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Abstract
Redshift is a fundamental characteristic of cosmic objects, particularly galaxies, stars, and quasars. By
measuring the redshift of a galaxy, it is possible to determine its distance, velocity, and the expansion of the
universe, as well as study the relative motion of cosmic structures. For investigating objects with high
redshifts – where visible light is shifted into the infrared spectrum – scientists rely on advanced orbital
telescopes, such as the James Webb Space Telescope.
In this study, an efficient algorithm for estimating the redshift of galaxies based on their spectra has been
developed. The algorithm has an architecture built upon CNNs, and incorporates a correction mechanism
for the final results using laboratory-calibrated positions of key emission lines in galaxy spectra.
Trained on a dataset of 10,000 samples consisting of starburst galaxies with redshifts ranging from 0 to 0.6,
the model achieves a mean absolute error of 0.0169 without and 0.0139 with correction. This corresponds to
an average relative accuracy of approximately 97.1% without and 97.7% with correction. The proposed
method demonstrates significant potential for improving the accuracy and efficiency of redshift estimation
in large-scale astronomical surveys.

Keywords
redshift estimation, spectral analysis, emission lines, machine learning 1

1. Introduction

The study of redshift is a cornerstone of modern astrophysics and cosmology. It provides critical
insights into the structure, dynamics, and evolution of the universe. High-redshift objects, such as
distant galaxies and quasars, are particularly valuable for understanding the early stages of cosmic
evolution [1]. However, accurately estimating redshift from galaxy spectra remains a challenging
task, especially for large datasets generated by modern astronomical surveys, such as SDSS, Euclid,
NASA, etc. In this context, redshift estimation stays as the central research object of the study.

And this is where machine learning algorithms  are  jumping in. Machine learning is good at
handling large and complex datasets. It is an ideal tool for modern astronomical research, where huge
amounts of spectral data are generated by large-scale surveys and advanced telescopes ([2] and [3]).
These algorithms are particularly good at identifying complicated patterns and correlations within
data that may be difficult or impossible to distinguish using traditional analytical methods. As such,
the application of machine learning techniques to galaxy spectra serves as the research subject
explored in this work.

There have already been numerous studies that apply machine learning techniques to the problem
of redshift estimation. Many of these approaches utilize traditional machine learning models, such as
Random Forests or Support Vector Machines, as well as more recent deep learning architectures like
standard CNNs ([4] and [5]). These methods have demonstrated significant success in automating
redshift estimation and improving its accuracy compared to classical techniques. However, they
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often face limitations in terms of scalability, computational efficiency and their ability to generalize
features across diverse datasets.

In  contrast,  the approach presented in  this  work make use of  advanced Inception network
architecture,  which  is  specifically  designed  to  capture  multi-scale  features  within  data.  By
incorporating a correction mechanism based on laboratory-calibrated positions of key emission lines,
our  method  achieves  higher  precision  in  redshift  estimation.  This  combination  of  advanced
architecture and post-processing refinement allows the algorithm to outperform existing methods,
particularly when applied to large datasets of galaxies with varying spectral characteristics. The
purpose of this study is to refine redshift estimation techniques by enhancing accuracy and scalability
for large astronomy datasets.

2. Theoretical Background and Related Work

2.1. Theory and concepts

When a beam of white light passes through a triangular prism, it disperses into its fundamental
components, known as the spectrum. Spectra play crucial role in modern astronomical research,
since they allow scientists to determine the qualitative and quantitative chemical composition of
celestial objects, their temperature, the presence of magnetic fields, their velocity and much more.

As light leaves the surface of a cosmic object, it passes through its atmosphere. During this
process, certain wavelengths are absorbed by the chemical elements present in the atmosphere. This
absorption results in gaps or dark lines in the spectrum, which are known as Fraunhofer absorption
lines.

In contrast to absorption lines, emission lines are bright lines that appear in the spectrum when
atoms or molecules emit light at specific wavelengths. These lines are produced when electrons in
atom transition from a higher energy level to a lower one, releasing energy in the form of photons.
Emission lines are typically observed in regions of hot, ionized gas, such as nebulae or the outer
layers of certain stars. 

