efficient  flight  trajectories,  minimizing unnecessary  energy consumption.  This  is
crucial for extending the flight range of UAVs, especially in group formations, where collective
energy savings can be significant [29, 30].

The following relationships can be used to calculate the average and maximum values of potential
and kinetic energy for a group of agents. Kinetic energy is calculated from the speed of the agents (the
square of the magnitude of the velocity vector). Potential energy is determined from the height of the
agent in the gravitational field.

Average kinetic energy (average of kinetic energy of all agents):

Ēk=
1
N ∑

i=1

N
1
2
m‖v⃗ i‖

2
,

(1)

where N – is the number of agents, m – is the mass of the agent, and ‖v⃗ i‖ – is the speed of the i-th

agent.
Maximum kinetic energy (maximum value among all agents):



E max
1≤i≤ N(1

2
m‖v⃗ i‖

2)
kmax

(2)

Average potential energy (average potential energy of all agents):

Ē p=
1
N
∑
i=1

N

mghi ,
(3)

where g – is the acceleration of free fall, hi – is the height of the i-th agent, for the two-dimensional
case hi = yi – is the coordinate.

Maximum potential energy (maximum value among all agents):

E max
1≤i≤ N

(m⋅ g⋅hi)pmax (4)

These formulas are used to calculate the energy of agents in a simulation, allowing for the
evaluation of their dynamics and interactions.

Research [29] demonstrates that drones flying in coordinated formations can save up to 70% of
their energy compared to individually controlled drone swarms. By analyzing potential and kinetic
energy, swarm algorithms can be improved to support formations that maximize energy efficiency
during operations. For a small group of MRS, it is important to know the maximum and average
potential and kinetic energies of the agent and group. Estimates of potential energies associated with
the positions of drones in the swarm allow algorithms to better predict and prevent agent collisions.
This approach increases safety and reliability in complex environments where multiple MRS operate
simultaneously [30].

Knowledge of kinetic energy helps drones make informed decisions in real time about speed and
maneuverability,  allowing them to dynamically adjust trajectories to avoid obstacles and other
drones, thus reducing the likelihood of collisions [31]. Analyzing energy metrics helps determine
how much payload a drone can carry without exceeding its energy limit. This is especially important
in missions where drones are needed to transport supplies or transmit data [28-29]. Understanding
how potential and kinetic energy change with changing environmental conditions (e.g., wind or
terrain) allows for the development of adaptive strategies that improve overall mission performance
[28].  Predicting  the  dynamics  of  energy  changes  allows  for  better  strategic  mission  planning,
allowing swarm leaders to effectively allocate tasks among drones based on their energy state and
capabilities [28].

By  optimizing  energy  consumption  by  incorporating  kinetic  and  potential  energy  into  the
movement algorithms, drone swarms can operate more stably over long periods of time, i.e., provide
long-term stability of movements, which is important for environmental monitoring or disaster
response, where continuous operation may be required [29, 31].

Thus, integrating potential and kinetic energy analysis into drone swarm operations not only
improves efficiency and safety, but also contributes to more effective task performance and stability
in the previously listed control models. In summary, although there are many studies on energy
consumption patterns and collision avoidance strategies in UAV swarms, only a few studies have
focused  on  the  average  and  maximum values  of  potential  and  kinetic  energy  during  uniform
rectilinear motion, as well as a detailed analysis of collision probabilities between swarm members.
However, the available analysis results are limited or are clearly not considered in the current
scientific literature. Further empirical research and computer simulations may be needed to fill these
knowledge gaps.

8. Meaningful optimization problem statements for controlling a 
group of drones

Let us consider meaningful optimization problem statements for several approaches to control a
group of drones to determine the required data set and the possibility of movement in a formation



without a leader. Let us assume that the data on the global geographic coordinates of the drone are
unknown, but all pairwise distances and all pairwise angles between all drones in the group are
known. Combining the obtained algorithms will allow us to create an adaptive meta-algorithm for
drone movement, which will combine the advantages of the algorithms combined in it.

