
Stock market price forecasting using evolving graph
neural network⋆
Mykola Korablyov1,†, Oleksandr Fomichov1,† , Igor Kobzev2,†, Danylo Antonov1,∗,†, and
Oleksandr Tkachuk1,†

1 Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
2 Simon Kuznets Kharkiv National University of Economics, Kharkiv 61166, Ukraine

Abstract
Predicting stock prices is essential to inform investment decisions in the financial market. Analyzing
financial market movements and stock price behavior is extremely complex due to the dynamic, nonlinear,
non-stationary, non-parametric, and chaotic markets. Various approaches are used to analyze stocks for
financial market forecasting purposes. Traditional methods based on time series information for one
company's stocks do not consider the relationships between stocks of other companies, which can improve
the efficiency of stock price forecasting. The use of graph neural networks for these purposes, in which the
relationships of time series are represented as a relationship graph structure, and the variables are defined as
graph nodes, significantly improves forecasting accuracy. Existing forecasting methods usually assume that
the structure of the relationships graph, which is described by the relationships matrix and determines the
aggregation method of the graph neural network, is fixed by definition. Therefore, they cannot effectively
consider dynamic changes in relationship graphs. In this paper, an evolving graph neural network is
proposed for forecasting stock prices in the stock market. To extract dynamic correlations between price
movements in financial time series, a relationships graph is constructed in the form of clusters, the
generation and the evolution of the structure and parameters of which are implemented using a dendritic
artificial immune network (DaiNet). For each generated cluster of the relationships graph, the price
encoding is performed using transformers to determine the price information. Then, the messages from the
relational graph structure and the input time sequences are aggregated based on the use of the attention
layer of the time graph. At the last GNN layer, the final prediction of the future price movement of each
stock is performed using a multilayer perceptron to integrate the components.

Keywords
stock, financial market, forecasting, profit, interaction, relationships graph, evolution, graph neural
network, artificial immune network 1

1. Introduction

Multivariate time series (MTS) modeling plays an important role in modern intelligent systems. By
modeling the evolution of states or events in the future, forecasting enables decision-making and
plays an important role in many practical areas, such as finance, transportation, healthcare, etc.
However, accurate forecasting of MTS is still a challenging task due to the possible presence of
hidden changing correlations both within and between time series.

The ability to predict stock prices is essential to inform investment decisions in the financial
market. Financial markets determine the interactions between companies and investors and have a
significant impact on many areas of human activity, such as business, education, technology, etc.
Financial market analysis indicates that stock prices are inherently volatile, which makes it difficult
to predict their movements. At the same time, analyzing financial market movements and stock price

⋆International Workshop on Computational Intelligence, co-located with the IV International Scientific Symposium
“Intelligent Solutions” (IntSol-2025), May 01-05, 2025, Kyiv-Uzhhorod, Ukraine
1∗ Corresponding author.

 mykola.korablyov@nure.ua (M. Korablyov); oleksandr.fomichov@nure.ua (O. Fomichov); ikobzev12@gmail.com (I.
Kobzev); danylo.antonov@nure.ua (D. Antonov); oleksandr.tkachuk@nure.ua (O. Tkachuk)

 0009-0005-2540-7741 (M. Korablyov); 0000-0001-9273-9862 (O. Fomichov); 0000-0002-7182-5814 (I. Kobzev); 0009-0000-
2079-3413 (D. Antonov); 0009-0006-2943-9887 (O. Tkachuk)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-5385-5761
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0002-5385-5761
https://orcid.org/0000-0002-5385-5761
https://orcid.org/0000-0003-3412-1639
mailto:oleksandr.tkachuk@nure.
mailto:ikobzev12@gmail.

behavior is a complex task due to the dynamic, nonlinear, non-stationary, non-parametric, and
chaotic nature of the markets.

Various approaches are used to solve the problem of forecasting the financial market: statistical
methods, pattern recognition, graphs, machine learning, etc. Traditional learning methods consider
time series of stock changes as independent and equally distributed relative to each other, which does
not coincide with the real situation in the financial market. For example, two stocks in the same
sector may have a higher correlation than stocks in different areas. The effect of linkage in the
financial market, where stock prices are affected by the prices of related stocks, requires the use of
more complete data. Taking into account the relationships between stocks can improve the efficiency
of stock price forecasting.

