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Abstract
Phosphorus (P) plays a vital role in global crop production and food security. The aim of this paper is to describe
mathematically the rhizosphere phosphorus cycle in order to predict and to estimate the concentrations of
different phosphorus forms. Our model is a system of first order differential equations for which we show the
existence, uniqueness, positivity and boundedness of solution. We also derive one equilibrium point of the model
and we show its asymptotic stability. Furthermore numerical simulations are done to show the behavior of soil
phosphorus content in time and to confirm the stability of the equilibrium point. Finally, we investigate which
plant uptake rate can maintain the amount of available phosphorus in rhizosphere.
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1. Introduction

The size of world population is expected to reach 10 billion by 2050, hence it is necessary to double global
crop yields to ensure food security. Therefore, all resources that improve agricultural production must be
used efficiently. As a crucial macronutrient, phosphorus (P) contributes significantly to plant growth, it is
taking part in essential metabolic processes such as photosynthesis, energy transfer, signal transduction,
macromolecular biosynthesis, respiration and nitrogen fixation in legumes [1, 2, 3]. Soil phosphorus (P)
exists in large quantities in both organic and inorganic forms, but the phosphorus supplies from soils
remains a major constraint for plants because its assimilable form (HPO4

2− or H2PO4
−) that can be

absorbed by the plant roots, appear to be very low in soil [4, 5]. These ions react highly with numerous
soil mineral constituents through fixation phenomena and become unavailable for plant uptake [4, 1,
6, 7]. Assimilable phosphorus is released to plants through various physico-chemical and biological
phenomena such as desorption, solubilization and mineralization. Many soil microorganisms and
microfauna have been investigated and reported for their phosphorus solubilization and mineralization
[5, 7, 4, 8].

In this work, we present the different forms of phosphorus, its cycle and different phenomena
that influence phosphorus availability in rhizosphere as well as build a mathematical model of the
phosphorus cycle. We analyze qualitatively our model and simulate it to justify our theoretical results.
These simulations are interpreted for efficient phosphorus management in the rhizosphere.

2. Phosphorus cycle in rhizosphere

2.1. Phosphorus cycle

The phosphorus cycle shows the forms of phosphorus in rhizosphere and the pathway by which phos-
phorus may taken up by plants. It can be summarised as follows dead plants and animals constitute soil
organic matter, which can be degraded and transformed into organic phosphorus by soil microorgan-
isms. Organic phosphorus is mineralized by soil microorganisms to release assimilable phosphorus
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(orthophosphate ions). Assimilable phosphorus with immobilization returns to organic form, and is
converted into mineral phosphorus by adsorption or precipitation. By desorption or solubilization,
mineral phosphorus become assimilable phosphorus. Plants explore soil through their roots and absorb
assimilable phosphorus. Animals eat phosphorus in plant leaves and fruits. After death, these become
sources of organic phosphorus in the rhizosphere.
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Figure 1: Phosphorus cycle in rhizosphere (Plassard et al., 2016)

2.2. Phosphorus forms

Phosphorus occurs in soil in both organic and inorganic forms [1, 6, 4, 5]. Organic phosphorus is a form
of phosphorus present as a constituent of organic compounds. It can represent 30 to 90% of the total
soil phosphorus and it is grouped into phosphate esters, phosphonates and phosphoric acid anhydrides
[9, 10, 11]. Inorganic phosphorus includes soluble inorganic phosphorus (assimilable phosphorus) and
mineral phosphorus. Assimilable phosphorus is known as orthophosphate ions H2PO4

− or HPO4
2−,

it is in small amounts in soil although that total phosphorus amount is high in soil, this amount is
controlled by soil pH and soil organic matter. Assimilable phosphorus is the only form of phosphorus
that is available for plant uptake. Mineral phosphorus includes primary phosphate compounds (apatite,
strengite, variscite) and secondary phosphorus compounds (calcium, iron, aluminum) phosphate.

2.3. Mechanisms that control phosphorus concentration

The availability of phosphorus to plants depends on the mechanisms that control its concentration
in solution. These mechanisms are physico-chemical, biochemical and biological in nature, they
are degradation of organic matter, mineralization of organic phosphorus and absorption, adsorption,
immobilization, precipitation of assimilable with desorption and solubilization of mineral phosphorus.