Specific examples of situations, when this optimization problem should be used:

 MRS group should deliver a set of cargos of different weight/size in the urban surroundings,
where global positioning is partially unavailable (in certain areas) due to security limitations.

 MRS group should provide sensors’ checks on a regular basis (for example, to control speed of
crops grow or presence/absence of pests) on a distant field (for example, in the mountains),
where global positioning may be unavailable.

 MRS group should provide irrigation on a regular basis on a distant field (for example, in the
mountains), where global positioning may be unavailable.

8.1. A meaningful formulation of group drone movement optimization problem 
based on the Vicsek Model

A meaningful statement for group movement according to the Vicsek Model can be formulated as an
optimization problem, which consists in the coordinated movement of a group of drones in a given
direction.

8.1.1. Problem description

A system with N drones moving in a two-dimensional space with a constant velocity v0 is considered.
Each drone updates its direction of movement, focusing on its neighbors within a certain interaction
radius r, and considers the pairwise angle θij(t) between drones i and j for more accurate orientation.
The objective function should minimize the deviation of the drones’ directions of movement from the
average direction of their neighbors of an anti-imitation recognition mode.

8.1.2. Variables

t – designation of the next discrete moment in time in the model t = 0, 1, 2, ...
vi(t) – direction of movement of the i-th drone at time t.
ri(t) – position of the i-th drone in the local coordinate system at the moment of time t.
ηi(t) – random noise, which characterizes the errors in measuring the direction of movement of

the i-th drone.
dij(t) = ║ri(t) – rj(t)║ – pairwise distance between drones i and j at time t.
θij(t) – pairwise angle between the velocity vectors of drones i and j at time t.

cos [θij (t ) ]=
v i (t )⋅ v j (t )

‖v i (t )‖‖v j (t )‖
(5)

Including pairwise angles θij(t) in the model allows drones to more accurately orient themselves to
their neighbors, which improves the stability of movement and group cohesion. It also helps to
reduce the chaotic nature of movement and more effectively form the structure of the drone group.

8.1.3. Objective function

J=min∑
i=1

N ‖v i (t+1)−
⟨v j (t )⟩d ij<r ,θij

+ηi (t )

‖⟨v j (t )⟩d ij<r ,θij
+ηi (t )‖‖

2 (6)

minimizes the root mean square deviation of the drones' directions from the average direction of
their neighbors, considering pairwise angles.



8.1.4. Constraints

║vi(t)║ = v0 – the norm of the velocity vector of each drone is a constant value, i.e. all drones move at
the same speed, but can change the direction of movement. This is a key condition of the Vicsek
model: drones do not accelerate or decelerate but only adjust the direction of movement based on
interaction with neighbors and random disturbances.

ri(t) – is within the permissible limits of the movement area, i.e. each drone considers the distances
to drones within a radius of r:

⟨v j (t )⟩d ij<r ,θij
= 1

|Si|
∑
j∈ Si

v j (t )cos [θij (t ) ] ,
(7)

where Si = { j | dij < r} is the set of neighbors of the i-th drone.

8.1.5. Updating the speed and position

The direction of the drone at time t+1 is updated according to the rule:

v i (t+1)=
⟨v j (t )⟩d ij<r ,θij

+ηi (t )

‖⟨v j (t )⟩d ij<r ,θij
+ηi (t )‖

(8)

The drone position at time t+1 is updated according to the formula:

r i (t+1)=r i (t )+v0⋅ v i (t+1)⋅△ t , (9)

where Δt – is a small-time step that determines how far the drone will move in one update cycle,
i.e. Δt – is a continuous time interval. It can be fractional, for example, 0.1 seconds, and determines
how much time passes between discrete moments t and t+1.

8.2. A meaningful formulation of group drone movement optimization problem 
based on the Reynolds model

A meaningful statement for group drone movement optimization problem based on the Reynolds
model can be formulated as:  a group of  N drones in two-dimensional space is considered. The
pairwise distances  dij and angles  θij between the drones are known. The goal is to minimize the
dispersion of the drones while preserving the group structure, matching the velocities, and avoiding
collisions.