In the classical statistical field, the autoregressive model (AR) and its variants are the most popular
forecasting methods due to their efficiency and ideal mathematical properties. However, they are
mainly applied to univariate forecasting problems and assume a linear relationship between
variables. With the rapid growth of data volume, AR models perform poorly in forecasting in more
complex settings due to their relatively low expressiveness.

Multivariate time series forecasting examines the correlation between variables. Deep learning
methods are used to handle nonlinear dependencies in this area. Some of the first deep learning-based
multivariate time series forecasting models were LSTNet [1] and TPA-LSTM [2], which combine a
convolutional neural network (CNN) and a recurrent neural network (RNN) to extract both intra- and
intertemporal dependencies.

Recently, graph neural networks have been effectively used for multivariate time series
forecasting, in which time series interactions are represented as a relationship graph structure, and
variables are represented as graph nodes [3, 4, 5]. Existing forecasting methods usually assume that
the relationship graph structure, which is described by the adjacency matrix and determines the
aggregation method of the graph neural network, is fixed (static) by definition and is either built
manually by an expert, or by natural language processing (NLP), or is self-trained.

Creating entity relationship graphs is a challenging task because they are ambiguous and
dynamically changing. For example, financial knowledge graphs mainly include the basic business
and investment relations of entities that are labeled by domain experts or extracted from
unstructured texts. However, different experts have different knowledge, which can lead to different
entity relationship graphs, which significantly affects the accuracy of prediction.

Using NLP methods for forecasting faces significant challenges in extracting relations with high
accuracy. That is, the relationships may be distorted by either one-sided text news or inaccurate
extraction models. In addition, these relationships may change dynamically over time. Existing stock
price forecasting methods based on graph learning are suboptimal under dynamically changing
situations. Thus, stock price forecasting methods that assume a fixed structure of the relationship
graph have low forecasting accuracy and are resource-intensive.

In real applications, the interactions of variables are dynamic and evolutionary. In addition, the
interactions of time series at different time scales may also be different. Therefore, forecasting using a
static relationship graph may lead to significant biases, since correlations change over time in real
MTS data.

As the graph structure changes over time, it changes across different observation scales. For
example, the correlation between variables in the short term may differ from the long term. For
example, in finance, two stocks may rise and fall simultaneously in the short term due to changing
policies, but they may diverge in the long term if one company is thriving while the other is on the
verge of bankruptcy. A fixed relationship matrix cannot handle these changes.

To make the graph neural network a flexible and practical structure, it is necessary to model
evolutionary and multi-scale interactions of time series in it. In this way, it is possible to
simultaneously capture pairwise correlations and time dependence.

Therefore, developing a stock market price forecasting model based on an evolving graph neural
network that considers changing relationships between stocks is an urgent task that can improve the
accuracy of stock price forecasting.

2. Analysis of existing research

Methods for forecasting multivariate time series can be divided into two categories: a) methods based
on implicit dependence; and b) methods based on structural dependence. In the first category of
methods, one of the representative methods of which is LSTNet [1], the dependence of variables is
fixed using a convolution over variables. In the second category of methods, the correlation of
variables is represented as relationship graphs (RG), and forecasting is implemented using graph
neural networks (GNN).

As is known, various financial market factors significantly impact changes in stock prices [6]. In
existing studies, the most common approach is the manual construction of various factors as input
functions [7, 8]. Thus, in [9], market data is integrated with fundamental and technical stock
indicators for decision-making. In [10], a connection is established between news information and
related objects for forecasting stock price movements.

To learn the sequential hidden features of historical information and then apply them to the
forecasting problem [11], most existing methods use recurrent neural networks and their variants,
such as LSTM and GRU [12]. However, the market data for each stock is processed independently,
which does not take into account the internal relationships between stocks, leading to low forecast
accuracy and low performance. In [13], the correlation information of stocks is used as input to the
forecasting model, but the dynamic changes in the relationships between stocks are not
automatically recorded.