Each chemical  element  has a  unique spectral  signature,  consisting of  specific absorption or
emission lines. In contrast, astronomical spectra, for example of galaxies, are complex combinations
of the spectra from numerous sources, including stars, gas clouds, and dust. These spectra include a
continuous background, absorption and emission lines.

By analyzing both absorption and emission lines of astronomical spectra, astronomers can gain a
comprehensive  understanding  of  the  physical  and  chemical  properties  of  celestial  objects.  For
instance, they can easily identify the chemical elements that absorbed or emitted the light, thereby
determining the chemical composition of the atmosphere or surrounding gas. Since the laws of
physics are assumed to operate similarly throughout the Universe, it is expected that the absorption
and emission lines of common chemical elements should appear the same everywhere.

However, when astronomers observe the spectra of celestial objects, they almost always find that
their spectral lines are “shifted” toward the red (longer wavelength) end of the spectrum. This
phenomenon is known as the redshift.

The redshift of light can occur due to several well-known phenomena. The most common cause is
the Doppler effect, where light from an object moving away from the observer is stretched to longer
wavelengths. Another significant cause is the cosmological redshift, which arises from the expansion
of  the  Universe,  stretching  the  wavelengths  of  light  as  it  travels  through space.  Additionally,
gravitational  redshift occurs when light  escapes a strong gravitational  field,  losing energy and
shifting to longer wavelengths.

Redshift is a fundamental concept in astronomy. By observing how the color of a celestial object
changes over time, or how it differs from what was expected, researchers can discover a lot of



interesting facts about the object. Redshift quantifies how much the wavelength of electromagnetic
radiation detected on Earth has changed compared to the wavelength emitted by the source.

Figure 1: Demonstration of shifted absorption lines (https://voyages.sdss.org)

It is, of course, impossible to physically capture the light beam of a distant star before it has been
redshifted during its journey to Earth. Therefore, astronomers use alternative methods to measure
redshift, the primary ones being the spectrographic and photometric methods.

Spectrographs are highly powerful tools for studying light from cosmic objects. They split light
into its constituent colors, allowing scientists to analyze each color range in detail. By comparing the
absorption lines of the most common chemical elements in the Universe with their standard values,
astronomers can determine how much the entire spectrum has been “shifted” in comparison to its
original state when the light left the celestial body. This approach to measure redshift is called
spectrographic method.

Photometers, on the other hand, measure the total intensity of light within a specific range of
frequencies. While this method is less detailed and affects the accuracy of redshift calculations – since
it considers only averaged values of the spectrum rather than its full details – it is faster and simpler.

The  photometric  method of  estimating  redshift  is  particularly  useful  when  analyzing  large
clusters  of  cosmic  objects,  where  precise  measurements  are  not  mandatory.  However,  when
astronomers  conduct  detailed  studies  of  individual  objects,  they rely  on  spectral  data  and the
spectrographic method for determining redshift.

2.2. Review of Existing Approaches

First of all, there is a significant number of studies that have been conducted to estimate photometric
redshift. Usually they take advantage of using traditional machine learning methods, as in [6] or [7].
Data  Release  17  of  SDSS  also  use  kd-tree  nearest  neighbor  fit,  described  in  [8],  to  estimate
photometric  redshifts efficiently.  However,  there  are also plenty of  examples of  applying deep
learning techniques [9].

Despite these features, photometric redshift estimation remains challenging due to the limitations
of photometric data. The lack of detailed spectral information often introduces uncertainties and
biases, which can impact the accuracy of the calculated redshifts.

On the other hand, some studies, focus on calculating redshift using spectral data. This approach
is often considered more accurate than photometric methods, because spectral data provides detailed
information about the light emitted by celestial objects across a wide range of wavelengths, unlike
photometric methods, which rely on broad-band magnitudes.

Since CNNs are good at extracting features from 1D data, there have been already conducted some
researches using them. For instance, in [10] besides the fact that authors transform the redshift
estimation problem from regression to classification by dividing the redshift range into discrete
intervals based on Euclid spectroscopic instrument, they use CNNs to classify galaxies into these
intervals as well.

