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Abstract
Unmanned Aerial Vehicles (UAVs) have become very common in modern combat scenarios, making them
extremely dangerous weapons that  must be effectively detected and eliminated.  Traditional  detection
methods—relying on radio frequencies, radars, and other sensors—are often inefficient due to the low radar
visibility and compact size of modern UAVs. This paper introduces a modern UAV detection system with
state-of-the-art computer vision models to process video frames in real time.
To  support  our  approach,  we  developed  a  custom dataset  comprising  approximately  2,000  manually
annotated images, capturing diverse environmental conditions similar to real-world scenarios where this
algorithm can be applied. Additionally, to increase the training dataset size we combined our dataset with
several publicly available ones in order to improve the robustness of our detection models. Then we fine-
tuned several leading object detection algorithms, including model YOLO, Faster R-CNN, Mask R-CNN, and
RT-DETR. We evaluated their performance using mean Average Precision (mAP) metrics and frames per
second (FPS). Our findings show that current AI technologies can achieve high accuracy and, at the same
time,  real-time processing speeds on relatively small  devices,  which means that  they offer  a  reliable
alternative to traditional radar-based detection systems.
We also discuss the trade-offs between UAV detection accuracy and computational efficiency and analyze
strategies  for  deploying  these  models  on small-edge  devices.  Our  results  show that  computer  vision
algorithms are mature enough to provide robust UAV detection solutions, potentially improving military
operations' situational awareness and response capabilities.
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1. Introduction

Recent events in Ukraine have shown that drones are frequently used in military operations. They
play a crucial role in tasks such as intelligence gathering, surveillance, and combat. However, their
small size and high speed also make them challenging targets to spot using traditional methods such
as radar systems, which increases the risk of unauthorized or adversarial use.

The rapid growth of drone usage in recent times has led to serious security concerns—including
illegal spying and even terrorist attacks  [1]. Traditional detection systems often struggle because
drones have low radar visibility [1][2], and factors such as low light or poor weather make traditional
imaging techniques  even more complicated to  use  [3].  Current  studies  investigated alternative
approaches utilizing audio-visual fusion and deep learning-based approaches that analyze acoustic
sounds [4][5]. Although these new methods look promising, each has limitations for accuracy, speed,
and robustness. Our study focuses on two main objectives: first, we aim to find the most optimal
model for UAV detection task based on visual data, which has a good balance between accuracy and
speed, and second, we are developing a robust real-time system capable of accurately identifying
UAVs under real-world conditions. To tackle these challenges, we rely on the advancements in
computer vision and artificial intelligence to build a more precise drone detection solution.
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The object of our research is the process of drone detection using artificial intelligence techniques.
The subject is computer vision algorithms optimized for real-time UAV detection for small-edge
devices. The primary aim of the study is to develop a reliable, high-performance detection system
capable of identifying UAVs effectively in diverse operational environments. To achieve this aim, we
have established the following tasks:

 Develop a comprehensive and representative dataset combining manually annotated data
and publicly available sources.

 Evaluate and compare state-of-the-art object detection algorithms to identify the optimal
model  capable  of  accurately  recognizing  UAVs  in  real  time,  balancing  high  detection
accuracy and computational efficiency for deployment on edge devices.

Motivated by these challenges,  our study aims to identify a state-of-the-art object detection
algorithm that can accurately detect UAVs in real time while remaining efficient enough to run on
small-edge devices with limited computational resources. Combining a manually annotated dataset
with model evaluations using mAP@50 and FPS metrics helps us find an optimal spot between high
detection accuracy and operational efficiency, ultimately contributing to developing more reliable
UAV recognition systems for military and other critical applications.

Although this study provides valuable insights into UAV detection, it has some limitations. First,
while the dataset tries to be as similar to real-world use as possible, it may not include all real-life
situations,  such as harsh weather or all  types of  drones.  Second, despite using different image
augmentation techniques, such as flipping, blurring, and changing color, our evaluations were still
conducted under controlled conditions, which might not fully show the challenges of real-world
environments. 

Finally, the computational performance evaluations were conducted using desktop GPU (RTX
3070 ti specifically), which means that results may vary when deployed on other platforms, especially
with much lower computational resources. This setup was chosen to allow efficient testing and
ensure fair, consistent comparison across all models. Future research should address these limitations
by exploring a broader range of environmental scenarios and testing on portable mini-GPU systems.