In [14], it is noted that changes in stock prices are associated not only with their historical prices
but also with related stocks of other companies, and knowledge graphs are used to store and
represent these relationships. For efficient learning on graphically structured data, [15] proposes to
use a graph neural network (GNN), which has shown high performance in various areas. In [16],
company relationships are modeled in knowledge graphs, and graph convolution networks are used
to predict stock price changes. In [17], a graph attention neural network is used to learn company
correlations. It should be noted that GNNs built using these methods are limited to fixed, predefined
company relationships that are maintained by manual editing or natural language processing
methods [18].

In [19], Graph Wavenet (GWN) is used to learn the correlation of time series variables using a
static representation of nodes and capture the temporal pattern using convolutional neural networks
(CNN). In [19], the static correlation of time series variables is also learned, but a new graph
convolution module is proposed for MTS prediction. The dynamic relation between variables in [20]
is modeled using self-attention mechanisms, but the constructed GNNs are very sensitive to the input
data, which leads to significant variance in prediction.

In [21], a hybrid model of stock analysis is proposed that uses a combination of different
intelligent technologies: recurrent neural networks (RNN) to obtain stock price characteristics,
artificial immune systems (AIS) to obtain information about the relationship between stocks, and
graph neural networks (GNN) to estimate stock returns. But the structure of the generated
relationship graph is also fixed.

Some papers study graph structures that change over time [22] However, these graph structures
do not directly follow the forecasting problem, which may lead to biased results. Papers [23] use
transformers to forecast MTS, but they do not fully consider the issues of the dynamic dependence of
variables. However, in real conditions, corporate relations change over time, and the relationship
graphs that describe them may be heterogeneous, that is, several types of relations may exist between
companies.

Thus, existing methods do not allow full use of all the information from real graphs of company
relationships. This work aims to construct an evolving graph neural model for analyzing financial
market shares that would integrate information about changes in stock prices over time and the
relationships between them, and would improve the accuracy of their forecasting.

3. Architecture of the proposed temporal graph neural network

Let us consider the architecture of the proposed temporal graph neural network and its components,
presented in Figure 1, which is used to predict stock prices in the financial market.

Figure 1: Architecture of a Temporal Graph Neural Network for Stock Price Forecasting.

First, based on the incoming input time series of stock trading characteristics, a graph of
relationships between company stocks is generated in clusters, which determines the dynamic
relations in the market for each trading day. Then, prices are encoded using transformers that select
the central time nodes of clusters and their neighboring nodes to determine price information for
each generated cluster of the relationship graph. Next, aggregation of messages from the relationship
graph structure and input time sequences is performed based on the use of a time graph attention
layer that adaptively calculates the importance of neighbors and aggregates information by the
importance of neighbors.

In the last layer of GNN, a final prediction of the future price movement of each stock is made
using a multilayer perceptron to integrate the above components. Using fully connected layers allows
the model to aggregate the extracted features of the time series, which simplifies the prediction
process. A final layer with a SoftMax activation function is used to output the probabilities of
predicting the future movements of each stock.

Let us consider the implementation of these stages in more detail.

3.1. Generation and evolution of the relationships graph between the company’s
shares

We will design a GNN to extract dynamic correlations between variables from time series to solve the
problem of stock price forecasting. Time series in financial market analysis are chronological sets of
observations, such as daily sales results and stock prices of companies. We will use the sets of
observations to generate time graphs of company relations for each trading day.

The inputs of the MLP are time series of trading characteristics of stocks

X=(X (1) , X (2) ,…, X (t) ,…, X (T)), X∈ RN xTxn, where X (t)=(x1(t) , x2(t) ,… , xn(t)) – time series of

characteristics of one stock on trading day t, N – number of stocks, T – length of time series, n – stock
dimension. At the outputs of the MLP, we obtain characteristics (representations) of the stock prices

of each time series Pt
i=(p1i , p2i ,…, pti ,…, pTi), i=1 , N for the trading day t

Pt
i=ϴt (X t

i), (1)

where ϴt – transformation function.