∙ Degradation of organic matter is a process by which microorganisms fungi and bacteria break
down dead plants and animals to release organic phosphorus.

∙ Mineralization of organic phosphorus is a process by which microorganisms release enzymes
like phosphatase or phosphohydrolase, phytases, phosphonatase to convert organic phosphorus
into assimilable phosphorus [9, 7, 5, 12].

∙ Absorption of available P is a process by which the plants explore soil through its roots and
uptake an available phosphorus for their growth, health and development.

∙ Adsorption of available P is a chemical fixation of available phosphorus by soil components such
as iron (Fe) and aluminum (Al), which makes phosphorus unavailable to plants. Throughout
adsorption available phosphorus can be converted to mineral phosphorus.



∙ Immobilization of available P is a process by which available phosphorus is converted into organic
phosphorus by certain soil microorganisms. It occurs when microorganisms consume available
phosphorus , these microorganisms die later and produce organic phosphorus which is unavailable
for plant uptake [13, 7].

∙ Precipitation of assimilable phosphorus is a process by which metal ions such as Al3+ and
Fe3+ (acidic soils) and Ca2+ (neutral to alkaline soils) react with phosphate ions in the soil
solution to form phosphate minerals such as Ca phosphate dicalcium or octacalcium phosphate,
hydroxyapatite, Fe and Al phosphate such as strengite, vivianite, variscite and plumbogummite
group minerals [14].

∙ Desorption of mineral phosphorus is a process by which mineral phosphorus is converted to
assimilable phosphorus for plants uptake, it is a reverse process of adsorption.

∙ Solubilization of mineral phosphorus is a process by which mineral phosphorus is converted
to assimilable phosphorus by microorganisms actions. It results from mechanisms such as the
production of mineral-dissolving compounds and inorganic acids as well as the release of enzymes
or enzymolyses by microorganisms [9, 7, 5].

3. Mathematical modeling

Different pools of phosphorus are generally distinguished in soil. This study focuses on the phosphorus
cycle that was developed in [7] which consists of three pools organic, assimilable, and mineral phos-
phorus. We denote the variables as concentrations of organic, mineral and assimilable phosphorus
respectively by [𝑃𝑜𝑟𝑔](𝑡), [𝑃𝑚𝑖𝑛](𝑡), [𝑃𝑖](𝑡), and assimilable phosphorus content of the field as [𝐶𝑃𝑖](𝑡),
all concentrations are time dependent.

The parameters include mineralization of organic phosphorus rate 𝑘𝑚𝑖𝑛, immobilization of assimilable
phosphorus rate 𝑘𝑖𝑚𝑚, degradation of organic matter rate 𝑘𝑑𝑒𝑔 , desorption of mineral phosphorus
rate 𝑘𝑑𝑒𝑠, solubilization of mineral phosphorus 𝑘𝑠𝑜𝑙, adsorption of assimilable 𝑘𝑎𝑑𝑠, precipitation of
assimilable 𝑘𝑝𝑟𝑒 and uptake of assimilable phosphorus rate 𝑘𝑎𝑏𝑠, all parameters range between 0 and 1.
To estimate the concentrations of different pools of phosphorus, we build four differential equations
described by the following compartmental model:

𝑘𝑑𝑒𝑔

𝑘𝑚𝑖𝑛

𝑘𝑖𝑚𝑚

𝑘𝑑𝑒𝑠

𝑘𝑎𝑑𝑠

𝑘𝑠𝑜𝑙

𝑘𝑝𝑟𝑒

𝑘𝑎𝑏𝑠

[𝑃𝑖] (𝑡)[𝑃𝑚𝑖𝑛] (𝑡) [𝑃𝑜𝑟𝑔] (𝑡)

Figure 2: Soil phosphorus compartmental model
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By combining the four differential equations, we obtain the following compartmental system :⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑
[︀
𝑃𝑜𝑟𝑔

