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Abstract
The article considers intelligent methods of different generations for solving the problem of short- and
medium-term  forecasting  of  stock  indices.  The  effectiveness  of  a  fully  connected  network
(BackPropagation),  Group  Method  of  Data  Handling  (GMDH),  and  Hybrid  System of  Computational
Intelligence based on bagging and Group Method of Data Handling (HSCI-bagging) is considered. The
influence of experimental parameters on the MSE and MAPE forecasting quality criteria is investigated. The
obtained results are analyzed and the optimal parameters for different forecasting intervals are determined.
On the basis of the optimal parameters found, the expediency of using the hybrid HSCI-bagging system in
the forecasting task at different intervals is substantiated.
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1. Introduction

The progress of intelligent methods has evolved in several stages and has defined a generation of
artificial neural networks. The emergence of each new generation of artificial neural networks is
facilitated by new challenges, such as the complexity of the tasks they are supposed to solve. The first
generation  of  artificial  neural  networks  includes  the  perceptron,  developed  in  1957  by  Frank
Rosenblatt. It is an early development of artificial intelligence and is considered the simplest type of
artificial neural network. A significant limitation of this generation of neural networks is that they
can only solve linearly separable problems. The second generation made it possible to solve the XOR
task. The main difference between this generation of networks is their multilayer architecture, and
the most famous example is the BackPropagation neural network proposed by Rumelhart, Hinton,
and Williams in 1986 [1]. The next generation is characterized by an architecture with a large number
of layers (Deep Neural Networks)  [2]. It was the third generation that allowed for a significant
breakthrough in many areas of artificial intelligence. It is worth noting that its emergence was also
facilitated by the improvement of hardware and the development of data storage and processing
technologies.  This  is  very  important,  as  this  generation  of  networks  requires  significant
computational costs and large samples of training data. The emergence of the fourth generation was
facilitated by the complexity of artificial intelligence tasks. A feature of this generation of networks is
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the ability to perform several different tasks using a single architecture. For this purpose, new
architectures and methods have been created: large language models (LLMs), generative models,
hybrid approaches to model building, etc.

Thus, the latest generation emphasizes the possibility of multitasking and versatility but also
requires optimization of the complexity of the models, since the accuracy of the results depends on
the computational costs.

2. Overview of problems in the application of deep learning neural 
networks

Deep learning neural networks play an important role in modern approaches to solving problems of
prediction,  classification,  image processing,  and natural  language text  analysis.  Their  universal
approximation  properties  make  them  indispensable  in  many  fields.  However,  the  practical
application of such powerful tools requires large amounts of training data, long time for model
training, and significant computational costs. These are the key problems that can hinder the use of
this type of neural network to solve complex problems and, consequently, obtain high accuracy
results.

It is especially difficult to use deep neural networks when it is necessary to process non-stationary
data streams transmitted in real time. In this case, radial basis function networks, Wang-Mendel,
Takagi-Sugeno, or probabilistic neural networks can be an alternative. However, compared to deep
neural networks, they have two significant drawbacks: lower accuracy of results and empirical
selection of system parameters.

The above difficulties can be overcome by using an ensemble approach [3-8] to combine the work
of models of different levels of complexity – from the first to the fourth generation. Ensembles allow
the simultaneous use of different systems to solve a single problem in parallel in order to combine the
output results. The use of the Bagging procedure [9] minimizes the error on the training set, even
when the data is received online. The problem still remains the complexity of the system architecture,
and thus the need for significant computational costs.

To simplify the ensemble model, we can apply Group Method of Data Handling (GMDH) [10, 11]
to decompose the system and determine its optimal architecture. This method, called the “first deep
learning method” by J. Schmidhuber [12], was used in the 1970s to create multilevel networks.  It is
worth noting that the advantage of using GMDH is not only to simplify the complexity of the system,
but also to increase the accuracy of its results [13-17].

Therefore,  we  consider  it  expedient  to  investigate  the  proposed  [18] Hybrid  System  of
Computational Intelligence based on bagging and Group Method of Data Handling (HSCI-bagging).
The aim of the investigation is to determine the optimal parameters of the hybrid system and the
corresponding efficiency in the task of short- and middle-term stock index forecasting.

3. Overview of HSCI architecture based on Bagging and GMDH

In Fig. 1 the architecture of the proposed system is presented.