The MLP output Pt
i is then used to determine the relations between stocks for each trading day t

in the form of time graphs, which are represented by relationship matrices

A t
i=£ t (Pt

i), (2)

Where £ t – a function of forming relationship matrices.
Thus, the time graphs for each trading day are represented by a set of interconnected nodes and

edges G={V , E } with timestamps, where 𝑉 and 𝐸 indicate the set of nodes and edges, respectively.

An edge eij∈ E of the graph can be represented by an ordered tuple {v i , v j }, which indicates the

edge points from node v i to node v j , and M i indicates the number of neighboring nodes connected to

node v j that are included in the relationships graph on trading day t.
The company relationships graphs are viewed as sets of time graphs that are automatically

generated based on historical price sequences, and in which nodes V={V t1
,V t2

,…,V T } denote

companies and edges E={Et1 , Et2 ,…, ET } represent their relations. Each node V t i on different

trading days t i can be connected by relations with several edges Et i with timestamps. In this case, the

appearance of nodes V t i and edges Et i on different trading days t i can be different.
As noted, the relationships between graph variables not only evolve over time but also change

across time scales, making it difficult to describe such correlations using a fixed relationship matrix.
In addition, the evolving patterns of graph structure are also not the same across time scales. Thus,
there are problems to be solved:

1. The structure of the relationships graph changes over time. Most existing works use a fixed
and static adjacency matrix from start to finish, which obviously cannot cope with such a
condition.

2. The structure of the relationships graph changes across different observation scales. The
correlation between variables in the short term may differ from the long term. For example, in
the short term, two stocks may rise and fall simultaneously when financial policy changes,
but in the long term, they may diverge if one company is thriving while the other is about to
go bankrupt. Using a fixed relationship matrix will not cope with this condition either.

To record correlations between variables for certain time intervals, we will generate the structure
of an evolving relationships graph. The task of determining the relationships between company
shares can be considered a clustering task, which provides a timely and adequate way to obtain
correlations between shares for each trading day. Clustering methods that use biological principles of
computing organization have become widespread, among which artificial immune systems can be
distinguished.

To solve the problem of stock clustering, it is proposed to use the dendritic artificial immune
network (DaiNet) model [24], which allows forming a K-connected graph. The graph vertices are
antibodies describing the characteristics of the company's stock prices, and the edges are affinity,
determining the degree of connectivity between them. Formation of daiNet is a multi-stage
optimization process aimed at reducing the number of connections between antibodies and using the
values of affinities and avidities for this [24]. The result of clustering will be a network of antibodies
with certain clusters.

Initially, the antibody network is formed as a graph, where each node is connected to all other
nodes of this graph. The threshold affinity value NAT (Natural Affinity Threshold) is used as a
criterion regulating the number of affinity bonds between antibodies, which is the average affinity
between all antibodies in the population

NAT (AB)=
∑
i=1

n

aff (abi , ab j)

n(n−1)
,

(3)

where n is the number of antibodies in the population; aff (abi , ab j) is the affinity value between
the i-th and j-th antibodies

aff ij=(1+d ij)
−1 , (4)

where d ij is the Euclidean or Manhattan distance between the features of the i-th and j-th immune
objects.

According to this, the links between antibodies are removed if their affinities do not exceed the
NAT value. Then, the stimulation levels si of each antibody are calculated based on its affinities with
other immune objects that form the network

si=
1
K∑

j=1

K

aff (abi , ab j) , (5)

based on which the centers of the graph clusters are determined.
After the distribution of cluster centers, the process of determining the belonging of antibodies of

the immune network to them occurs using avidity, which is based on the relation and affinity
between immune objects

av i=∑
j=1

m

aff (abi , ab j) , (6)

where av i is the avidity value of the i-th antibody with other antibodies of the cluster; m is the

number of antibodies in the cluster; aff (abi , ab j) is the affinity value between the i-th and j-th
antibodies of the same cluster by (4).

