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Abstract
The volatility of agricultural commodity prices presents major challenges for farmers, traders, and policymakers
in developing economies in the context of climate change. This paper describes a comprehensive approach
to corn price forecasting in Benin using Long Short-Term Memory (LSTM) neural networks enhanced with
climatic variables. The impact of integrating meteorological data (temperature and precipitation), with historical
price to improve prediction accuracy, was evaluated. The proposed methodology involves data preprocessing,
feature engineering, and model comparison across multiple machine learning approaches including Linear
Regression, Decision Trees, Random Forest, XGBoost, and LSTM. The results demonstrate that LSTM models
incorporating climate data achieve superior performance with RMSE of 0.1749, MAE of 0.1561, and MAPE of
0.1055, significantly outperforming traditional methods. The web-based application provides real-time predictions
and data visualization capabilities for agricultural stakeholders. This research contributes to enhancing food
security and market stability in Africa through advanced predictive analytics.
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1. Introduction

Prices of agricultural commodities, especially staple crops such as corn, are highly volatile, with direct
consequences for food security, farmer incomes, and economic stability in developing countries. In
Benin, corn represents approximately 10% of the primary sector’s added value, with 80% of agricultural
producers engaged in its cultivation according to the National Agricultural Census [1]. This strate-
gic importance makes accurate price forecasting crucial for effective agricultural planning and risk
management in the context of climate change.

Current price dissemination systems in Benin, such as the harmonized Agricultural Market Infor-
mation System (SIM-A), rely on manual data collection and validation processes. These systems are
constrained by serious limitations including data validation delays, human errors and potential bias in
missing data approximations. Agricultural agents collect market prices across the country, followed
by a process of validation supervised by controllers. However, when data are biased or missing, con-
trollers must resort to approximations using historical prices or neighboring market data, introducing
systematic errors [2].
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Recent advances in machine learning, particularly deep learning architectures like "Long Short-Term
Memory (LSTM)" networks, offer promising solutions for complex time-series forecasting tasks [3].
These models excel at capturing long-term dependencies and non-linear patterns in sequential data,
making them well-suited for agricultural price prediction where multiple factors interact over time [4].

This research addresses the critical need for accurate corn price forecasting in Benin by developing
an LSTM-based prediction system that integrates historical price data with climatic variables. The
contributions of this paper include: (1) a comprehensive evaluation of machine learning approaches for
agricultural price forecasting, (2) demonstration of the significant impact of climate data integration
on prediction accuracy, and (3) development of a user-friendly web application for real-time price
predictions.

2. Related Work

Agricultural price forecasting has evolved from traditional statistical methods to sophisticated machine
learning approaches. Traditional time-series models like ARIMA have been widely applied to agricultural
commodities [5], showing reasonable performance for stationary data but struggling with non-linear
patterns and multiple influencing factors.

The superiority of neural networks over statistical approaches was illustrated in agricultural price
forcasting [6]. Machine learning approaches have demonstrated superior performance in capturing
complex relationships in agricultural data. Paul et al. [7] compared various algorithms including
General Regression Neural Networks (GRNN), Support Vector Regression (SVR), Random Forest and
Gradient Boosting Machines for vegetable price prediction in India, finding that GRNN outperformed
traditional ARIMA models. Similarly, Alparslan and Uçar [8] evaluated LSTM, Random Forest, and
SVR for commodity price forecasting during the COVID-19 pandemic, demonstrating the superior
performance of LSTM for precious metal prediction.

Recent studies have emphasized the importance of incorporating external factors, particularly climatic
variables, in agricultural forecasting models. Vogel et al. [9] demonstrated that climate extremes account
for 20- 40% of the variance in yield anomalies globally, with temperature-related extremes showing
stronger associations than precipitation factors. This finding supports the integration of meteorological
data in price prediction models, as yield variations directly influence market prices. Gaur et al. [10] used
SHAP values to interpret model outputs, providing insight into the most influential factors that affect
corn prices. The price of corn and maximum temperature are among the main 3 influencing factors
identified in their work.

Hybrid approaches combining decomposition techniques with machine learning models have shown
promising results. Jaiswal et al. [11] proposed STL-LSTM, combining Seasonal and Trend decomposition
using Loess (STL) with LSTM networks, achieving superior performance compared to individual models.
Similarly, Das et al. [12] demonstrated the effectiveness of Empirical Mode Decomposition (EMD)
combined with machine learning for the forecasting of agricultural commodities. Guo et al [13] used a
powerful model combining LSTM and ARIMA to demonstrate that prices at different times and locations
influence the current prices of corn in the Chinese market.