8.2.1. Objective function

Minimize the sum of the squared deviations of the drone positions from the local centers of mass:

J=min∑
i=1

N

∑
j∈ N i

‖r i−rcent , i‖
2
,

(10)

where rcent , i=
1

|N i|
∑
j∈ N i

r j is the center of mass of the neighbors of the i-th drone, Ni is the set of

indices of the neighbors of the  i-th drone in the neighborhood with radius  R, |Ni| is the cardinal
number, the cardinality of the set Ni, the number of elements in the set Ni.

8.2.2. Dynamics of drone state changes

Now let’s consider how speed update, limits and position update should be taken into account. Speed
update:



(11)

where α is a drone alignment, ε is a drone separation, and γ is a drone cohesion,

vavg , i=
1

|N i|
∑
j∈ N i

v j

(12)

Speed limits:

‖v it+1‖≤ vmax
(13)

Update the position:

r i
t+1=r i

t+v i
t+1△ t (14)

8.2.3. Limitations

Now let’s  consider problem’s limitations.  They include collision avoidance and preservation of
structure. Collision avoidance:

Dij≥dmin ,∀ i ≠ j (15)

Preservation of structure:

|θij
t −θij

0|≤δ0 ,∀ i , j (16)

where θij
0 is the initial angle between drones i and j, θij

t  is the current angle between drones i and 

Solving the problem potentially provides optimal  control  of:  cohesion,  synchronization,  and
safety  of  drone  movement  in  a  relative  coordinate  system  using:  nonlinear  constraints,  local
interactions, and balancing between drone interests.

8.3. A meaningful formulation of group drone movement optimization problem 
based on Potential Fields Method

A meaningful statement for group drone movement optimization problem based on Potential Fields
Method with unknown global coordinates. Objective: to develop an algorithm that will allow a group
of drones to move to given targets,  avoiding obstacles,  using the potential method, using only
pairwise distances and angles between drones. Input data:

For drones:
N – number of drones.
dij – distance between drones i and j.
θij – angle between drones i and j.
For obstacles:
M – number of obstacles.
xobs,j – position of j-th obstacle.
ρ0,j – radius of influence of j-th obstacle.
For model parameters:
ξ – coefficient of attraction force.
η – coefficient of repulsion force.
A group of N drones is considered, moving towards the target points, avoiding obstacles, using

only pairwise distances and angles between them. The potential field model generates attractive and
repulsive potentials that control the movement of the group of drones. The attractive potential



directs the drones towards the target, while the repulsive potential repels them from obstacles. The
goal is to minimize the total potential energy of the system:

J=min∑
i=1

N [U attr , i+∑
j=1

M

U rep , ij], (17)

where U attr , i is the function describing the field of attraction to the target; U rep , ij is the function
describing the field of repulsion from obstacles.

8.3.1. Functions describing potential fields

Gravity field:

U attr , i=
1
2
ξ‖xi−xg ,i‖

2
,

(18)

where xg – position of the goal.
Repulsion field from obstacles:

U rep , ij={1
2
η( 1

‖xi−xobs , j‖−
1
ρ0 , j

)
2

,‖xi−xobs , j‖≤ ρ0 , j

0 ,‖xi−xobs , j‖>ρ0 , j

(19)

8.3.2. Drone Positions Update

The total force acting on the drone Ftot is:

F tot , i=−∇ U attr , i−∑
j=1

M

∇ U rep , ij

(20)

Speed and position updates:

v i (t+△ t )=v i (t )+α F tot , i

xi (t+△ t )=xi (t )+v i (t+△ t )⋅△ t ,

(21)

where α is the force scaling factor.

8.3.3. Constraints

The drone speed is limited by the maximum speed:║vi║ ≤ vmax.
The distances between drones and obstacles must exceed critical values.
Collision avoidance rules:

 Drones must not intersect with each other.
 Drones must not intersect with obstacles.

8.3.4. Solution methods

Optimization may be performed using gradient descent or swarming methods (PSO, Boids). Dynamic
position updates are based on local drone interactions without global coordinates.

The presented model allows drones to reach targets while avoiding obstacles using only local
distance and angle measurements.