Thus, DaiNet allows for automating and simplifying the process of forming a relationship graph
between company shares. The result of clustering a dendritic artificial immune network will be a
network of antibodies with certain clusters, which for trading day t are represented by an evolving
learning graph (EGL), described by the relation matrix A(t). The parameters of the relation matrix

A(t+1) for the trading day (t+1) depend on the changes in the trading characteristics of the stocks

X (t) and the parameters of the matrix A(t) for the trading day t

A(t+1)=Ǫ(A (t) , X (t)), (7)

where Ǫ is a function that determines the evolution of GNN.
It should be noted that correlations between multivariate time series in practical problems change

over time, therefore, the characteristics of nodes and arcs of the graph of company stock relations are
subject to changes when moving from one trading day to another. Therefore, for GNN to have
evolutionary properties that take into account changing correlations both within and between time
series of company stocks, it is necessary to generate corresponding relationship matrices A^((t)) for a
sequence of trading days, which will improve the accuracy of forecasting.

3.2. Stock price encoding

From each generated cluster of the relationship graph G, the cluster centers and their neighboring
nodes are selected, and the price movement information is encoded into time representations using a
converter-encoder. The input characteristic of the movement of price sequences of shares on a

trading day 𝑡 is defined as X=(X (1) , X (2) ,…, X (t) ,…, X (T)), X∈ RN xTxn, where N is the number of

shares, n is the dimension of the share, 𝑇 is the number of trading days. To obtain the input tensor

H (t)∈ RNxTxn of shares, we use a linear transformation for trading characteristics

H i
(t)=F i X

(t)+ai , (8)

where F i∈ RNxn and ai∈ RN are the learning parameters.

Thus, when encoding prices in the relationship graph, the time centers of clusters and their
neighboring nodes are selected for encoding price information.

3.3. Using the time graph attention mechanism

Given the output sequences of encoder nodes V i
(t) and the time graph of relations G(t)={V (t) , E(t)}

for each trading day t, the graph attention mechanism can be used to aggregate messages on
successive inputs. To aggregate messages from relation graph structures and input time sequences,
embedding smoothing of all nodes is performed, and a two-stage temporal attention mechanism is
used. The two-stage temporal attention layers adaptively calculate the importance of neighbors,
aggregate messages according to their importance, and simultaneously aggregate messages from all
relation graph clusters. Message aggregation is implemented as follows

Sr
(t)=ALr · P0 , r , (9)

where Sr
(t)∈ RnxN is the output of the attention layer of the time graph on the trading day 𝑡,

P0 , r is the output projection matrix, ALr is the vertex of the attention layer of the time graph, which
is described as follows

ALr=∑
j

σ ·(∑
i

(pi , j ·hi)) , (10)

where σ is the sigmoid activation function, hi is the i-th row of the price embedding, pi , j is the
importance of the time boundary (i,j) at the i-th vertex of the graph, which is determined using the
ReLU activation function.

Thus, using a graph attention layer allows adaptive computation of the importance of neighbors
in a relationship graph and aggregating information according to their importance.

3.4. Probabilistic stock price forecasting

The final layer of the GNN, using multilayer perception with a SoftMax output activation
function, allows for a probabilistic forecast of the future price movement of each stock. The SoftMax
activation function is the key element of the prediction layer. The SoftMax function is defined as
follows: each output variable value is an exponential function of the input variable value divided by
the sum of the exponentials of all input variable values. This transformation allows the model to
express the output variable values as a probability distribution between different variables. Applying
this function in a fully connected layer allows the model to predict output values that are interpreted
as a probability, where each value represents the model’s confidence that the output value belongs to
a particular stock category. Moreover, using cross-entropy as a loss function in such problems allows
the model to optimize its weights in such a way as to maximize the predicted probabilities of the
actual labels of the resulting classes. This provides more accurate and reliable forecasting of stock
prices in the financial market using deep learning and graph neural networks.

Nodes in a fully connected layer are connected to all nodes in the previous layer, which allows for
efficient combination and classification of features extracted from previous processing stages. Using
fully connected layers allows the model to aggregate the extracted features of the time series, which
simplifies the forecasting process.

