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Abstract
Agriculture 4.0 leverages emerging digital technologies (IoT, AI, big data, blockchain) to optimize yield, traceability,
and sustainability in agricultural practices. However, small farms and cooperative structures in developing
countries struggle to harness these levers due to scattered data, lack of modular tools, and weak infrastructure.
This paper proposes the application of the IRADAH (Integrated Requirement Analysis for Designing Data
Warehouse) framework and the dimensional Kimball lifecycle to the agricultural sector to implement a Decision
Support System (DSS). Based on a state-of-the-art review of Agriculture 4.0 and a synthesis of a Business
Intelligence (BI) implementation in a faith-based nonprofit organization, we describe a methodological adaptation
of IRADAH for agricultural use, present an open-source BI architecture (PostgreSQL, Talend, Metabase, Docker),
and illustrate a prospective proof of concept based on simulated data. Expected outcomes include reliable data
consolidation from multiple sources, enhanced digital inclusion, and strengthened decision-making capacity for
agricultural actors.
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1. Introduction

Agriculture 4.0, or smart farming, relies on the integration of emerging technologies such as the Internet
of Things (IoT), Artificial Intelligence (AI), Big Data analytics, blockchain, and robotics to improve
productivity, traceability, and sustainability of agricultural operations[1]. These advancements generate
large volumes of heterogeneous data (sensors, satellite images, cooperative records, transactional flows)
that need to be consolidated, historized, and governed over the long term to support decision-making.

The adoption of digital agriculture in developing countries such as Benin faces major structural
challenges that hinder the fair and sustainable diffusion of technological innovations within agricultural
farms[2].

Firstly, deficiencies in digital infrastructure are a significant barrier. In many rural areas, Internet
access is limited, equipment is scarce, and the reliability of digital services remains low. These technical
constraints prevent the homogeneous deployment and continuity of agro-digital tools.

Secondly, the lack of human capacity and digital literacy hampers the appropriation of technologies.
The high rate of digital illiteracy among producers, the lack of appropriate training, and the low
compatibility of solutions with local contexts limit their effective use. This deficit is exacerbated by a
lack of technical skills among innovators, cooperatives, and support structures.

Thirdly, the fragmentation and poor governance of data hinder the consolidation of agricultural
information. Data is often scattered among paper records, Excel files, and non-interoperable digital
streams. This heterogeneity creates difficulties in analysis, traceability, quality, and security of data,
which are essential for strategic decision-making.
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These challenges are compounded by transversal factors: low funding for research and innovation,
inadequate economic models of agricultural startups (high dependence on subsidies), and a lack of
structured collaboration between digital, agricultural, and public policy actors.

At the same time, our master’s thesis focused on the design and implementation, for the Archdiocese
of Cotonou, of a data warehouse-based decision support system founded on the Kimball lifecycle
and enriched by the IRADAH (Integrated Requirement Analysis for Designing Data Warehouse)[3]
framework for business requirement engineering. This approach, combining data-driven, user-driven,
goal-driven, and process-driven methods, demonstrated its ability to effectively align the requirements
and strategic objectives of the target organization while ensuring data quality and traceability.

Although the faith-based and agricultural sectors may seem distinct at first glance, both involve
collective structures with participatory governance (dioceses, cooperatives, producer groups) facing
similar challenges: multi-source information management, need for key indicators to guide activities,
and scarcity of modular, lightweight, and cost-effective digital tools. Hence the central question of
this article: How can the IRADAH framework and the Kimball lifecycle, proven in the context of the
decision support system for the Archdiocese of Cotonou, be applied to design a robust, inclusive, and
secure open-source BI architecture for agricultural farms?

To address this question, the article is structured as follows:

1. A state-of-the-art review of the challenges and best practices of Agriculture 4.0;
2. A feedback on the use of BI in a nonprofit community structure;
3. The methodological application of the IRADAH framework to the agricultural context;
4. A description of a scalable BI architecture based on open-source solutions (PostgreSQL, Talend,

Metabase, Docker);
5. A prospective proof of concept illustrating the transferability of the approach.

2. State of the Art and Experience Feedback

Before presenting our methodological proposal for the agricultural sector, it is essential to establish the
conceptual foundations of decision support systems (Sec. 2.1), then to present the concrete experience
gained within the Archdiocese of Cotonou (Sec. 2.2). Finally, we will show how the challenges
encountered and the solutions provided are directly transferable to agricultural structures (Sec. 2.2).