]︀
𝑑𝑡 = −𝑘𝑚𝑖𝑛

[︀
𝑃𝑜𝑟𝑔

]︀
(𝑡) + 𝑘𝑖𝑚𝑚

[︀
𝑃𝑖

]︀
(𝑡) + 𝑘𝑑𝑒𝑔𝐶

𝑑
[︀
𝑃𝑚𝑖𝑛

]︀
𝑑𝑡 = −(𝑘𝑠𝑜𝑙 + 𝑘𝑑𝑒𝑠)

[︀
𝑃𝑚𝑖𝑛

]︀
(𝑡) + (𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒)

[︀
𝑃𝑖

]︀
(𝑡)

𝑑
[︀
𝑃𝑖

]︀
𝑑𝑡 = 𝑘𝑚𝑖𝑛

[︀
𝑃𝑜𝑟𝑔

]︀
(𝑡) + (𝑘𝑠𝑜𝑙 + 𝑘𝑑𝑒𝑠)

[︀
𝑃𝑚𝑖𝑛

]︀
(𝑡)− (𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒)

[︀
𝑃𝑖

]︀
(𝑡)

𝑑
[︀
𝐶𝑃𝑖

]︀
𝑑𝑡 =

[︀
𝑃𝑖

]︀
(𝑡)− 𝑘𝑎𝑏𝑠

[︀
𝐶𝑃𝑖

]︀
(𝑡)

(5)

We set 𝑋(𝑡) =
(︀
[𝑃𝑜𝑟𝑔](𝑡), [𝑃𝑚𝑖𝑛](𝑡), [𝑃𝑖](𝑡), [𝐶𝑃𝑖](𝑡)

)︀
so that the system (5) can be written as the

following linear homogeneous differential equation of the first order :

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐹 (𝑋(𝑡)),

with
𝐹 (𝑋(𝑡)) = 𝐴𝑋(𝑡) +𝐵 (6)

𝐴 =

⎛⎜⎜⎝
−𝑘𝑚𝑖𝑛 0 𝑘𝑖𝑚𝑚 0

0 −(𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) (𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒) 0
𝑘𝑚𝑖𝑛 (𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) −(𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒) 0
0 0 1 −𝑘𝑎𝑏𝑠

⎞⎟⎟⎠ (7)

𝐵 =

⎛⎜⎜⎝
𝑘𝑑𝑒𝑔𝐶

0
0
0

⎞⎟⎟⎠ (8)

4. Mathematical analysis

Let Ω be an open subset of R4. We consider the Cauchy problem defined by:{︂
𝑑𝑋(𝑡)
𝑑𝑡 = 𝐹 (𝑋(𝑡))

𝑋(𝑡0) = 𝑋0
(9)

where:

• 𝑋0 ∈ Ω and 𝑡0 ∈ R+

• 𝐹 : Ω −→ R4 is defined by (6)
• 𝑋 : R+ −→ R4

4.1. Existence and uniqueness of the solution

Since the function 𝐹 is 𝐶1 on R4. Thereby, for any non-negative initial condition the Cauchy problem
(9) associated to the differential equation (5) admits a unique solution [15].

Proposition 4.1. [16].
The solution 𝑋 : R+ −→ R4 of the differential equation (9) with initial condition 𝑋(𝑡0) = 𝑋0 is unique
and is generaly defined by :

𝑋(𝑡) = 𝑒𝐴(𝑡−𝑡0)𝑋0 +

∫︁ 𝑡

𝑡0

𝑒𝐴(𝑡−𝑠)𝐵𝑑𝑠, ∀𝑡 ∈ [𝑡0; +∞[ (10)



4.2. Positivity of the solution

Since system (5) represents an amount system, it is important that the solution remains non-negative
values. Thus, we must prove the positivity of the solution.

Definition. .
A square real matrix 𝑀 = (𝑚𝑖𝑗)1≤𝑖,𝑗≤𝑛 is called a Metzler-matrix if all its off-diagonal entries are
nonnegative, 𝑚𝑖𝑗 ≥ 0 for 𝑖 ̸= 𝑗 𝑖, 𝑗 = 1, · · · , 𝑛.

Lemma 1 (Metzler [17] ). .
Let 𝑀 ∈ R𝑛×𝑛 , then 𝑒𝑀𝑡 ≥ 0 for 𝑡 ≥ 0 if and only if 𝑀 is a Metzler-matrix.