In addition to that, there is a study that utilize Bayesian CNNs inspired by VGG architectures to
estimate spectroscopic redshift [11]. It provides both predictions and uncertainty estimates, enabling
the identification of  problematic spectra and balancing prediction accuracy with coverage.  The
method  outperforms  traditional  template-fitting  techniques  and  helps  discover  misclassified  or
unrecognized quasars.

https://voyages.sdss.org/


3. Proposed Method

The proposed approach aims to extract as much useful information as possible from spectral data to
achieve high-precision redshift estimation. Since spectra are essentially 1D data, CNNs are well-
suited for analyzing them. In this work, we propose not only using a standard one- or multi-layer
CNN for feature extraction but also incorporating the Inception network [12].

The  Inception  network  is  designed  to  capture  features  at  multiple  scales  by  applying
convolutional filters of different sizes in parallel. This architecture potentially is advantageous for
spectral data, as it allows the model to simultaneously detect both narrow features, such as emission
or absorption lines, and broader patterns, such as continuum variations.

In addition to the primary model, an additional correction method is introduced to further refine
the redshift estimation. After the initial redshift is predicted by the main model, the spectrum is
“shifted” back to its born state based on the calculated redshift. In this initial state, emission lines are
basically aligned with their expected laboratory-calibrated positions. Using these corrected spectra,
the model adjusts its predictions by recalculating the redshift based on the ideal positions of the
emission lines and considering spectra characteristics, such as peaks and flat regions. This additional
correction step ensures more precise redshift value.

3.1. Data preparation

3.1.1. Key notes about the dataset

The model will be evaluated on Data Release 18 of SDSS [13], the latest and most comprehensive
dataset from the Sloan Digital Sky Survey, offering high-quality spectral data across a wide range of
celestial objects.

Since stars, QSOs, and galaxies exhibit fundamentally different features in their spectra, this study
focuses only on galaxy spectra with redshifts up to 1. It is worth mentioning that the proposed
approach can be adapted for stars and quasars as well, making it flexible for broader applications.

Figure 2: Redshift distribution over the dataset

To ensure a homogeneous dataset, only starburst galaxies are to be considered in this work.
Starburst galaxies are characterized by a recent and transient increase in their SFR, often by a factor
of up to 50 compared to regular galaxies. The strong radio emissions of starburst galaxies make it
easier for machine learning models to extract meaningful features from their spectra, thus enhancing
the reliability and precision of redshift estimation. It is expected that the proposed approach will also
work for regular galaxies, though this would require reconsidering the data preprocessing methods
described in the next subsubsection.

3.1.2. Models inputs

First of all, let’s define the structure of the input data and highlight its key features relevant to this
work. Since there are two models involved – the main model and the correction model – each



requires a distinct set of inputs. However, both models share a common input – the spectrum, which
represents the flux values (in 10-17 erg/s/cm2/Å) corresponding to specific wavelengths (in angstroms
Å).

Typically, galaxy spectra provide flux information within the range of approximately 4000 to 9000
angstroms, as this range covers key spectral features such as the Balmer series, prominent emission
lines and other important indicators of galaxy properties. This range is also well-suited for optical
observations, as it falls within the sensitivity of most ground-based telescopes and spectrographs.

In addition to the spectrum, the main model requires the redshift value as an input. Redshift,
denoted as z, is defined as the fractional change in the wavelength of light due to various physical
phenomena. It can be calculated using the formula

z=
λobs−λrest
λrest

,
(1)

where λo sb  is a a elength meas red  the o ser er, and w v u by b v λrest is the wavelength at the source.
The correction model, on the other hand, takes as input the spectra shifted back to their emitted

states, along with the template positions of several well-known and widely distributed emission lines
(e.g. Hα, Hβ, [OIII], [NII]). After shifting the spectra to their source states, any empty values that arise
due to the shift are filled with zeros, while values that fall outside the defined above wavelength range
are removed.