4. Experimental studies

This section presents the practical implementation of an evolving graph neural network for stock
price forecasting. The experiments are designed to demonstrate how dynamic graph construction
and adaptive clustering can improve forecasting accuracy in a real-world financial setting.

4.1. Data acquisition and preprocessing

Historical data on stocks was obtained, including daily closing prices, trading volumes, and selected
technical indicators covering T trading days. The data were preprocessed as follows:

 Normalization: All features were normalized using z-score normalization to ensure a
comparable scale.

 Sliding Window Generation: A sliding window of 20 trading days was formed for the input
time series. This approach provides each sample with sufficient historical context for
temporal graph construction.

 Feature Engineering: In addition to raw price data, technical indicators (e.g., moving
averages, RSI) were computed and incorporated into the feature set.

These steps yield a multivariate time series dataset that serves as the basis for constructing
temporal graphs. Figure 2 shows graphs of changes in average monthly stock prices for 16 IT
companies, and Figure 3 shows a heat map of normalized prices for the first 20-day sliding window.

Figure 2: Changes in average monthly prices of company shares (Jan 2023 - Mar 2025)

Global z-score normalization is applied across the entire data range, meaning each stock’s mean
and standard deviation are computed from all available trading days. If the first 20 days happen to
have prices consistently below the overall mean, their z-scores will naturally be negative.

Figure 3: Heatmap of normalized prices for the first 20-day sliding window

4.2. Temporal graph construction

For each trading day, we construct a graph where:

 Each node represents an individual stock.
 The boundaries are set by calculating the affinities between historical stock price movements

(in a sliding window). A threshold is applied to the affinity values to create a relation matrix.
This process captures significant interdependencies between stocks, resulting in a temporal
graph that evolves with market conditions.

This method ensures that the constructed graph reflects the changing relationships among
stocks on a day-by-day basis.

4.3. Clustering using the dendritic artificial immune network

To generate the relation graph and extract meaningful substructures, we apply the daiNet algorithm
to each daily graph:

 Affinity Computation: For every pair of nodes, the affinity is computed using the Manhattan
distance between their feature vectors. The natural affinity threshold (NAT) is determined as
the average affinity across all node pairs.

 Edge Pruning: Edges with affinity values below the NAT are pruned from the graph. This
reduces noise and emphasizes stronger, more significant relationships.

 Stimulation Level and Cluster Center Identification: For each node, a stimulation level is
calculated based on its remaining affinities. Nodes exhibiting high stimulation levels are
designated as cluster centers.

 Avidity-Based Cluster Assignment: The remaining nodes are assigned to clusters by
evaluating their avidity — quantifying the strength of association with each identified center.
This iterative process results in evolving clusters that dynamically reflect the underlying
inter-stock relationships.

The daiNet-based clustering effectively transforms the raw dynamic graph into a set of coherent
subgraphs, each representing a cluster of closely related stocks.

4.4. Implementation and experimental results

The implementation was carried out using Python. Key libraries include:

 Pandas and NumPy: For data manipulation and preprocessing.
 Scikit-learn: For preliminary clustering experiments and evaluation of similarity measures.
 PyTorch Geometric: For implementing the graph neural network components.
 NetworkX and Matplotlib: For visualizing the evolving graph structures.

For each trading day, the temporal graph was constructed and clustered using the steps
described above. The resulting clusters served as input for a transformer-based encoder that
captured temporal price features. These features, aggregated via a temporal graph attention layer,
were then passed to a multilayer perceptron (MLP) for probabilistic forecasting.

As a result, we will focus on three key metrics of the experiments over 50 epochs: learning loss
(Figure 4), prediction root mean square error (RMSE) (Figure 5), and prediction accuracy (Figure 6).

Figure 4. Training Lose

Figure 5. Forecast RMSE

Figure 6. Forecast Accuracy

The evolving graph model’s training loss decreases steadily from around 1.0 to approximately 0.3,
with minor fluctuations indicative of normal training noise. This trend demonstrates that the model
converges effectively over time.