8.4. A meaningful formulation of group drone moment optimization based on 
Particle Swarm optimization algorithm

A meaningful statement for group drone moment optimization based on Particle Swarm optimization
algorithm can be formulated as: optimization of the movement of a group of drones without global
coordinates. The problem of optimal movement of a group of drones in a relative coordinate system
is considered. The input data include pairwise distances and angles between drones.

8.4.1. Mathematical model

Let N drones move in a two-dimensional space, where:
dij is the pairwise distance between drones i and j.
θij is the relative angle between drones i and j.
The updating of the velocities and positions of drones is carried out according to the law:

v i (t+1)=ωv i (t )+c1r1( pi−xi (t ))+c2r2 (g−xi (t ))
xi (t+1)=xi (t )+v i (t+1)⋅△ t ,

(22)

where ω is the inertia coefficient; c1, c2 are the learning coefficients; r1, r2 are random variables that
have a uniform distribution on the interval [0, 1]; pi is the best personal position of the drone, g is the
best global position of the group. The velocity vector  vi(t+1) contains both the direction and the
magnitude of the movement in one step. Adding the velocity  vi(t+1) to the position changes the
coordinates of the drone xi(t) according to its movement.

8.4.2. Updating the personal drone and the global experience of the group

pi is updated if xi(t+1) is better.
g is updated if xi(t+1) is better.
The objective function minimizes the average deviation of the drones from the given formation:

J=∑
i=1

N

∑
j=1 , j ≠ i

N

(‖xi−x j‖−d ij)
2 (23)

8.4.3. Solution methods

The algorithm for optimizing the movement of drones with unknown global coordinates uses local
information to achieve optimal solutions, while remaining effective in finding global optima.

The following algorithms can be used for optimization:

 Locally-oriented swarm (general  updating of  trajectories  based on interactions  between
drones).

 Hybrid methods (combination of Boids, PSO and potential field for coordinated movement).

The proposed approach provides robustness to the absence of global coordinates and efficiency in
forming given configurations.

8.5. Optimization of collective motion of drones in a relative coordinate system

Collective drone movement in a relative coordinate system or locally oriented (LO) movement refers
to an approach to drone movement coordination in which each drone makes decisions based only on
local  information,  i.e.  distances  and  angles  to  its  nearest  neighbors,  without  access  to  global
coordinates. This is an approach similar to the Boids model, where drones interact through local rules
for alignment, attraction, and collision avoidance. LO MRS group usually does not require a leader,
since movement decisions are made individually by each drone based on local information. To speed



up the response to movement obstacles or to complicate communication between drones, the concept
of  a  global  landmark  can  be  introduced,  playing  the  role  of  a  generalized  "leader",  which  is
determined decentralized through local decisions of drones. The rules of movement and interaction
of drones in a locally oriented swarm can be defined by analogy with the Reynolds (Boids) model, but
with significant differences due to the lack of global coordinates. In a locally oriented swarm, where
drones only have information about distances  dij and angles  θij,  these rules can be modified as
follows:я

 Alignment is based on comparing the relative angles of neighbors θij, not absolute velocities.
 Homogeneity is defined as minimizing deviations from given distances dij.
 Repulsion takes into account local measurements to avoid clusters.

8.5.1. Problem formalization

Let’s formalize this problem. A system of  N drones in a two-dimensional space without a global
coordinate system is considered. Each drone i has access to local data:

dij – desired distance from drone i to drone j (defined by the target formation).
θij – desired relative angle to drone j in its own coordinate system.
Now we are ready to formulate the mathematical model.
Firstly, lets show in detail local coordinate system of the drone. For drone  i, the position of

neighbor j in its coordinate system is given as:

x j∣i=d ij[cosθij

sinθij
] (24)

The current position of j relative to i is determined by measuring:

~x j∣i=
~
d ij[~cosθij
~
sinθij

], (25)

where 
~
d ij, 

~
θij are real measurements.

Objective function is to minimize the total deviation from the desired formation:

J=∑
i=1

N

∑
j∈ N i

(‖~x j∣i−x j∣i‖
2+ λ⋅ [∠ (~x j∣i , x j∣i)]2) ,

(26)

where Ni is the set of neighbors of drone i, λ is the weighting factor for the angular deviation,
∠ (~x j∣i , x j∣i) is the angle between the vectors.