The remaining part of this paper is structured as follows. Section 2 reviews the related works,
providing an overview of current approaches in UAV and object detection. Section 3 details our
methods, starting with a discussion of various object detection algorithms, including Faster-RCNN
[14], Mask-RCNN [15], YOLO [16], and RT-DETR [17], followed by a description of our dataset—
combining both publicly available data and a manually labeled dataset that includes details on data
collection, data splitting, and object characteristics, and at the end of this section, we review the
model training pipeline. In Section 4, we present our experimental results through tables of metrics.
Finally, Section 5 concludes the paper by summarizing our findings and discussing potential future
directions. References are provided at the end.

2. Related Works

The detection of Unmanned Aerial Vehicles (UAVs) has gained much attention due to the increasing
use of drones in commercial and security applications. Real-time UAV detection presents challenges
like small object sizes, distinguishing objects on complex backgrounds, and varying environmental
conditions. The last advances in deep learning-based object detection models, such as YOLO and RT-
DETR, have improved UAV detection accuracy. This section reviews previous researches related to
UAV detection while focuses on deep learning-based approaches, and briefly discusses alternative
vision-based methods.

A comprehensive review by Cao et al.  [6] provides an overview of UAV detection methods,
covering various detection paradigms,  hardware architectures,  and optimization strategies.  The
study highlights that deep learning algorithms are preferred due to their superior accuracy and that
GPU-based edge computing platforms are commonly used for real-time detection. It also emphasizes
that beyond detection accuracy, speed, latency, and energy efficiency are critical factors in UAV



detection system performance. This review sets the foundation for evaluating specific deep-learning
models used in UAV detection.

Among deep learning-based approaches, YOLO has been widely used due to its high-speed
processing and accuracy. Barisic et al. [8] developed a YOLO-based UAV detection system, training it
on a dataset of 10,000 images to detect various multirotor UAVs in different environments. Their
model achieves real-time performance of 20 FPS on an edge computing device, making it suitable for
practical deployment. Building on YOLO-based approaches, Zhai et al. [12] introduced YOLO-Drone,
an optimized version of YOLOv8 designed explicitly for tiny UAV detection. Their modifications
include  a  high-resolution  detection  head,  reduced  network  parameters,  and  feature  extraction
enhancements, leading to a precision improvement of 11.9%, recall improvement of 15.2%, and mean
average precision (mAP) improvement of 9% over the baseline. The model also significantly reduces
computational requirements, making it well-suited for real-time UAV detection in resource-limited
environments.

Several  studies  have  compared  deep  learning  models  for  UAV  detection.  Zhao  et  al.  [7]
introduced the DUT Anti-UAV dataset, which consists of manually labeled 10,000 images and 20
tracking videos and used it to train multiple object detection algorithms. Also, their study provides a
comprehensive benchmark for estimating the performance of object detection and tracking models.

Beyond deep learning, some researchers have explored template matching and filtering for UAV
detection. Opromolla et al. [9] proposed a vision-based detection system that uses template matching
and morphological filtering to detect cooperative UAVs. While this approach is computationally
efficient,  it  lacks  the  adaptability  and  robustness  of  deep  learning-based  models,  especially  in
dynamic environments. For UAV-to-UAV detection applications, Li et al. [10] introduced a "see-and-
avoid"  system,  which  combines  motion-based  target  detection  and  tracking  to  prevent  UAV
collisions.  Mejias et  al.  [11] developed a vision-based system designed to prevent collisions by
identifying aerial targets within a range of 400m to 900m. Although these studies primarily explore
UAV tracking and navigation instead of broad object detection, they offer valuable knowledge on
real-time data processing and movement prediction methods.

One  of  the  challenges  in  UAV  detection  is  low  visibility  conditions,  such  as  night-time
surveillance. Andraši et al.  [3] investigated thermal infrared-based UAV detection, showing that
infrared cameras can detect slight heat variations emitted by UAVs. However, electrically powered
drones generate minimal heat,  making thermal-based detection less effective compared to deep
learning-based RGB image analysis.

Recent advances in state-of-the-art  (SOTA) object  detection models,  such as  RT-DETR and
YOLOv10,  have  significantly  improved  UAV  detection  capabilities.  These  models  leverage
transformer-based architectures and optimized CNN layers, achieving real-time performance with
high detection accuracy.