The forecast RMSE of the evolving graph model remains below that of the static graph model
throughout training, dropping from roughly 15 to around 9. The consistently lower RMSE highlights
the benefit of capturing dynamic relationships via evolving graph structures.

The forecast accuracy for predicting directional movement shows that both models improve from
near 50% (random guessing) to well above 55%. The evolving graph model, however, outperforms the
static approach by a margin of about 3–5 percentage points at most epochs, peaking around 62%.
Overall, these results underscore the advantage of incorporating dynamic clustering and time‐aware
graph attention for more accurate and robust stock price forecasting.

5. Conclusion

Today, the financial market uses combinations of different technologies, the interaction of which
allows for more informed decisions. Various approaches are used to analyze stocks and forecast the
financial market, but they usually do not take into account the relationships between stocks of
different companies. The use of graph neural networks (GNN), in which the relationships of time
series are represented as a relationship graph, significantly increases the accuracy of forecasting.
However, in existing methods, the structure of the relationship graph is fixed by definition.

In this paper, an evolving graph neural network is used to forecast stock prices in the financial
market, in which the generation and evolution of the structure and parameters of the graph,
presented in the form of clusters, is implemented using a dendritic artificial immune network
(DaiNet). The graph vertices are antibodies describing the characteristics of the company's stock
prices, and the edges are affinity, determining the degree of connectivity between them. Formation of
daiNet is a multi-stage optimization process aimed at reducing the number of connections between
antibodies and using the values of affinities and avidities for this [24]. The result of clustering will be
a network of antibodies with certain clusters.

To determine the price information for each generated cluster of the relationship graph, the prices
are encoded using transformers. Based on the use of the attention layer of the time graph,
information is aggregated by the importance of neighbors. The last layer of the GNN, using
multilayer perception with the output activation function SoftMax, allows you to get a probabilistic
forecast of the future price movement of each stock.

The conducted experimental studies showed that the use of dynamic graph construction and stock
clustering based on DaiNet not only tracks the temporal nature of the relationships between stocks
but also improves forecasting efficiency. To improve the characteristics of stock analysis and
financial market forecasting, further research is planned on the use of evolving time-inhomogeneous
GNNs.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] G. Lai, W.-C. Chang, Y. Yang, and H. Liu. Modeling long- and short-term temporal patterns with
deep neural networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval (2018), 95–104.

[2] S.-Y. Shih, F.-K. Sun, and H.-Y. Lee. Temporal pattern attention for multivariate time series
forecasting. Machine Learning 108, 8 (2019), 1421–1441.

[3] M. Patel, K. Jariwala, and C. Chattopadhyay. A Systematic Review on GNN-based Methods for
Stock Market Forecasting. ACM Computing Surveys, Vol. 57, Iss. 2, Art. No 34 (2024), 1-38.

https://dl.acm.org/toc/csur/2025/57/2

[4] J. Wang, S. Zhang, Y. Xiao, and R. Song. A Review on Graph Neural Network Methods in
Financial Applications. Journal of Data Science 20 (2), (2022), 111–134.

[5] D. Cheng, F. Yang, S. Xiang, and J. Liu. Financial time series forecasting with multi-modality
graph neural network. Pattern Recognition, Vol. 121, (2022), 108218.

[6] F. Feng, H. Chen, X. He, J. Ding, M. Sun, and T.-S. Chua. Enhancing Stock Movement Prediction
with Adversarial Training. In IJCAI, arXiv:1810.09936. (2019).

[7] D. Cheng, F. Yang, S. Xiang, and J. Liu. Financial time series forecasting with multi-modality
graph neural network. Pattern Recognition 121 (2022), 108218.

[8] X.-Y. Liu, J. Rui, J. Gao, L. Yang, H. Yang, Z. Wang, C. D. Wang, and G. Jian. FinRL-Meta: Data-
Driven Deep Reinforcement Learning in Quantitative Finance. Data-Centric AI Workshop,
NeurIPS (2021).

[9] M. Ballings, D. V. Poel, N. Hespeels, and R. Gryp. Evaluating multiple classifiers for stock price
direction prediction. Expert Syst. Appl. 42 (2015), 7046–7056.