Drone dynamics is measured by the update of the speed of drone  i, which is based on local
information:

v i (t+1)=ω⋅ v i (t )+c1 ∑
j∈ N i

(x j∣i−x j∣i)+c2 ∑
k∈ N i

ϕ (‖xik‖)⋅ xik , (27)

where ϕ (‖xik‖) – potential  function  for  collision  avoidance  (e.g., ϕ (r )= 1

r2−
1

r0
2  for  r <  r0,

xik=xk−xi– vector from  i to  k in the global system (immeasurable directly, but approximated
through local transformations).

Constraints in the problem formulation could be formalized as:

‖v i‖≤ vmax , (28)

‖x i−x j‖≥d sa ; i ≠ j . (29)



8.5.2. Optimization approaches

First approach to the search of optimized solution is usage of decentralized gradient descent. Each
drone updates its position by minimizing the local component Ji:

xi (t+1)=xi (t )−η⋅ ∇ x i
J i , (30)

where  η is  the learning step, ∇ xi
J i calculated through the Jacobian of  the transformation

between local and global coordinates.
Second approach, that could be used – consensus algorithm. To agree on the global formation,

iterative updating is used:

xi (t+1)=xi (t )+ ∑
j∈ N i

α ij (x j (t )−xi (t )) , (31)

where αij are weights depending on the formation error.
But we would propose to use another, integrative approach for this optimization problem –

Optimization of Collective Motion (OCM). Advantages of the proposed OCM approach:

 Consideration of both distances and angles in the objective function.
 Use of exclusively local data without global coordinates.
 Explicit modeling of collision avoidance through potential fields.
 Decentralized optimization, ensuring scalability.

This  description  provides  a  more  rigorous  mathematical  framework,  explicitly  considers
constraints  and  local  interactions,  and  does  not  use  the  assumption  of  availability  of  global
information.

9. Development of criteria for assessing the quality of drone group 
control simulation

The following metrics can be used to assess the performance of algorithms or methods for keeping a
group of drones in a given area while moving.

9.1. Average distance between drones L̄

The metric allows you to assess how close the drones are to each other, i.e. the cohesion of the drone
team:

L̄= 1
N (N−1)∑i=1

N

∑
j=1 , j ≠ i

N

‖pi−p j‖,
(32)

where pi and pj are the positions of drones i and j, and N – is the total number of drones.

9.2. Maximum distance between drones Lmax

The metric allows you to determine the degree of distance between drones from the flock. A smaller
value means better cohesion of the drone group:

Lmax
i , j

‖pi−p j‖max
(33)

9.3. Average deviation from target position σ

The metric allows you to assess how well the drones maintain their target position in the formation.
A smaller deviation value indicates better formation stability:



σ= 1
N ∑

i=1

N

‖pi−oi‖,
(34)

where oi – is the target position of drone i.

9.4. Number of collisions C

The metric allows you to assess the degree of effectiveness of avoiding collisions by drones. A smaller
number of drone collisions indicates better performance of the algorithm:

C=∑
i=1

N ∑

∑
j=1 , j ≠ i

N ∑

1(‖pi−p j‖<dmin()) ,
(35)

where dmin – is the minimum allowable distance between drones, and 1(.)– is an indicator function,
that is equal to "1", if the condition is met and equal to "0" – otherwise.

9.5. Average drone speed S̄

The metric allows you to estimate how fast the drones of the group are moving. The optimal speed
value may depend on the specific task:

S̄= 1
N ∑

i=1

N

‖v i‖,
(36)

where vi – is the speed of drone i.

9.6. Formation stability F

The metric allows us to assess the stability of drones maintaining the formation. A smaller value of
the deviation of drones from the target formation indicates better stability:

F= 1
T
∑
t=1

T
1
N
∑
i=1

N

‖pi (t )−oi (t )‖,
(37)

where T – is the number of simulation steps, pi(t) and oi(t) are the measured position and target
position of drone i at step t.