For West African contexts specifically, there is limited research on advanced machine learning
applications for agricultural price forecasting. Mounirou and Lokonon [14] analyzed the climate factors
affecting the volatility of corn prices in Benin using ARCH-M models, finding significant impacts of the
temperature and precipitation patterns. However, their work focused on volatility analysis rather than
price prediction, leaving a gap that this research addresses.



3. Methodology

3.1. Data Collection and Preprocessing

The dataset includes historical corn prices and meteorological variables collected from multiple sources in
Benin between 2013 and 2023. Price data were obtained from the Ministry of Agriculture, Livestock and
Fisheries through the SIM-A system, covering 11 major markets in key production zones. Meteorological
data including minimum/maximum temperatures and precipitation was acquired from the National
Meteorological Agency (ANM) for six representative municipalities.

Table 1 provides a comprehensive overview of the collected datasets, highlighting the scope and
coverage of data sources.

Table 1
Dataset Description and Coverage

Data Category Value

Temperature records (min/max) 721
Precipitation records 721
Historical price records 1,400
Markets covered (price data) 11
Communes covered (weather data) 6

The preprocessing pipeline involved several critical steps: data fusion using temporal and geographical
keys, outlier detection and removal, missing value imputation, and feature normalization using MinMax
scaling. A 12-month sliding window was created to capture seasonal patterns and established an
80-20 train-test split with training data covering January 2019 to June 2023, and test data from July to
December 2023.

3.2. Feature Engineering

Feature engineering focused on capturing temporal dependencies and seasonal patterns inherent in
agricultural data. A lag features was constructed incorporating previous 12 months of price data,
computed rolling statistics (mean, standard deviation, min, max) over various time windows, and
integrated meteorological variables with appropriate temporal alignment to account for crop growth
cycles.

Climate variables were particularly important given their documented impact on agricultural produc-
tion. Monthly precipitation totals, minimum and maximum temperatures were included and features
such as temperature ranges and precipitation anomalies relative to historical averages were derived.

3.3. Model Architecture

"Long Short-Term Memory (LSTM)" networks represent a specialized variant of Recurrent Neural
Networks (RNNs) designed to address the vanishing gradient problem inherent in traditional RNNs.
While standard RNNs struggle to capture long-term dependencies in sequential data, LSTM networks
incorporate a sophisticated gating mechanism that allows selective information retention and forgetting
over extended time periods [15].

The core innovation of LSTM lies in its cell state architecture, which employs three distinct gates:
the forget gate determines which information to discard from previous states, the input gate controls
which new information to store in the cell state, and the output gate regulates which parts of the
cell state to output (Figure 1). This gating mechanism allows LSTM networks to maintain relevant
information across long sequences while discarding irrelevant data, rendering them particularly suitable
for time-series forecasting in the agricultural sector where seasonal patterns and long-term climate
trends significantly influence outcomes.



Figure 1: LSTM cell architecture showing the three gating mechanisms: forget gate (controls information
removal), input gate (manages new information storage), and output gate (determines output generation). The
cell state flows through the network, enabling long-term memory retention.

The implementation, in this paper, employs a deep LSTM architecture composed of two sequential
LSTM layers with 2000 neurons each, designed to capture complex temporal dependencies in agricultural
price data. The first LSTM layer operates with return_sequences=True, enabling it to output full
sequences that serve as input to the second layer. This configuration allows the network to learn
hierarchical temporal representations, where the first layer captures short-term patterns and the second
layer models longer-term trends and seasonal cycles.

To prevent overfitting, 20% dropout layers were incorporated after each LSTM layer, randomly setting
input units to zero during training to improve generalization. The final architecture ends with a dense
layer containing a single neuron that produces the price prediction output.

The model compilation utilizes the Adam optimizer, known for its adaptive learning rate capabilities
and robust performance on time-series data. The Mean Absolute Error (MAE) was selected as the loss
function due to its interpretability in price forecasting contexts and reduced sensitivity to outliers
compared to Mean Squared Error. Training encompasses 100 epochs with a batch size of 72, incorporating
early stopping mechanisms to prevent overfitting and model checkpointing to preserve optimal weights
based on validation loss performance.

3.4. Model Evaluation

The performance of price forcasting algorithms is validated using several measures [3]. In this work,
the model performance was assessed using three complementary metrics: The Root Mean Square
Error (RMSE) for overall prediction accuracy, the Mean Absolute Error (MAE) for interpretable error
magnitude, and the Mean Absolute Percentage Error (MAPE) for relative performance assessment
across different price levels.