Figure 1: Architecture of HSCI based on bagging and GMDH



The architecture of the system contains 2S sequentially connected stacks, while odd stacks are
formed by ensembles of parallel-connected subsystems that solve the same problem (recognition,
prediction, etc.) and even ones are essentially learning metamodels that generalize the output signals
of ensembles and form optimal results in the sense of the accepted criterion. The output signal of the
first  metamodel  is  the  generalized  optimal  signal  y¿1(k ) and  (n−1) output  signals

ŷ i μ
[1 ] (k ) , i=1,2. .. , n−1 (k ) "best members of the ensemble". At their core, metamodels function as

selection units in traditional GMDH systems, but not only select the best results from the previous
stack, but also form the optimal solution based on these results.

Further, the output signals of the first metamodel are fed to the inputs of the second ensemble,
which  is  completely  similar  to  the  first.  The  outputs  of  the  second  ensemble

ŷ1
[2 ] (k ) , ŷ2

[2 ] (k ) , ... , ŷq
[2 ] (k ) come  to  the  second  metamodel,  which  calculates  the  optimal  signal

y¿ [2 ](k ) and (n−1) ŷ i μ
[2 ] (k ) "closest" to it. The last S-th ensemble is similar to the first two, and the

output of the last S-th metamodel is  y¿ [ s ](k ), which exactly corresponds to a priori established
requirements for the quality of solving the problem under consideration.

Each of the ensembles contains q different computational intelligence systems that solve the same
problem. There may still be simple neural networks such as a single-layer perceptron, radial-basis
neural  network  (RBFN),  counterpropagating  neural  network,  etc.,  which  do  not  use  error
backpropagation procedure for  training,  neuro-fuzzy systems such as  ANFIS,  Wang-Mendel  or
Takagi-Sugeno-Kang type, wavelet-neuro systems, neo-fuzzy neurons and others, the output signal
of which linearly depends on the adapted parameters, which allows to use optimal speed learning
algorithms.

4. HSCI-bagging learning algorithm

The input information, on the basis of which the system is configured, is a training selection of input
signals:

x (1) , x (2) ,…, x (k ) ,…, x (N ) ;
x (k )=(x1 (k ) ,…, xi (k ) ,…, xn (k ))T∈ Rn

(1)

and  its  corresponding  scalar  refence  signals  y (1) , ... , y (k ) , ... , y (N ).  On  the  basis  of  these
observations, the elements of the first ensemble are tuned independently of each other, at the outputs

of which q scalar signals ŷ p
[2 ] (k ) , p=1,2 , ... , q, are formed, which are conveniently represented in

the form of a vector ŷ [1 ] (k )=( ŷ1
[1 ] (k ) ,… , ŷ p

[1 ] (k ) ,… , ŷq
[1 ] (k ))T . These signals are sent to the inputs of

the first metamodel, at the outputs of which n sequences ŷ¿ [1 ] (k ) , ŷ1μ
[1 ] (k ) ,… , ŷ iμ

[1 ] (k ) ,… , ŷn−1 , μ
[1 ] (k )

the main of which is y¿ [1 ] (k ) while others are auxiliary. The main signal of the metamodel y¿ [1 ] (k ) is
the union of the outputs of all members of the ensemble in the form of:

y¿ [1 ] (k )=∑
p=1

q

w p
¿ [1 ] ŷ p

[1 ] (k )= ŷ [1 ]T (k )w¿ [1 ] (2)

where w¿ [1 ]=(w¿ [1 ] , ... ,w p
¿ [1 ] ...wq

¿ [1 ])T  – is a vector of adapted parameters-synaptic weights on which

additionally restrictions are set on unbiasedness:

∑
p=1

q

w p
¿ [1 ]¿ I q

Tw¿ [1 ]=1 , (3)

where I q – (q×1) – is the vector of unities.



The problem of teaching the first metamodel is reduced to minimizing the standard quadratic
criterion in the presence of additional constraints (3).

Thus, the problem of training the first metamodel can be solved using the standard method of
penalty functions, which in this case reduces to minimizing the expression:

J (w¿ [1 ] , δ )=(Y (N )−Y [1 ](N )w¿ [1 ])T (Y (N )−Y [1 ](N )w¿ [1 ])+δ−2( I q
Tw¿ [1 ]−1) (4)

where  Y (N )=( y (1) ,… , y (k ) ,… , y (N ))T−(N ×1) is  a  vector,

Y 1(N )=( ŷ [1 ](1) ,… , ŷ [1 ](k ) ,… , ŷ [1 ](N ))T−(N ×q ) is a matrix, δ  is the penalty coefficient.