Overall, while deep learning-based approaches, particularly YOLO variants, demonstrate strong
performance  in  real-time  UAV  detection,  further  research  is  needed  to  optimize  models  for
deployment  on  edge  computing  devices  with  limited  computational  power,  improve  detection
accuracy  in  challenging  environments  such  as  night-time  surveillance  or  urban  settings  with
complex backgrounds, and evaluate newer SOTA models like RT-DETR to compare their efficiency
with existing deep learning-based UAV detection methods. This study aims to address these research
gaps by comparing the performance of YOLOv10, RT-DETR, and other deep learning-based models to
determine the most effective approach for real-time UAV detection.

3. Methodology

3.1. Dataset

In order to conduct benchmarks of object detection models, we were using publicly available dataset
along with manually labeled one.



3.1.1. Publicly available data

For publicly available data, we were looking for datasets that would include diverse kinds of UAVs
from various backgrounds and lightning. An additional requirement was for the UAV, which should
have been captured from the ground,  and the camera should be directed toward the sky.  We
considered the following datasets:

DUT-Anti-UAV [7]. This a visible light mode dataset called Dalian University of Technology
Anti-UAV dataset (DUT Anti-UAV). It is a detection dataset with 10,000 of manually annotated
images,  in  which  the  training,  testing,  and  validation  sets  have  5200,  2200  and  2600  images,
respectively.

Drone-vs-Bird Detection Dataset [13]. Developed for the Drone-vs-Bird Detection Challenge
(ICASSP 2023), this dataset consists of 77 training video sequences and 30 test sequences recorded in
varied environments such as urban, maritime, and woodland areas. It includes eight drone types (e.g.,
DJI Inspire, Phantom, Mavic) captured with static and moving cameras under different weather and
lighting  conditions.  The  dataset  presents  challenges  like  small  drone  sizes,  motion  blur,  and
environmental disturbances, with birds frequently appearing as non-annotated objects.

3.1.2. Manually labeled dataset

In addition to the prepared data, we created a dataset that contains manually annotated video frames.
We assume this data will be more similar to the data that the model will get during inference.

Figure 1: Examples of the annotated object detection images in our dataset.

Data Collection. For data collection, was used video footage as the primary source. The video
files were split into individual frames by extracting one frame approximately every 5 seconds. These
frames were then saved as separate image files for further processing, ensuring a dataset that closely
resembles real-world inference conditions. When preparing the dataset, recommendations from this
article were followed [20]. All extracted frames were then annotated precisely.

Data Splitting. The manually annotated dataset, comprising 2000 images in total, was divided
into training and testing sets using an 80%-20% split, resulting in 1600 training images and 400 testing
images.



Objects Characteristics. As shown on the Figure 1, the dataset includes UAVs recorded in
diverse outdoor settings from ground-to-sky perspectives such as skies with clouds and playgrounds
under various lighting and weather conditions. Most UAVs appear as small target objects with area
ratios averaging around 0.013 and aspect ratios mostly between 1.0 and 3.0, although some vary
significantly. Object positions are mainly centered but exhibit varied motion, ensuring that the
dataset presents challenging scenarios for robust object detection.

3.2. Models

For a comprehensive comparison of different approaches, we selected object detection algorithms
that  can  be  divided  into  three  categories:  single-stage  detectors,  two-stage  detectors,  and
transformer-based detectors. From each group, we chose widely used models that offer relatively
high performance and can be deployed in real-time detection scenarios.

Faster-RCNN.  This  is  a  widely  used  two-stage  object  detection  framework  that  efficiently
generates region proposals using an integrated Region Proposal Network (RPN). As an improved
version of Fast R-CNN [19], it shares full-image convolutional features between the RPN and the
detection network,  enabling nearly  cost-free  proposals  and end-to-end training that  effectively
directs the network's attention to promising regions. This unified approach accelerates the detection
process and has been successfully applied to datasets such as MS COCO [18].

Mask-RCNN. It is a flexible framework for object instance segmentation that detects objects and
generates high-quality segmentation masks simultaneously. It extends Faster R-CNN by adding a
branch for mask prediction alongside bounding box recognition, with minimal overhead. This unified
approach is easy to train and generalizes to tasks like human pose estimation, making it a robust
baseline for instance-level recognition.