3.1.3. Data preprocessing

Since spectra are 1D signals often containing noise from various sources, wavelet filtering is an
effective solution for denoising while preserving important features. Wavelet filters are a well-
established tool for noise reduction and are widely used in various applications. For instance, in [15],
wavelet filtering is applied to detect anomalies and emergency states in signals by isolating key
characteristics after removing noise.

For noise reduction, the Daubechies wavelet is commonly used due to its ability to capture smooth
and localized features in 1D signals. The filtering process involves decomposing the signal into
wavelet  coefficients  across  multiple  scales,  where  noise  is  typically  concentrated  in  the  high-
frequency components. A soft thresholding technique is applied to suppress these noisy coefficients,
ensuring that the essential features of the signal are preserved. After thresholding, the signal is
reconstructed by combining the modified coefficients, resulting in a cleaner version of the original
data. 

It’s worth mentioning that there is no need to completely remove all features from the spectra, as
some degree of noise is acceptable if it preserves the essential characteristics of the signal. The chosen
threshold, set to 10% of the maximum coefficient at the finest scale, keeps a balance between effective
noise reduction and retaining meaningful spectral features, as shown on Figure 3. This value ensures
that weaker but important components, such as emission lines, are not completely suppressed, while
still keeping the majority of high-frequency noise.

The next step in the data preprocessing pipeline involves applying spline approximation to the
spectrum. This technique is very useful for starburst galaxies, whose spectra are characterized by a
relatively flat continuum with distinct emission lines standing out prominently.

Then,  by  calculating  the  difference  between  the  wavelet-filtered  spectrum  and  the  spline
approximation line, we align the spectrum with the zero axis, removing base flux variations and
focusing on relative flux changes (Figure 4). While this process sacrifices some physical context, it is
highly beneficial for further training the convolution-based networks, as they are better suited to
analyze  relative  variations  rather  than  absolute  flux values.  Finally,  the  resulting  difference  is
normalized by dividing it by its maximum value, ensuring consistent scaling across all spectra and
preparing the data for efficient feature extraction and model training.



   

   

Figure 3: Examples of applying Daubechies wavelet to the spectra and estimating approximation
spline

Figure  4: Illustration  of  spectrum  filtering.  The  final  result,  along  with  other  spectrum
characteristics, is passed to the machine learning model

3.2. Building the machine learning model

As mentioned earlier, 1D CNNs are widely used for processing sequential data, such as time series or
audio signals, to detect important patterns or identify unwanted anomalies. Given the sequential
nature of astronomical spectra, they are excellent candidates for extending the scope of 1D CNN
applications to the field of astronomy.

In general, CNNs (Convolutional Neural Networks) are a class of deep learning models designed
to automatically and adaptively learn spatial hierarchies of features from data. The core operation in
CNNs is the convolution, which involves applying a filter to the input data to extract features.
Mathematically, a convolution operation for a 1D input can be expressed as



y ( i )=∑
j

x ( j )∗w ( i− j ) , (2)

where x(j) is the input signal, w(i-j) is a filter, and y(i) is the resulting feature map.
A 1D CNN is a specialized type of CNN where the convolution operation is applied along a single

dimension.
One  of  the  enhancements  of  CNN  demonstrated  in  this  work  is  the  Inception  network

architecture [12]. The main idea behind it is to process input data at multiple scales simultaneously by
using parallel convolutional layers with different kernel sizes.

The Inception architecture was chosen for redshift prediction due to its  ability to detect in
multiple scales both narrow spectral features, such as emission lines, and broader patterns, such as
continuum variations. Additionally, its modular design allows for efficient computation.

3.3. Correction method

The correction method is designed to further enhance the accuracy of the overall algorithm. In
regression tasks, convolutional networks typically return a single redshift value, which is not directly
tied to specific spectral features, such as emission or absorption lines. To address this limitation, we
propose  a  correction  mechanism  that  aligns  the  predicted  redshift  value  with  the  spectral
characteristics.

But, in the first place it is necessary to calculate the positions of emission lines based on the
estimated redshift value using Formula 1. These calculated positions allow us to adjust the emission
lines, aligning them more closely with the observed spectrum peaks, thereby refining the redshift
estimation.