Theorem 1. Let 𝑋(𝑡0) be a positive constant vector and 𝐴 be a Metzler matrix. The solution 𝑋(𝑡) of
system (9), defined by (10) remains positive forall 𝑡 ≥ 𝑡0.

Proof. of Theorem(1)
According to Lemma (1), the matrix 𝐴 is a Metzler-matrix, then for 𝑋0 ≥ 0 we have 𝑒𝐴(𝑡−𝑡0)𝑋0 ≥

0, ∀𝑡 ≥ 𝑡0. Since 𝐵 ≥ 0 and 𝑒𝐴(𝑡−𝑠) ≥ 0, ∀𝑡 ≥ 𝑠 then
∫︀ 𝑡
𝑡0
𝑒𝐴(𝑡−𝑠)𝐵𝑑𝑠 ≥ 0. we deduce that

𝑒𝐴(𝑡−𝑡0)𝑋0 +

∫︁ 𝑡

𝑡0

𝑒𝐴(𝑡−𝑠)𝐵𝑑𝑠 = 𝑋(𝑡) ≥ 0.

4.3. Equilibrium point

We find equilibrium points of the system (5) by making its right-hand side equal zero.

𝑑𝑋(𝑡)

𝑑𝑡
= 0 ⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑘𝑚𝑖𝑛[𝑃𝑜𝑟𝑔](𝑡) + 𝑘𝑖𝑚𝑚[𝑃𝑖](𝑡) = −𝑘𝑑𝑒𝑔𝐶

−(𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙)[𝑃𝑚𝑖𝑛](𝑡) + (𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒)[𝑃𝑖](𝑡) = 0

𝑘𝑚𝑖𝑛[𝑃𝑜𝑟𝑔](𝑡) + (𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙)[𝑃𝑚𝑖𝑛](𝑡)− (𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒)[𝑃𝑖](𝑡) = 0

[𝑃𝑖](𝑡)− 𝑘𝑎𝑏𝑠[𝐶𝑃𝑖](𝑡) = 0

⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑘𝑚𝑖𝑛[𝑃𝑜𝑟𝑔](𝑡) + 𝑘𝑖𝑚𝑚[𝑃𝑖](𝑡) + 𝑘𝑑𝑒𝑔𝐶 = 0

−(𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙)[𝑃𝑚𝑖𝑛](𝑡) + (𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒)[𝑃𝑖](𝑡) = 0

𝑘𝑎𝑏𝑠[𝑃𝑖](𝑡) = 𝑘𝑑𝑒𝑔𝐶

𝑘2𝑎𝑏𝑠[𝐶𝑃𝑖](𝑡) = 𝑘𝑑𝑒𝑔𝐶

We obtain the equilibrium point of our model (5), denoted by

𝑋* =
(︀
[𝑃𝑜𝑟𝑔]

*, [𝑃𝑚𝑖𝑛]
*, [𝑃𝑖]

*, [𝐶𝑃𝑖]
*)︀

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[𝐶𝑃𝑖]
* =

𝑘𝑑𝑒𝑔𝐶

𝑘2𝑎𝑏𝑠

[𝑃𝑖]
* =

𝑘𝑑𝑒𝑔𝐶
𝑘𝑎𝑏𝑠

[𝑃𝑚𝑖𝑛]
* =

(𝑘𝑎𝑑𝑠+𝑘𝑝𝑟𝑒)𝑘𝑑𝑒𝑔𝐶
(𝑘𝑑𝑒𝑠+𝑘𝑠𝑜𝑙)𝑘𝑎𝑏𝑠

[𝑃𝑜𝑟𝑔]
* =

𝑘𝑑𝑒𝑔𝐶
𝑘𝑚𝑖𝑛

(︀
𝑘𝑖𝑚𝑚
𝑘𝑎𝑏𝑠

+ 1
)︀
.

(11)



4.4. Stability

The stability of 𝑋* = 0 of 𝑛× 𝑛 linear homogeneous system 𝑋̇(𝑡) = 𝐴𝑋(𝑡) depends on the sign of
the eigenvalues of matrix 𝐴.