Minimization (4) by w¿ [1 ] leads to the result:

w¿ [1 ]=lim ¿δ→0w1 (δ )=wLS [1 ]+P[1 ] (N )
1−I q

TwLS [1 ]

I q
T P[1 ] (N ) I q

I q , (5)

where wLS [1 ] is a standard LSM estimate:

wLS [1 ]=(Y [1 ]T (N )Y [1 ] (N ))+¿Y [1 ]T (N )Y (N )=P [1 ](N )Y [1 ]T (N )Y (N ) .¿ (6)

It was proved [4, 5] that the use of score (5) leads to results that are not inferior in accuracy to the
best of the members of the first ensemble.

If observations from the training sample are processed sequentially online, it is advisable to use
the least squares recurrent method in the form:

{ P[1 ] (k+1)=P[1 ] (k )− P[1 ] (k ) ŷ [1 ] (k+1) ŷ [1 ]T (k+1)P[1 ] (k )
1+ ŷ [1 ]T (k+1)P[1 ] (k ) ŷ [1 ] (k+1)

,

wLS [1 ] (k+1)=wLS [1 ] (k )+P[1 ](k+1)( y (k+1)− ŷ [1 ]T (k+1)wLS [1 ](k ) ŷ [1 ](k+1) ,
w [1 ] (k+1)=wLS [1 ] (k+1)+P[1 ](k+1)( I q

T P[1 ](k+1) I q )
−1×(1−I q

TwLS [1 ] (k+1) I q ,
w p

¿ (0 )=q−1 p=1 ,2 , ... , q .

(7)

or if a training sample is non-stationary we may use exponentially weighted recurrent LSM method:

{ P[1 ] (k+1)= 1
α

(P
[1 ]

(k )− P[1 ] (k ) ŷ [1 ] (k+1) ŷ [1 ]T (k+1)P[1 ] (k )
α+ ŷT (k+1)P[1 ] (k ) ŷ [1 ] (k+1)

) ,

wLS [1 ] (k+1)=wLS [1 ] (k )+
P[1 ](k )( y (k+1)− ŷ [1 ]T (k+1)wLS [1 ](k )

α+ ŷ [ ' ]T (k+1)P[ ' ](k ) ŷ [ ' ](k+1)
ŷ [1 ](k+1) ,

¿w¿ [1 ] (k+1)=wLS [1 ] (k+1)+P[1 ](k+1)( I q
T P[1 ](k+1) I q )

−1×(1−I q
TwLS [1 ](k+1) I q ,

w p
¿ (0 )=q−1 p=1 ,2 , ... , q .

(8)

where 0<α ≤1 – forgetting factor.
To the parameters of the metamodel can be given meaning the levels of fuzzy membership to the

optimal output signal by introducing additional restrictions on the non-negative values of these
parameters, that is, in addition to the configurable parameters w¿ [1 ] we can also calculate the levels of

this membership μ p
[1 ]≥0 , p=1,2 , ... , q.

To do this, we introduce into consideration the extended Lagrange function:

L( μ[1 ] , , ρ )=(Y (N )−Y [1 ](N )μ[1 ])T (Y (N )−Y [1 ](N )μ[1 ])+( I q
T μ[1 ]−1)−ρT μ[1 ] , (9)



where ρ−(q×1) – is vector of non-negative indefinite Lagrange multipliers.
Using the equations system by Kuhn-Tucker:

{V μ[1 ] L( μ[1 ] , , ρ )=0⃗ ,

∂ L( μ[1 ] , , ρ )/∂=0 ,
(10)

It’s not difficult to get the solution in the form:

{ μ[1 ]=p[1 ](N )( ŷT (N )Y (N )−0 ,5 I q+0 ,5 ρ ) ,

¿
I q
T p[1 ](N ) ŷT (N )Y (N )−1+0 ,5 I q

T p[1 ](N ) ρ

0 ,5 I q
T p[1 ](N ) I q

.
(11)

For  finding  vector  of  non-negative  Lagrange  multipliers,  it’s  reasonable  to  apply
Arrow-Hurwitz-Uzawa procedure:

(12)

where Pr+¿( .)¿ is a projector to positive ortant, ❑ρ(k ) – learning rate, parameter.
First expression (12) after non-complex transformations may be presented in a more compact

form:

μ[1 ](k+1)=w¿ [1 ](k+1)−P[1 ](k+1)
0 ,5 I q

T P[1 ](k+1) ρ(k )

I q
T P[ ' ](k+1) I q

+0 ,5P[1 ](k+1) ρ(k )=¿

¿w¿ [1 ](k+1)+0 ,5(I q q−P[1 ](k+1) I q I q
T

I q
T P[1 ](k+1) I q)×P[1 ] (k+1) ρ (k ) ,

(13)

where  instead  of  least  squares  estimates  wLS [1 ](k+1),  the  parameters  of  the  metamodel

w¿ [1 ](k+1) are used, which simplifies the process of configuring it.