To begin with, the most naïve method to adjust emission line positions is a greedy algorithm. The
idea  behind  this  approach  is  to  iteratively  refine  the  predicted  positions  of  emission  lines  by
searching for the best match within a local region of the spectrum.

For each predicted position, the algorithm evaluates nearby points within a defined search radius,
considering three main factors: 

 proximity to the initial prediction;
 intensity of the spectrum at the point;
 relative distance between neighboring emission lines.

The algorithm assigns a cost to each candidate position based on these criteria and selects the one
with the lowest cost. This process ensures that the corrected positions align more closely with the
actual peaks in the spectrum while maintaining consistent spacing between emission lines.

Another approach to refine emission line positions involves training a machine learning model
using local regions of the spectrum. For that, gradient boosting method is used. It is an ensemble
learning  algorithm that  builds  a  series  of  decision  trees.  They  can  be  trained  to  solve  either
classification or regression tasks. In our case, the regressor is built to predict positions of emissions
lines.

Precise estimation of all mentioned algorithms will be presented in the next section.

4. Experimental Evaluation

Important, that the input spectra do not share a common wavelength grid, which complicates direct
comparisons and processing. Each spectrum is sampled at different wavelengths, making it necessary
to align all spectra to a unified grid before further analysis. To fix this issue, a common wavelength
grid was defined in the range from 4000 Å to 9000 Å with step equal to 1 Å. The flux values are
interpolated onto the common grid using a linear interpolation method. Chosen grid has direct
impact on the model performance and accuracy. A finer grid with smaller step sizes keeps more



precise representation of spectral features, improving the model performance. At the same time,
increased accuracy comes at the cost of higher computational complexity and memory usage, as the
model must process a larger number of data points.

4.1. CNN model evaluation

The evaluation of the algorithm begins with testing the main model, which is based on a CNN. For
this purpose, a single-layer CNN was implemented. The performance of the model varies depending
on the number of the convolutional filters and their sizes, as shown in Table 1.

Table 1
Single layer CNN model accuracy

Number of filters Filter size Redshift MAE Relative accuracy, %

64 3 0.0322 94.35

64 150 0.0169 97.03

64 350 0.0173 96.96

128 3 0.0286 94.98

128 150 0.0182 96.80

128 350 0.0204 96.42

Trainings were conducted on the CNN using the ReLU activation function and the mean absolute
error loss function over 20 epochs. In addition to convolution filter, average pooling is applied with
filter size of 2.

As it is shown in the Table 1, smaller convolution filters result in higher MAE values since they are
less effective at capturing broader spectral features. On the other hand, larger filters demonstrate
improved accuracy, with the lowest MAE achieved using 64 filters and a filter size of 150. Increasing
the number of filters to 128 does not consistently improve performance. While increasing the number
of filters can enhance feature extraction, it may also introduce redundancy or overfitting, depending
on the filter size.

To achieve a more precise estimation of redshift, the Inception network was used. Since the
model's  complexity  and  computational  efficiency  are  critical  for  handling  large  datasets,  the
architecture with dimensionality reduction was used (Figure 5). It consists of three to four parallel
towers: two or three convolutional filters of different sizes applied after a 1x1 convolution, and a max
pooling operation followed by another 1x1 convolution.

Trainings was conducted on the Inception network consisting of three towers using the ReLU
activation function again as well as the mean absolute error loss function over 20 epochs. Results can
be found in Table 2.

Considering the results, the Inception network demonstrates significantly higher MAE values
compared to the single-layer CNN model. The lowest MAE achieved by the Inception network is
0.0504, which is worse than the best result of 0.0169 obtained by the CNN with 64 filters and a filter
size of 150. This imbalance can be explained by the simplicity and efficiency of the CNN architecture,
which is better suited for the straightforward task of redshift estimation. In contrast, the Inception
network’s complex architecture may introduce unnecessary computational overhead and fail  to
capture the specific features required for accurate redshift prediction.