YOLOv10. It is a one-stage detector that predicts bounding boxes and object classes from a single
pass of the input data through the model. This method is known for its high speed and relatively high
performance, making it one of the most suitable algorithms for real-time object detection, although it
may not be precise enough for detecting small objects or objects close to the camera. In this study, we
consider YOLOv10,  which reduces reliance on non-maximum suppression (NMS) and improves
accuracy with a novel training approach, as they represent distinct yet highly effective models within
the YOLO family.

RT-DETR. This model is a state-of-the-art real-time end-to-end object detection framework that
addresses  the  limitations  of  NMS-based  methods  and  high  computational  cost  in  Transformer
detectors. It employs an efficient hybrid encoder that decouples intra-scale interactions from cross-
scale fusion to rapidly process multi-scale features, along with uncertainty-minimal query selection
to provide high-quality decoder inputs. RT-DETR also offers flexible speed tuning by adjusting the
number of decoder layers without retraining, achieving competitive performance (e.g., 53.1% AP on
COCO at 108 FPS with RT-DETR-R50).

3.3. Training/Evaluation pipeline overview

Figure 2: Training and Evaluation Pipeline.



The Figure 2 shows the end-to-end workflow used for training and evaluating of the models in our
experiments. The workflow consists of three main phases:

1. Data Preparation. The process begins with raw drone videos, which are converted into
training data through several steps:

o Extracting Frames from Videos: Frames are extracted with fixed intervals (every 5
seconds).

o Labeling  Training  Data:  The  extracted  frames  are  manually  annotated  with
bounding boxes around UAVs. For annotation “Label Studio” tool was used.

o Preparing Dataset in COCO Format: The labeled data is structured into the COCO
format which is one of the most common formats.

2. Training Phase. The resulting dataset is then used to train object detection models. This
step also produces trained weights which are used for evaluations and inference.

3. Evaluation Phase. The trained models are used in the evaluation step using performance
metrics such as mAP and FPS.

4. Experiments

Table 1
Result comparison of object detection models.

Model mAP@50 FPS GFLOPs Params (M)

Faster R-CNN 0.948 15.85 141.1 48.51

Mask R-CNN 0.927 13.29 141.1 51.16

YOLOv10-n 0.907 56.12 4.20 2.71

YOLOv10-s 0.918 51.82 12.3 8.07

YOLOv10-m 0.939 47.02 31.9 16.49

YOLOv10-l 0.964 40.77 63.6 25.77

YOLOv10-x 0.953 38.92 85.5 31.66

RT-DETR 0.971 17.47 54.0 32.81

To evaluate the performance of  the selected object  detection models,  we used a set  of  widely
recognized metrics in the field of object detection:

 Accuracy: mean Average Precision (mAP): We used mean Average Precision (mAP) at
IoU thresholds of 0.50 (mAP@50). IoU measures bounding box overlap. Average Precision
(AP) is the area under the Precision-Recall curve. mAP is the average AP across all classes,
but in our example, we evaluate only one class that is UAV.

 Speed:  Frames Per  Second (FPS): Speed  was  measured in  Frames  Per  Second (FPS),
indicating images processed per second.  FPS was calculated by running models on test
images, measuring processing time, and averaging. FPS is hardware-dependent, so consistent
hardware was used, which is Nvidia RTX 3070 ti GPU.

For the two-stage detectors, Faster R-CNN and Mask R-CNN, we followed a similar training
regime. Both models were trained for three epochs using a complete fine-tuning approach, meaning
all  layers of the pre-trained networks were updated during training. To manage computational
resources and ensure stable gradient updates, we used a batch size of 4 for both Faster R-CNN and



Mask  R-CNN.  This  consistent  training  procedure  allowed  for  a  direct  comparison  of  their
performance under similar conditions.

In contrast, the YOLO family of models (YOLOv10-n, s, m, l, x) was trained with a different
strategy focused on leveraging pre-trained weights  while  adapting to  our  specific  dataset.  We
observed that freezing the majority of layers, specifically approximately 80% of the layers, except for
the  final  detection  layers,  yielded  the  best  performance  for  these  models  in  our  experiments.
Consequently, all YOLO variants were trained, with 80% of their layers frozen, and only the last
layers were fine-tuned.