Lemma 2. [15].
The origin 𝑋* = 0 is asymptotically stable equilibrium point if the real parts of all eigenvalues of the
matrix 𝐴 are less than zero.

We use the Routh-Hurwitz criterion to find out the sign of the real parts of matrix eigenvalues, given
the following characteristic polynomial

𝜆𝑛 + 𝑎1𝜆
𝑛−1 + · · ·+ 𝑎𝑛 where 𝑎𝑖 ∈ R, 𝑖 = 1, · · · , 𝑛.

The coefficients are arranged in descending order of degrees. Thus, the Routh-Hurwitz criterion stated
as follows:

Lemma 3. .[18]
All solutions of equation

𝜆𝑛 + 𝑎1𝜆
𝑛−1 + · · ·+ 𝑎𝑛 = 0

have negative real parts if and only if the following inequalities are satisfied

𝑎1 > 0,

⃒⃒⃒⃒
𝑎1 𝑎3
1 𝑎2

⃒⃒⃒⃒
> 0,

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

𝑎1 𝑎3 𝑎5 · · · 0
1 𝑎2 𝑎4 · · · 0
0 𝑎1 𝑎3 · · · 0
. . . · · · .
. . . · · · .
0 . . · · · 𝑎𝑛

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ > 0.

Theorem 2. The equilibrium point 𝑋* =
(︀
[𝑃𝑜𝑟𝑔]

*, [𝑃𝑚𝑖𝑛]
*, [𝑃𝑖]

*, [𝐶𝑃𝑖]
*)︀ is asymptotically stable.

Proof. From (6), we write the system as :

𝑋̇(𝑡) = 𝐴𝑋(𝑡) +𝐵

. with

𝐴 =

⎛⎜⎜⎝
−𝑘𝑚𝑖𝑛 0 𝑘𝑖𝑚𝑚 0

0 −(𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) (𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒) 0
𝑘𝑚𝑖𝑛 (𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) −(𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒) 0
0 0 1 −𝑘𝑎𝑏𝑠

⎞⎟⎟⎠
det(𝐴) = 𝑘2𝑎𝑏𝑠𝑘𝑚𝑖𝑛(𝑘𝑠𝑜𝑙 + 𝑘𝑎𝑏𝑠) , the determinant of matrix 𝐴 does not equal zero, then this matrix

is invertible. We use the results from [15, 16] and apply inverse matrix of 𝐴 to get the following change
variable :

𝑌 (𝑡) = 𝑋(𝑡) +𝐴−1𝐵,

with 𝑋(𝑡) =
(︀
[𝑃𝑜𝑟𝑔](𝑡), [𝑃𝑚𝑖𝑛](𝑡), [𝑃𝑖](𝑡), [𝐶𝑃𝑖](𝑡)

)︀
, we make a deduction that

𝑌̇ (𝑡) = 𝑋̇(𝑡),

then we obtain the following (12) that is equivalent system of (6):

𝑌̇ (𝑡) = 𝐴𝑌 (𝑡) (12)

In order to use Routh-Hurwitz criterion, we define the characteristic polynome of matrix 𝐴 as :

𝑃 (𝜆) = det(𝜆𝐼 −𝐴)



𝑃 (𝜆) =

⃒⃒⃒⃒
⃒⃒⃒⃒𝑘𝑚𝑖𝑛 + 𝜆 0 −𝑘𝑖𝑚𝑚 0

0 𝜆+ (𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) −(𝑘𝑎𝑑𝑠 + 𝑘𝑝𝑟𝑒) 0
−𝑘𝑚𝑖𝑛 −(𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙) 𝜆+ (𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒) 0

0 0 −1 𝜆+ 𝑘𝑎𝑏𝑠

⃒⃒⃒⃒
⃒⃒⃒⃒

thus, we obtain

𝑃 (𝜆) = (𝜆+ 𝑘𝑎𝑏𝑠)(𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆+ 𝑎3)

where

𝑎1 = 𝑘𝑚𝑖𝑛 + 𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙 + 𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒,

𝑎2 = (𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙)(𝑘𝑖𝑚𝑚 + 𝑘𝑎𝑏𝑠) + 𝑘𝑚𝑖𝑛