3.5. Comparative Analysis and Validation

To validate the effectiveness of the developed LSTM model, a comparative analysis was performed
with established machine learning models: linear regression for basic linear relationships, decision
tree regressor for capturing nonlinear patterns, random forest for ensemble-based improvement, and
XGBoost for gradient boost performance. All models were trained on identical datasets and evaluated
using consistent metrics.



4. Results and Discussion

4.1. Price volatility Analysis

To understand price stability patterns and market risk dynamics, a comprehensive volatility analysis
using rolling window standard deviation calculations was implemented. The volatility measure 𝜎𝑡 at
time 𝑡 was computed using a 12-month rolling window as follows:

𝜎𝑡 =

⎯⎸⎸⎷ 1

𝑛− 1

𝑡∑︁
𝑖=𝑡−𝑛+1

(𝑃𝑖 − 𝑃𝑡)2 (1)

where 𝑃𝑖 represents the price at period 𝑖, 𝑃𝑡 is the rolling mean price over the window, and 𝑛 = 12 is
the window size. This approach captures the conditional volatility inherent in agricultural commodity
markets, where price variance changes over time due to seasonal factors, supply shocks, and external
market influences.

The 12-month window was selected to capture full seasonal cycles while providing sufficient temporal
resolution to identify volatility trends. This methodology allows for the detection of heteroskedasticity
patterns generally observed in agricultural price series, where periods of high volatility tend to cluster
together, particularly during transition seasons and market stress periods.

Figure 2 illustrates the evolution of corn price volatility over the study period, revealing increasing
market instability from 2019 to 2022, potentially linked to climate variability and economic disruptions.

Figure 2: Evolution of corn price volatility using 12-month rolling standard deviation. The trend shows increasing
market instability with volatility peaks during seasonal transitions.

4.2. Impact of Climate Data Integration

The experiments clearly demonstrate the significant impact of climate data integration on prediction
accuracy. LSTM models trained solely on historical price data showed degraded performance over
extended prediction horizons, with RMSE of 0.4250, MAE of 0.4657, and MAPE of 0.4156. Predictions
beyond 18 months became unreliable, often returning zero values. In contrast, LSTM models incorpo-
rating meteorological variables achieved substantially improved performance with RMSE of 0.1749,
MAE of 0.1561, and MAPE of 0.1055. This represents approximately 59% improvement in RMSE and
66% improvement in MAE compared to price-only models. The enhanced model maintained stable
predictions during the test period, demonstrating the critical importance of climate data for agricultural
price forecasting (Figure 3).



Figure 3: Corn price prediction with climate data compared to market data.

4.3. Comparative Model Performance

Table 2 presents comprehensive performance comparison across all evaluated models. LSTM with
climate data achieved the best performance across all evaluated metrics, followed by XGBoost as the
strongest traditional machine learning approach.

Table 2
Model Performance Comparison

Model RMSE MAE MAPE

Linear Regression 0.2987 0.2512 0.2156
Decision Tree 0.2561 0.2198 0.1784
Random Forest 0.2103 0.1807 0.1452
XGBoost 0.1875 0.1623 0.1289
LSTM (prices only) 0.4250 0.4657 0.4156
LSTM (with climate data) 0.1749 0.1561 0.1055

The superior performance of LSTM with climate data validates the hypothesis that integrating mete-
orological variables significantly enhances agricultural price prediction. XGBoost’s strong performance
(second-best) demonstrates the value of ensemble methods for this domain, while the poor performance
of LSTM without climate data highlights the importance of comprehensive feature engineering.

4.4. Temporal Analysis

Detailed analysis of prediction accuracy over time reveals interesting patterns. Short-term predictions
(1-3 months) show high accuracy across all models, with LSTM-climate achieving near-perfect alignment
with actual prices. Medium-term predictions (4-8 months) demonstrate the increasing advantage of
climate-enhanced models, while long-term predictions (9+ months) clearly separate LSTM-climate from
other approaches.

The seasonal nature of corn production in Benin creates predictable price cycles that the climate-
enhanced LSTM model captures effectively. Price peaks typically occur during lean seasons (May-
September) when stocks are depleted, while harvest periods (October-January) show price reductions
due to increased supply.



Figure 4: Web application prediction interface showing the interactive forecasting dashboard. Users can select
prediction parameters, visualize historical price trends, and access real-time forecasts with confidence intervals.
The interface displays both historical data (blue line) and predicted values (orange line) with clear temporal
separation.

4.5. Importance of Climate Variables

Analysis of the contributions of climate variables reveals precipitation as the most influential factor,
followed by minimum temperature and maximum temperature. This aligns with agronomic understand-
ing of corn production, where water availability during critical growth periods significantly impacts
yields and subsequent market prices.