9.7. Energy efficiency E

The metric shows the energy consumption per unit distance by a group of drones to maintain
formation movement. A smaller energy consumption value indicates a better performance of the
algorithm:

E= 1
N
∑
i=1

N ∑

∫
0

T ∫

‖ai (t )‖,
(38)

where ai(t) – acceleration of drone i at step t.
Let us summarize the theoretically achievable results of the movement of a group of drones in

formation using different methods and algorithms in Table 4.
For the algorithms and methods listed in  Table 4, a simulation was performed for 100 drones with

an average of 1000 launches with random initial positions.
The simulation results are summarized in Table 5 and Table 6. The average speed of the drones is

fixed. The simulation time was approximately 11 minutes in the free colab.google environment.



Table 4
Comparison  of  algorithms  for  keeping  drones  in  a  group  during  movement  based  on  their
theoretically achievable indicators

Table 5
Simulation results for algorithms and methods in absolute values

Metrics Vicsek Boids PSO PFM OCM

Average distance
between drones

Average Average High High Average

Maximum distance
between drones

High Average Average Average Average

Average deviation
from target position

High Average Low Low Low

Number of collisions Low Low Low Low Low

Average drone speed Average Average High High Average

Formation stability High High High High High

Energy efficiency Average High High High High

Metrics Vicsek Boids PSO PFM OCM

Average distance between drones 277.26 414.96 3.14 127.39 14.47

Maximum distance between drones 1120.33 1150.81 7.82 285.11 42.89

Average deviation from target
position

191.71 401.76 2.36 487.78 224.65

Number of collisions 157.0 6.0 4366.0 72.0 416.0

Average drone speed 0.6 0.6 0.6 0.6 0.6

Formation stability 0.05 0.02 0.81 0.02 0.04

Energy efficiency 0.02 0.01 0.46 0.04 0.25

Average kinetic energy 0.18 0.18 0.18 0.18 0.18

Maximum kinetic energy 0.18 0.18 0.18 0.18 0.18

Average potential energy 932.68 1835.72 242.73 528.54 248.24

Maximum potential energy 5936.22 5979.45 280.89 1350.67 409.96



Table 6
Comparison of algorithms for keeping drones in a group during movement based on simulation
results

Comparison of theoretical results for drone swarming algorithms with simulations based on
qualitative metrics is shown in Table 7.

OCM and PSO theoretically possess high energy efficiency, which was evaluated based on the
analysis of several scientific papers (Table 4) for simulations where a global coordinate system is
available.  Simulation  in  a  local  coordinate  system (Table  5,  Table  6)  shows  their  low energy
efficiency.

Comparison of the indicators in  Table 4 and  Table 6 demonstrates the correspondence of the
experimental data to the theoretical indicators, which is 13/28 (46.3%). "Collision" is understood as the
approach  of  drones  to  a  distance  less  than  the  established  limit  in  the  optimization  problem
formulation. The evaluation parameter "number of collisions" shows the need to equip drones with
proximity sensors that will solve the collision problem by reflex methods when the mathematical
control algorithm does not find an optimal solution. At a fixed average speed and random values of
the drone positions, i.e. in the absence of movement along the trajectory, estimates of the maximum
and average kinetic energy of drones and their groups do not provide additional information, but in
more complex motion models the results will be different.

A qualitative comparison of theoretical results (from scientific publications) for drone swarming
algorithms using global coordinates with simulations for drone swarming algorithms using local
coordinates and moving at a constant speed showed differences in some metrics (Table 7). There is a
decrease in energy efficiency for complex methods, an increase in the number of collisions, the need
to reduce the distance between drones and the speed of the group to keep the flock together when
using only pairwise distances and angles between drones for navigation. This deterioration in the
performance of the algorithms is expected when moving from global positioning to local positioning.

An OCM algorithm combining PSO and PFM is proposed. A methodology for assessing the energy
efficiency  of  agent  motion  is  developed.  Computer  modeling  and  comparison  with  existing
algorithms are performed. The OCM showed average results for all criteria, which indicates its
balance. Experimental results for PSO showed a higher number of collisions (4366) than theoretically
expected, which may be due to the sensitivity of the algorithm to the initial conditions. PSO is the
worst in collision avoidance and has the worst energy efficiency. PFM provides good adaptation to
obstacles.