(︀
𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙 + 𝑘𝑎𝑑𝑠 + 𝑘𝑎𝑏𝑠 + 𝑘𝑝𝑟𝑒

)︀
𝑎3 = 𝑘𝑖𝑚𝑚𝑘𝑎𝑏𝑠

(︀
𝑘𝑑𝑒𝑠 + 𝑘𝑠𝑜𝑙

)︀
⎧⎪⎨⎪⎩
𝑎1 > 0

𝑎2𝑎1 − 𝑎3 > 0

𝑎3 > 0

According to Routh Hurwitz’s criterion, the polynomial 𝑃 (𝜆) has all its roots with negative real parts.
Then the origin 𝑌 * = 0 of the system (12) is asymptotically stable, we deduce that the equilibrium point
𝑋* = ([𝑃𝑜𝑟𝑔]

*, [𝑃𝑚𝑖𝑛]
*, [𝑃𝑖]

*, [𝐶𝑃𝑖]
*) is asymptotically stable. Thus, the theorem has been proved.

4.5. Boundedness of the solution

We consider the system (5) and we set : 𝑈(𝑡) = 𝑋(𝑡)−𝑋*, where 𝑋* is the equilibrium point (11),
we obtain the equivalent system {︂

𝑑𝑈(𝑡)
𝑑𝑡 = 𝐴𝑈(𝑡)

𝑈(𝑡0) = 𝑈0.
(13)

From the results in [15, 16], we draw the conclusion that the system has a unique solution generaly
defined as follow :

𝑈(𝑡) = 𝑈0𝑒
(𝑡−𝑡0)𝐴 ∀𝑡 ∈ [𝑡0,+∞[ . (14)

Thus, it resuts that :
𝑋(𝑡)−𝑋* = 𝑈0𝑒

(𝑡−𝑡0)𝐴 ∀𝑡 ∈ [𝑡0,+∞[ (15)

The boundedness of the solution 𝑋(𝑡), is given in the next theorem:

Theorem 1. If every eigenvalue of 𝐴 has negative real part, then 𝑈(𝑡) is uniformly bounded. Therefore
the solution 𝑋(𝑡) of model (5) is bounded.

Lemma 4. ([15]).
If𝜆1, · · · , 𝜆𝑛 are the eigenvalues of a𝑛×𝑛 square matrix𝑀 , the set of associated eigenvectors {𝑣1, · · · , 𝑣𝑛}
form a basis and the matrix

𝑃 = [𝑣1, · · · , 𝑣𝑛]

is invertible. We write
𝑃−1𝑀𝑃 = diag[𝜆1, · · · , 𝜆𝑛].

Proof. of Theorem 1.
In this work, the matrix 𝐴 defined by (7) is a square matrix of order 4, with real coefficients. So, 𝐴 is
diagonalizable because it has 4 distinct eigenvalues. Then, there is an invertible matrix 𝑃 such that



𝐴 = 𝑃𝐷𝑃−1 where 𝐷 is the diagonal matrix. According to results from [15, 16], which allow us to
write :

𝑒𝐴 =
+∞∑︁
𝑘=0

𝐴𝑘

𝑘!
= 𝑃

(︂ +∞∑︁
𝑘=0

𝐷𝑘

𝑘!

)︂
𝑃−1,

it follows then
𝑒𝐴 = 𝑃 𝑒𝐷 𝑃−1.

We deduce that , the solution of the system (13) verify

𝑈(𝑡) = 𝑃 𝑒(𝑡−𝑡0)𝐷 𝑃−1 𝑈0 ∀𝑡 ∈ [𝑡0,+∞[ .