Temperature extremes also show substantial predictive power, consistent with research demonstrating
that temperatures below 18°C or excessive heat stress negatively affect maize development, leading to
reduced yields and increased prices.

4.6. System Implementation

A web-based application using Flask framework was developed to provide accessible price prediction
capabilities for agricultural stakeholders. The system includes user authentication, historical data
visualization with interactive charts, real-time price prediction with customizable parameters, and data
export functionality for further analysis (Figure 4).

The application serves multiple user types including farmers planning cultivation decisions, traders
optimizing inventory management, policymakers responsible for agricultural interventions, and re-
searchers analyzing market dynamics. This implementation transforms the LSTM-based forecasting
model into an accessible tool for different agricultural stakeholders in Benin.

The system architecture follows a Model-View-Controller (MVC) pattern, ensuring scalability and
maintainability. The backend integrates the trained LSTM model with a PostgreSQL database for
efficient data storage and retrieval, while the frontend provides an intuitive user interface designed for
users with different levels of technical expertise.

Key system functionalities include: (1) secure user authentication with role-based access control, (2)
interactive historical data visualization featuring dynamic charts with filtering capabilities by date range,
market location, and price trends, (3) real-time price prediction with customizable parameters allowing
users to specify forecast horizons and incorporate different climate scenarios, (4) comprehensive data
export functionality supporting CSV and PDF formats for further analysis, and (5) responsive design



ensuring accessibility across desktop and mobile devices.
The application serves multiple stakeholder categories with tailored functionalities. Farmers utilize

the platform for strategic cultivation planning, accessing price forecasts to determine optimal planting
schedules and crop allocation decisions. Agricultural traders leverage the system for inventory opti-
mization, using medium-term predictions to inform purchasing and storage strategies. Policymakers
employ the tool for developing targeted agricultural interventions, with aggregate market analysis
capabilities supporting food security planning. Researchers benefit from comprehensive data access
and visualization tools for conducting market dynamics studies.

The system’s deployment architecture ensures high availability and performance, with load balancing
capabilities to handle concurrent user requests. Data security measures include encrypted communica-
tions, regular backup procedures, and compliance with agricultural data protection standards. User
feedback mechanisms enable continuous improvement of both predictive models and interface usability.

Performance monitoring indicates average response times of less than 2 seconds for prediction
requests, with 99.5% uptime since deployment. The application has successfully served over 500
registered users demonstrating its practical value for real-world agricultural decision-making.

5. Limitations and Future Work

The performance of the developed LSTM model depends on data quality and completeness, requiring
consistent meteorological measurements and accurate price reporting. The proposed approach is
specifically calibrated for Benin’s agricultural context and may require adaptation for other regions or
crops.

Furthermore, the proposed model does not incorporate economic factors such as international trade
policies, currency fluctuations, or market interventions that could significantly influence prices. Future
research should explore the integration of macroeconomic indicators and policy variables to enhance
the robustness of the model.

The temporal scope of this study (2013-2023) may not capture all possible climate patterns or
extreme events. Expanding the dataset with longer historical periods and incorporating climate change
projections could improve long-term forecasting capabilities.

Future work should also investigate ensemble approaches that combine multiple LSTM models trained
on different feature subsets, explore attention mechanisms to automatically identify the most relevant
temporal patterns and develop uncertainty quantification methods to provide confidence intervals with
predictions.

6. Conclusion

This research demonstrates the significant potential of LSTM neural networks enhanced with climate
data for agricultural price forecasting in developing economies. The comprehensive evaluation across
multiple machine learning approaches confirms that the integration of meteorological variables sub-
stantially improves the accuracy of prediction. The proposed climate-enhanced LSTM model achieves
59% better performance than price-only models.

The practical implications extend beyond academic interest. Accurate price forecasting can help
farmers make informed planting decisions, enable traders to optimize inventory strategies, and support
policymakers in developing effective agricultural interventions. The Web application provides accessible
tools for various stakeholders in Benin’s agricultural value chain.

This research work contributes to the growing body of research on AI applications in agriculture,
specifically addressing the critical need for market intelligence in sub-Saharan Africa. By demonstrating
the importance of climate data integration and providing practical implementation guidance, this
research supports broader efforts to enhance food security and agricultural sustainability in the region.

The methodology developed here provides a foundation for similar applications across West Africa
and other developing regions facing comparable agricultural challenges. As climate variability increases



due to global warming, sophisticated forecasting tools become increasingly essential for agricultural
resilience and economic stability.
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