As a result of learning the first metamodel, the optimal signal y¿ [1 ] (k ) is formed at its output, as

well as  q signals  ŷ p , μ
[1 ] (k ) from which we choose  n−1( if q≥n ) with the highest levels of fuzzy

membership μ p
[1 ], which subsequently in the form of (n×1) – vector are fed to the input of the second

ensemble, the outputs of which go to the inputs of the second metamodel, and so on. The process of
increasing the number of ensembles and metamodels continues until the required accuracy of the last
metamodel with the output  y¿ [ s ] (k ) is achieved, or the value of the criterion minimized for the

bagging model begins to increase, i.e. ε2 ( y¿ [ s+1 ] (k ))≥ ε2 ( y¿ [ s ] (k )).

5. Experimental investigations

The dependence of the prediction accuracy of the hybrid HSCI-bagging system on the parameters in
the prediction task was investigated. The obtained forecasting results were compared with the results
of BackPropagation and GMDH by MSE and MAPE criteria.

For the experiments, the dataset was divided into training, validation, and test subsamples. The
test subsample was used to evaluate the accuracy of the forecast and was always constant - the last 50
points of the dataset. The ratio of training and test data sets varied across the experiments and had the



following values (in percentage): 60/40, 70/30, 80/20. The forecasting intervals also changed: short-
term (3, 5, 7 days) and middle-term (10, 20, 30 days).

The historical data of the Close indicator of the DAX P index (^GDAXI) [19] for the period
24.03.2024-20.03.2025 were used as data set. The dynamics of changes of the Close indicator is shown
in Fig. 2.

Figure 2: Dynamics of the Close indicator of the DAX P stock index

The  correlation  coefficients  for  the  values  of  the  Close  indicator  were  also  calculated,  and
correlogram was built (Fig. 2).

Figure 3: Correlogram of the Close indicator of the DAX P stock index

Analysing the correlogram, the data is highly correlated, with a correlation coefficient of at least
0.8 for the 50th lag.

The first series of experiments was conducted on short-term intervals for the BackPropagation,
GMDH, and HSCI-bagging models. For each of the models, the ratio train/test was changed at each
interval, and the optimal parameters (number of inputs, number of layers and number of neurons on
each layer) for the BackPropagation network were determined. The metrics of the best results are
shown in Tables 1-3.

Table 1
Values of forecast quality metrics with 3-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 979294.79 895189.3 306563.12

MAPE 3.82 3.14 1.89



Table 2
Values of forecast quality metrics with 5-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 2087809.67 1800193.41 1565304.41

MAPE 5.11 5.02 4.67

Table 3
Values of forecast quality metrics with 7-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 2513701.86 3349316.64 1976780.36

MAPE 5.91 6.38 5.51

Charts of short-term forecasts for HSCI-bagging models are shown in Fig. 4-6.

Figure 4: Comparative chart of real values and forecast of HSCI-bagging with an interval of 3 days



Figure 5: Comparative chart of real values and forecast of HSCI-bagging with an interval of 5 days

Figure 6: Comparative chart of real values and forecast of HSCI-bagging with an interval of 7 days

For the analysis of the forecasting and model evaluation results, comparative bar charts of MSE
(Fig. 7) and MAPE (Fig. 8) were built.

Figure 7: Comparative bar charts of MSE values of all models for short-term forecasting



Figure 8: Comparative bar charts of MAPE values of all models for short-term forecasting

The next series of experiments was conducted at middle-term intervals. The quality criteria for
the obtained forecasts are shown in Tables 4-6 and charts of middle-term forecasts for HSCI-bagging
models are shown in Fig. 9-11.