Given triangle inquality in [15, 16] it appears that :

‖𝑈(𝑡)‖ = ‖𝑃 𝑒(𝑡−𝑡0)𝐷 𝑃−1 𝑈0‖
‖𝑈(𝑡)‖ ≤ ‖𝑈0‖ ‖𝑃‖ ‖𝑃−1‖ 𝑒𝛼(𝑡−𝑡0)

‖𝑈(𝑡)‖ ≤ ‖𝑈0‖𝐾𝑒𝛼(𝑡−𝑡0) ∀𝑡 ∈ [𝑡0,+∞[ .

where 𝐾 ∈ R+, such that ‖𝑃‖ ‖𝑃−1‖ ≤ 𝐾 and 𝛼 is the largest real part of the eigenvalues of the
matrix 𝐴, here 𝛼 is a negative real number.
Since 𝛼 < 0 then ‖𝑈(𝑡)‖ ≤ 𝐾‖𝑈0‖. Which implies

‖𝑋(𝑡)−𝑋*‖ ≤ 𝐾‖𝑈0‖

According to the consequence of the triangle inequality in [16, 15], it results that :

| ‖𝑋(𝑡)‖ − ‖𝑋*‖ | ≤ 𝐾 ‖𝑈0‖

we draw the conclusion that :

∀𝑡 ∈ [𝑡0,+∞[ , ‖𝑋(𝑡)‖ ≤ ‖𝑋*‖+𝐾 ‖𝑈0‖

Consequently the solution 𝑋(𝑡) of the system (9) is bounded.
Note that for a vector 𝑥 = (𝑥1, · · · , 𝑥𝑛) ∈ R𝑛 and a square real matrix 𝑃 = (𝑃𝑖𝑗)1≤𝑖,𝑗≤𝑛:

‖𝑥‖ =

⎯⎸⎸⎷ 𝑛∑︁
𝑘=1

𝑥2𝑘 and ‖𝑃‖ = max
1≤𝑖≤𝑛

𝑛∑︁
𝑗=1

|𝑃𝑖𝑗 |.

5. Results and discussions

In this section, we justify our theoretical results by considering the concentrations of different phos-
phorus forms in Imeko soil, a region in Nigeria. This region is located less than 30 kilometers from
Ketou, one of a town in Benin where agriculture is significant. According to the study in [19], the
concentration of assimilable phosphorus is [𝑃𝑖]0 = 0.145𝑔/𝑘𝑔, concentration of organic phosphorus is
[𝑃𝑜𝑟𝑔]0 = 98.64𝑔/𝑘𝑔, concentration of mineral phosphorus is determined by summation of Saloid P,
Occuled P, reductant P, residual P, we have [𝑃𝑚𝑖𝑛]0 = 288.36𝑔/𝑘𝑔 and the total phosphorus content in
soil is TP = 387.0𝑔/𝑘𝑔. Soluble inorganic phosphorus represents 0.1% of total soil content phosphorus
[5, 20], then 𝑃𝑖 content of field is [𝐶𝑃𝑖]0 = 0.387𝑔/𝑘𝑔. Carbon makes up 58% of concentration of
organic matter, so the organic matter content is [𝑀𝑂]0 = 48.28𝑔/𝑘𝑔.

We use transformation rates between stable and labile phosphorus pools presented by [21], which
considers two pools of phosphorus, labile pool which represents an assimilable phosphorus and the



Figure 3: plots of the concentrations of organic P, inorganic P , mineral P and Pi content CPi with 𝑘𝑠𝑜𝑙 = 𝑘𝑑𝑒𝑠 =
𝑘𝑚𝑖𝑛 = 0.04, 𝑘𝑎𝑑𝑠 = 𝑘𝑝𝑟𝑒 = 𝑘𝑖𝑚𝑚 = 𝑘𝑎𝑏𝑠 = 0.2.

Figure 4: plots of concentrations of organic P, inorganic P , mineral P and Pi content CPi with 𝑘𝑠𝑜𝑙 = 𝑘𝑑𝑒𝑠 =
𝑘𝑚𝑖𝑛 = 0.025, 𝑘𝑎𝑑𝑠 = 𝑘𝑝𝑟𝑒 = 𝑘𝑖𝑚𝑚 = 0.4, 𝑘𝑎𝑏𝑠 = 0.2 .

stable pool which include both mineral and organic phosphorus. We set the rates of all phenomena that
reduce assimilable phosphorus as transformation rates of labil to the stable pool and the rates of the
phenomena that mobilize assimilable phosphorus as transformation rate of the stable pool to the labile
pool. We set 𝑘𝑑𝑒𝑔 = 0.58 as degradation rate of organic matter and we varied the uptake rate 𝑘𝑎𝑏𝑠 of
assimilable phosphorus between 0 to 1.