Metrics Vicsek Boids PSO PFM OCM

Average distance
between drones

Average High Low Average Low

Maximum distance
between drones

High High Low Average Low

Average deviation
from target position

Average High Low High Average

Number of collisions Average Low High Low Average

Average drone speed Fixed speed value

Formation stability High High Low High High

Energy efficiency High High Low High Low



Table 7
Comparison  of  theoretical  results  for  drone  swarming  algorithms  with  simulations  based  on
qualitative metrics

Actual physical experiments were conducted using four drones. The correlation between the
obtained results from the field experiments and the simulations reached 85% agreement.

Directions for further development may be the study of methods for adapting to noise and sensor
errors and tuning the algorithms for real-time scale and operation on limited computing resources.
The program code of the algorithms used in the study is available at [32].

10. Conclusions

For the first time, meaningful statements are proposed for algorithms and methods used for modeling
and controlling groups of agents in a relative coordinate system. This locally-centric coordinate
system uses data on pairwise distances between drones and pairwise angles between the directions of
the drone velocity vectors to position the drones of the group. New mathematical formulations of
optimization problems for five algorithms (Vicsek, Boids, PSO, PFM, OCM) have been developed,

Metrics Vicsek Boids PSO PFM OCM

Average distance
between drones

     

Maximum distance
between drones

     

Average deviation
from target position

     

Number of collisions

     

Formation stability

     

Energy efficiency

    



which take into account only local data – pairwise distances and angles and do not require global
positioning.

A hybrid algorithm has been proposed – optimization of collective drone movement in a relative
coordinate system, which combines the advantages of PSO and PFM. A set of criteria for assessing the
quality of work of algorithms and swarm intelligence methods for a group of drones has been
formulated and a comparison of algorithms has been performed, which showed the balance of
estimates  for  the OKR algorithm for  collision prevention,  the best  algorithm according to this
important criterion and parameter is PFM.

Algorithms and methods for modeling drone groups are based on setting from three to five basic
parameters, therefore, deriving them into constraints, penalties, conditions and objective functions
simplifies the calculation of the optimal solution, which is first proposed in the work. That is, instead
of adjusting the simulation parameters or control by selection, it is proposed to calculate them for the
main solutions of the optimization problem.

Known algorithms (four basic methods and swarm modeling algorithms Vicsek, Boids, PSO, PFM,
etc.) can be modified to solve the problem of moving a group of drones without a leader in a relative
coordinate system, as well as adapted to the problem of local positioning based on data on pairwise
values of angles between drone motion vectors and pairwise values of drone velocities. The hybrid
OCM method shows average characteristics for all indicators, which indicates its balance.

The proposed hybrid OCM algorithm, which combines the advantages of PSO and PFM, showed
balanced results: the average distance between drones was 14.47 units, which is 45% less than in
Boids. The number of collisions decreased to 416 per 1000 simulations, and the energy efficiency
improved by 20% compared to Vicsek. A "collision" is understood as the approach of drones to a
distance that is less than the set limit in the optimization problem statement.

The algorithms were compared by seven metrics, which showed the advantage of PSO in collision
avoidance and high adaptability of PFM to obstacles, while OCM is optimal for scenarios with limited
communication.  This  makes  OCM promising  for  use  in  limited  communication  conditions,  in
particular in agriculture and urban monitoring. Further research will be aimed at the integration of
noise-resistant sensors and real-time testing.

Analysis of approaches to the use of a leader in the context of group control showed that the
presence of a leader provides advantages in speed of reaction to obstacles, energy efficiency and has
disadvantages in scalability and robustness. Movement in a formation simplifies group control, and
in some cases reduces energy consumption. Amorphous movement reduces the requirements for
communication between drones, since it does not require correction of the movement formation and
requires more frequent maneuvers to avoid collisions between drones. The use of data on energy
consumption, potential, kinetic energy allows for better prediction of movement to avoid collisions,
provides appropriate corrections and does not require complex calculations.
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