Figure 5: Architecture of used Inception network

Table 2
Inception network model accuracy

Number of filters Convolutions Pooling Redshift MAE Relative
accuracy, %

64 3x3
15x15

2x2 0.0504 91.00

64 20x20
50x50

2x2 0.0861 84.62

128 3x3
15x15

2x2 0.0953 82.98

4.2. Correction method evaluation

Since there is no difference which CNN architecture choose to test correction approach, single layer
CNN with 64 filters and a filter size of 150 will be used further.

The CNN model outputs the estimated redshift value for a given spectrum. It is then used to
calculate the positions of emission and absorption lines. These calculated positions are not aligned
with specific spectral characteristics, such as peaks, as shown on Figure 6.

As described earlier, two approaches are going to be compared – the gradient boosting model and
the greedy algorithm.

The gradient boosting is trained using 100 estimator trees and a 0.1 shrinkage parameter. Mean
squared error is a loss function. The greedy algorithm assigns a cost to each candidate position based
on its proximity to the initial prediction, the intensity of the wavelength at the point, and how well
the new position maintains the spacing between neighboring emission lines. The positions with the
lowest cost are selected as the new candidates for the emission lines.

Eight emission lines are chosen for performing correction: Hβ, [O III] 4959, [O III] 5007, [N II]
6548, Hα, [N II] 6583, [S II] 6716, [S II] 6730.



Figure 6: Illustration of how emissions lines calculated based on the estimated redshift are located in
comparison to their true locations. It can be noticed that the true positions align with the most visible
peaks in the spectrum, since they correspond to light emission at specific wavelength. On the other
hand, the calculated positions are often located in a flat regions of the spectrum. The figure includes a
zoomed-in section of the spectrum for better visualization

Figure 7: Example of emission line positions correction using greedy algorithm. For [N II] 6548,
estimated position is at 7925 Å, error – 69 Å, corrected – at 8012 Å, true – at 7994 Å, error after
correction – 18 Å. For Hα, estimated position is at 7942 Å, error – 70 Å, corrected – at 8038 Å, true – at
8012 Å, error after correction – 26 Å. For [N II] 6583, estimated position is at 7967 Å, error – 70 Å,
corrected – at 8199 Å, true – at 8037 Å, error after correction – 162 Å. For [S II] 6716, estimated
position is at 8128 Å, error – 72 Å, corrected – at 8216 Å, true – at 8200 Å, error after correction – 16 Å

Table 3 contains the results of the correction model using different approaches. The region size
indicates the size of the local window around each emission line where adjustments can be made. It
can  be  observed  from  the  table  that  both  the  greedy  method  and  gradient  boosting  show
improvements in redshift prediction accuracy as the region size increases. These results show that
both methods are effective, however still gradient boosting provides more consistent corrections,
especially for larger region sizes.



Table 3
Results of correction model

Region size Greedy method
MAE

Gradient
boosting MAE

Initial accuracy
improvement
(greedy), %

Initial accuracy
improvement

(GB), %

150 0.016603 0.014634 1.76 13.41

300 0.015094 0.014439 10.69 14.56

450 0.014333 0.014330 15.19 15.21

600 0.013843 0.014142 18.09 16.32

750 0.013898 0.013963 17.76 17.38

5. Conclusions

This paper describes the effective approach of redshift estimation using spectral data and machine
learning techniques. The proposed algorithm combines convolutional neural networks (CNNs) for
initial redshift prediction with correction methods designed to refine the estimated values based on
spectral characteristics.

The final results of the model achieve up to 97.7% accuracy in redshift estimation when utilizing
gradient boosting correction.

Future work could explore hybrid approaches or further optimization of the Inception network to
better align its capabilities with the requirements of redshift estimation. Additionally, the correction
methods could be enhanced by incorporating more sophisticated spectral  features or involving
advanced  machine  learning  techniques,  such  as  attention  mechanisms,  to  better  capture  the
relationships between emission lines and spectral peaks.

Overall, the combination of CNN-based redshift estimation and correction methods provides a
promising framework for accurate and efficient analysis of spectral data.
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