To identify which uptake rate allows us to maintain an available phosphorus concentration in rhizo-
sphere, we evaluated the percentage of available phosphorus as a function of the uptake rate.

Depending on the different types of soil considered, the soil achieves some sustainability in phosphorus
(P), as follows :



Figure 5: plots of the concentrations of organic P, inorganic P , mineral P and Pi content CPi with 𝑘𝑠𝑜𝑙 = 𝑘𝑑𝑒𝑠 =
𝑘𝑚𝑖𝑛 = 0.08, 𝑘𝑎𝑑𝑠 = 𝑘𝑝𝑟𝑒 = 𝑘𝑖𝑚𝑚 = 0.1, 𝑘𝑎𝑏𝑠 = 0.4 .

Figure 6: plots of concentration of organic P, inorganic P , mineral P and Pi content CPi with 𝑘𝑚𝑖𝑛 = 0.2,
𝑘𝑠𝑜𝑙 = 0.23, 𝑘𝑑𝑒𝑠 = 0.3, 𝑘𝑑𝑒𝑔 = 0.58, 𝑘𝑖𝑚𝑚 = 0.51, 𝑘𝑎𝑑𝑠 = 0.4, 𝑘𝑝𝑟𝑒 = 0.33, 𝑘𝑎𝑏𝑠 = 0.46.

• Figure 4: 𝑋* = (2240.19, 840.07, 70.00, 175.01)

• Figure 3: 𝑋* = (1400.12, 700.06, 140.01, 700.05)

• Figure 5: 𝑋* = (437.53, 87.50, 70.00, 175.01)

• Figure 6: 𝑋* = (295.24, 83.84, 60.87, 132.33)

It can be seen that to achieve significant sustainability in phosphorus (P), a significant number of days
are also required, specifically :

• Figure 4: > 500 days.
• Figure 3: > 200 days.
• Figure 5: ≈ 70 days.
• Figure 6: ≈ 40 days.



Figure 7: Fraction [𝑃𝑖] of total phosphorus concentration vs uptake rate 𝑘𝑎𝑏𝑠

During the time, we observe that the concentrations of organic phosphorus [𝑃𝑜𝑟𝑔] and inorganic
phosphorus content [𝐶𝑃𝑖] follow a strong increase, and concentrations of different phosphorus forms
converge to the equilibrium point 𝑋* = ([𝑃𝑜𝑟𝑔]

*, [𝑃𝑚𝑖𝑛]
*, [𝑃𝑖]

*, [𝐶𝑃𝑖]
*) of model (5) which is asymp-

totically stable.
As the rate of mineralization 𝑘𝑚𝑖𝑛 increases, the soil becomes less fertile in organic phosphorus [𝑃𝑜𝑟𝑔].

Moreover, the rates of immobilization 𝑘𝑖𝑚𝑚, precipitation 𝑘𝑝𝑟𝑒 and adsorption 𝑘𝑎𝑑𝑠 do not directly
influence the sustainability of the mineral phosphorus [𝑃𝑚𝑖𝑛] since the origin which is [𝑃𝑖] has a small
fraction of the total phosphorus in the soil.

Figure 7 shows the effect of the uptake rate 𝑘𝑎𝑏𝑠 on the availability of [𝑃𝑖]. Note that if the uptake
rate increases,then the availability of phosphorus [𝑃𝑖] decreases. To maintain available phosphorus in
the soil, it suggest that the uptake rate must be between 0.2 and 0.3.

6. Conclusion

. In this work, we described a phosphorus dynamics in the rhizosphere using a compartmental mathemat-
ical model of the phosphorus cycle with constant transformation rates of phosphorus cycle phenomena.
This model is a system of first order differential equations, a qualitative study was conducted to establish
an uniqueness, positivity and boundedness of the solution, and we show that the equilibrium point of
the model is asymptotically stable. Computer simulations were performed to justify theoretical results.
Finally, we suggest suitable uptake rate values which can not remove assimilable phosphorus in the
rhizosphere.

Future research could consider using Artificial Intelligence in particulary Machine Learning to predict
the concentration of assimilable phosphorus in soil.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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