[10] W. Li, R. Bao, K. Harimoto, D. Chen, J. Xu, and Q. Su. Modeling the Stock Relation with Graph
Network for Overnight Stock Movement Prediction. In IJCAI (2020), 4541-4547.

[11] Z. Jin, Y.-C. Yang, and Y. Liu. Stock closing price prediction based on sentiment analysis and
LSTM. Neural Computing and Applications 32 (2019), 9713–9729.

[12] K. Cho, B. V. Merrienboer, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. ArXiv
abs/1406.1078 (2014).

[13] D. Cheng, F. Yang, S. Xiang, and J. Liu. Financial time series forecasting with multi-modality
GNN. Pattern Recognition 121 (2022), 108218.

[14] W. Liu, Y. Zhang, J. Wang, Y. He, J. Caverlee, P. Chan, D.S. Yeung, and P.-A. Heng. Item
Relationship Graph Neural Networks for E-Commerce. IEEE Transactions on Neural Networks
and Learning Systems (2021), 1-15.

[15] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S Yu Philip. A comprehensive survey on GNN.
IEEE transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[16] Y. Chen, Z. Wei, and X. Huang. 2018. Incorporating Corporation Relationship via Graph
Convolutional Neural Networks for Stock Price Prediction. Proceedings of the 27th ACM
International Conference on Information and Knowledge Management (2018), 1655-1658.

[17] R. Sawhney, S. Agarwal, A. Wadhwa, and R. Shah. Deep Attentive Learning for Stock Movement
Prediction from Social Media Text and Company Correlations. In Proceedings of the Conference
on Empirical Methods in NLP (2020), 8415–8426.

[18] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S Yu Philip. A survey on knowledge graphs:
Representation, acquisition, and applications. IEEE Transactions on Neural Networks and
Learning Systems (2021).

[19] Z. Wu, S. Pan, G. Long, J. Jang, and C. Zhang. Graph wavenet for deep spatial-temporal graph
modeling. arXiv preprint arXiv:1906.00121 (2019).

[20] Q. Zhang, J. Chang, G. Meng, S. Xiang, and C. Pan. Spatio-temporal graph structure learning for
traffic forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34
(2020), 1177–1185.

[21] M. Korablyov, O. Fomichov, D. Antonov, S. Dykyi, I. Ivanisenko, and S. Lutskyy. A hybrid stock
analysis model for financial market forecasting. IEEE Proceedings of the International
Conference on Computer Science and Information Technologies (CSIT 2023), (2023), 1-4.

[22] A. Natali, A., E. Isufi, E., M. Coutiño, M., and G. Leus. Learning time-varying graphs from online
data. IEEE Open Journal of Signal Processing 3 (2022), 212–228.

[23] M. Xu, W. Dai, C. Liu, X. Gao, W. Lin, G. J. Qi, and H. Xiong. Spatial-temporal transformer
networks for traffic flow forecasting. ArXiv abs/2001.02908 (2020).

[24] M. Korablyov, O. Fomichov, M. Ushakov, and M Khudolei. Dendritic Artificial Immune Network
Model for Computing. Proceedings of the 7th International Conference on Computational
Linguistics and Intelligent Systems (CoLInS 2023). (2023), 206-217.

https://www.sciencedirect.com/journal/pattern-recognition/vol/121/suppl/C
https://www.sciencedirect.com/journal/pattern-recognition
https://arxiv.org/abs/1810.09936

	1. Introduction
	2. Analysis of existing research
	3. Architecture of the proposed temporal graph neural network
	3.1. Generation and evolution of the relationships graph between the company’s shares
	3.2. Stock price encoding
	3.3. Using the time graph attention mechanism
	3.4. Probabilistic stock price forecasting

	4. Experimental studies
	4.1. Data acquisition and preprocessing
	4.2. Temporal graph construction
	4.3. Clustering using the dendritic artificial immune network
	4.4. Implementation and experimental results

	5. Conclusion
	Declaration on Generative AI
	References