Table 4
Values of forecast quality metrics with 10-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 4443943.98 4244875.38 2943590.87

MAPE 7.38 7.22 7.04

Figure 9: Comparative chart of real values and forecast of HSCI-bagging with an interval of 10 days

Table 5
Values of forecast quality metrics with 20-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 4631698.32 3853634.31 3821746.29



MAPE 9.35 8.6 8.22

Figure 10: Comparative chart of real values and forecast of HSCI-bagging with an interval of 20 days

Table 6
Values of forecast quality metrics with 30-day interval

Metrics BackPropagation GMDH HSCI-bagging

MSE 9164351.68 7973722.81 7291331.07

MAPE 11.64 11.14 11.02

Figure 11: Comparative chart of real values and forecast of HSCI-bagging with an interval of 30 days

For the analysis of the forecasting results and model evaluation, comparative bar charts were
constructed for two key error metrics: MSE and MAPE. The bar chart representing MSE is shown in
Fig. 12, and the bar chart illustrating MAPE is shown in Fig. 13. Presenting the comparison of metrics
in this way clearly demonstrates how different the predictions of different models are.



Figure 12: Comparative bar charts of MSE values of all models for middle-term forecasting

Figure 13: Comparative bar charts of MAPE values of all models for middle-term forecasting

At the final stage of the experiments, Table 7 was built to analyze the HSCI-bagging models.

Table 7
Summary table of experimental results for HSCI-bagging

Interval Ratio train/test (%) MSE MSPE

3 60/40 306563.12 1.89

5 60/40 1565304.41 4.67

7 60/40 1976780.36 5.51

10 60/40 2943590.87 7.04



20 70/30 3821746.29 8.22

30 70/30 7291331.07 11.02

To visually represent the dependence of the MSE and MAPE criteria values on the forecasting
interval, the respective charts were constructed (Fig. 14 and Fig. 15).

Figure 14: Chart of dependence of MSE values on the forecasting interval for HSCI-bagging

Figure 15: Chart of dependence of MAPE values on the forecasting interval for HSCI-bagging

Based on the analysis of the experimental results, it can be said that the hybrid HSCI-bagging
system is quite effective compared to BackPropagation and GMDH. Table 7 shows that the network
requires a larger amount of training data to improve the forecast accuracy at middle-term intervals.
Looking  at  Figs.  14  and  15,  it  can  be  said  that  the  forecast  accuracy  decreases  rapidly  when



forecasting for an interval of 20 days or more. It is also worth noting that as the forecasting interval
increases, the accuracy of the MAPE criterion decreases more slowly than the MSE criterion.

6. Conclusion

This article investigates the problem of short- and medium-term forecasting of stock indices, in
particular the Close indicator of the DAX P index, using intelligent methods of different generations.
A comparative experimental study of three models - BackPropagation, GMDH and HSCI-bagging -
has led to a number of important conclusions:

 The  hybrid  computational  intelligence  system  HSCI-bagging  demonstrated  the  best
forecasting results for all criteria (MSE, MAPE) at different intervals, which indicates its high
generalization ability and resistance to changes in data.

 The BackPropagation neural network showed the worst results, which may be due to high
sensitivity to training parameters, lack of data, or local minima in the optimization process.

 The dependence of the forecasting quality on the size of the training sample was established:
as the forecast horizon increases, the need for more historical data increases to ensure stable
accuracy.

 Hybrid  approaches  based  on  bagging  demonstrate  high  adaptability  and  potential  for
integration with other intelligent methods, including ensemble structures.

Based on the results, the following recommendations for further development can be made:

 Integration  of  time  series  processing  methods  (e.g.,  wavelet  transform,  EDA,  STL
decomposition) with hybrid intelligent systems to improve data preprocessing and highlight
hidden patterns.

 Use of deep ensemble models based on LSTM, GRU, or Transformer architectures, which can
be combined with GMDH or other evolutionary approaches within meta-models.

 Adaptive real-time optimization of HSCI system parameters using reinforcement learning or
evolutionary strategies.

 Development of multimodal models that combine numerical, textual, and graphical data (e.g.,
news, tweets, corporate reports) to build more contextually aware forecasts.

 Incorporating risk-oriented metrics such as Value-at-Risk (VaR) or Conditional Value-at-Risk
(CVaR) into the process of evaluating forecasting performance to increase the practical value
of decisions in financial applications.

Thus, the further development of the forecasting financial indices lies in the development of
adaptive, hybrid and multilevel models that combine high forecasting accuracy with scalability and
practical applicability to real market conditions.
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