Finally, for RT-DETR, the transformer-based detector, we applied full fine-tuning for 10 epochs,
using a batch size of 2 due to the high GPU memory requirements of the transformer architecture.

For a more complete model comparison, we also included metrics such as GFLOPs, which indicate
the computational complexity of each model, and the number of parameters (in millions), which
reflects model size and can impact inference time and memory usage.

Figure 3: Examples of the annotated object detection images in our dataset.

Figure 3 shows the Precision-Recall  (PR) curves for the validation set,  using an IoU with a
threshold of 0.5 for bounding box matching. In the figure, each curve plots precision (vertical axis)
against recall (horizontal axis) at varying confidence thresholds, with the area under each curve
corresponding to the mean Average Precision (mAP). Here, RT-DETR achieves the highest overall
curve, aligning with its top mAP of 0.971, followed by YOLOv10l (0.964 mAP), which demonstrates
the  second-best  profile.  The other  YOLO variants  (x,  m,  s,  n)  maintain  strong precision-recall
performance but fall slightly behind the top two. Meanwhile, the two-stage detectors (Faster R-CNN
and Mask R-CNN) also show relatively high precision until recall approaches its upper limit, though
they rank below the best YOLO and RT-DETR results.



Figure 4: Examples of model predictions on test samples.

For error analysis, the YOLOv10l algorithm was selected as it has good balance between accuracy
(mAP 0.964) and inference speed (40.8 FPS), making it one of the best options for deployment on
resource-constrained devices such as microcomputers.

Figure 5: Confusion Matrix for the Validation Dataset.

The confusion matrix for YOLOv10l shows that the algorithm correctly identified drones in 83.6%
of cases. Also, it shows two types of errors:



 False Negative (13.9%) — cases where the drone was present but not detected. These errors
typically arise due to small object sizes, poor visibility conditions (e.g., fog, low lighting), or
occlusion by other objects (trees, buildings). To reduce FN errors, it is recommended to
increase the dataset size with challenging examples and apply additional augmentation
techniques.

 False Positive (2.5%) — incorrect detection of drones in images without them. These errors
are mainly caused by complex backgrounds and objects resembling drones in shape or size
(e.g., birds, antennas, wires). Reducing FP errors can be achieved by adding more negative
examples and employing "hard-negative mining".

5. Conclusions

In this study, we aimed to compare top-performing object detection methods for UAV identification
and to assess both their accuracy and computational requirements. Our experiments indicated that
RT-DETR and YOLOv10l achieved the highest precision on the test dataset (mAP@50 of 0.971 and
0.964, respectively). Nevertheless, smaller YOLO variants proved notably faster in inference while
retaining competitive accuracy, suggesting that YOLO-based models strike a good balance for real-
time  applications  on  low-power  hardware.  Interestingly,  the  YOLOv10l  configuration
underperformed the YOLOv10x one, possibly due to complexities in training or hyperparameter
tuning.

We created our own small-target, ground-to-sky dataset that closely matches real-world scenes
and  used  it  to  run  the  first  side-by-side  test  of  several  modern  detectors,  including  the  new
transformer-based RT-DETR. The results show which model offers the best mix of accuracy and
speed,  giving  clear  guidance  on  which  detector  to  choose  for  real-time  UAV  monitoring  on
low-power devices.

These findings lay the groundwork for deploying object detection algorithms in drone-related
software,  particularly  for  autonomous  systems  running  on  resource-constrained  edge  devices.
However, not all of the tested models are able for real-time usage on such devices: RT-DETR, despite
its outstanding accuracy, demands substantial computational resources, whereas YOLO's lightweight
versions maintain practical throughput and can be readily adopted in edge computing environment.

Future work could involve combining the selected detection approach with tracking modules or
incorporating additional modalities (e.g., thermal imaging, acoustic signals) to increase robustness in
challenging scenarios such as night operations or heavy background clutter. Moreover, expanding
the dataset with more diverse and numerous drone samples would further improve generalization.

Overall,  the  results  show  the  potential  of  use  either  high-accuracy  or  lightweight  CNN
architectures—depending  on  the  hardware  constraints  and  real-time  requirements—to  achieve
reliable drone detection. The insights and dataset from this study can help future research on UAV
recognition, leading to better and more advanced drone detection and security systems. 

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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