2.1. Definitions and Fundamental Concepts

Decision Support Systems (DSS) aim to transform raw data, often dispersed and historized, into
structured information to facilitate decision-making[4]. Their typical architecture includes[5]:

• Heterogeneous data sources, including operational databases, flat files, IoT flows, or paper forms;
• An ETL (Extract-Transform-Load) pipeline responsible for ingesting, cleaning, and loading data

into a staging area;
• A Data Warehouse (DWH), the core of the DSS. It is a centralized, subject-oriented, integrated,

non-volatile, and historized data repository[6]. It may be organized into multidimensional data
marts;

• An OLAP server offering navigation capabilities (drill-down, roll-up) and slicing/dicing;
• A reporting layer (dashboards, reports, data mining) intended for decision-makers.

The implementation of a DSS generally follows either the Top-Down or Bottom-Up approach. The
project supporting this implementation is structured into a lifecycle to mitigate failure risks and ensure
sustainability. Several methodologies provide frameworks to manage the design, development, and de-
ployment phases of DSS. These include the Kimball Lifecycle, X-META, and the DWDSF Framework[7].

To enable a DSS to help end users achieve their decision-making goals, it is crucial that its design is
based on requirement engineering, aiming to collect business needs in a way that ensures the relative



stability of the multidimensional models underlying data warehouses and aligns with decision-making
issues.

Requirement engineering in BI combines four complementary approaches:

• Data-driven, to rely on the structure and quality of available data;
• User-driven, to collect the functional expectations of end users;
• Goal-driven, to ensure the alignment of indicators with strategic objectives;
• Hybrid, to combine the previous approaches. In this context, the IRADAH framework and hybrid

approaches[8] such as GranD, CADWA can be mentioned[9].

2.2. Experience Feedback: DSS of the Archdiocese of Cotonou

As part of our master’s thesis, following a project based on the Kimball lifecycle and a requirement
engineering process founded on IRADAH, we designed and implemented a DSS within the Archdiocese
of Cotonou[3].

Requirement engineering with IRADAH made it possible to identify five thematic domains (Diocesan
governance and administration, Christian life and pastoral engagement, Financial autonomy and
governance, Social and charitable impact, Risk management and compliance) covering different business
areas and activities such as monitoring and evaluation of Annual Work Plans (AWPs), monitoring of
charitable actions, pastoral tracking, financial management monitoring, and budget transparency.

During the design phase, each thematic domain was modeled as a multidimensional star-schema data
mart (DM). A dimensional bus connected these data marts, guaranteeing the uniqueness of common
facts (attendance, satisfaction, budgets) and the reuse of dimensions (time, location, and person)[3].

To provide traceability, quality, and security, a single metadata schema was created within the DSS
to record indicator definitions, ETL procedures, and access permissions.

The Metabase-implemented reporting layer provided dynamic dashboards customized for each
user profile, including department heads, parish priests, and executives. Stakeholder confidence in
the dependability of indicators was bolstered by this implementation, which cut report generating
timeframes from days to a few hours[3].

The DSS was implemented using a technology stack composed exclusively of open-source solutions
to meet the financial and technical constraints of the diocese.

2.3. Functional Similarities with the Agricultural Sector

Collective structures with participatory governance (dioceses, agricultural cooperatives, producer
groups) face similar challenges, summarized in four key areas:

• Multi-source management and heterogeneity:

– Agricultural structures: IoT sensors, field surveys, stock registers, input invoices, and
cooperative reports;

– Faith-based organizations: membership forms, pastoral schedules, financial statements,
surveys.

• Need for impact indicators:

– Agricultural structures: yield per plot, adoption rate of best practices, delivery time for
inputs, member satisfaction;

– Faith-based organizations: participation level, donation trends, believer satisfaction, number
of training sessions.

• Governance, quality, and data security constraints: Both agricultural holdings and dioceses
require fine-grained traceability (origin, date, responsible party) and granular access control.

• Requirement for affordable and flexible tools: In the sub-Saharan region, financial resources
and technology infrastructure are frequently constrained.



These similarities show that the Kimball lifecycle and the IRADAH methodological approach provide
a strong basis for creating an efficient DSS in the agriculture industry that can meet the demands of
digital inclusion, governance, and monitoring.

3. The IRADAH Framework Applied to Agriculture

Before detailing the technical architecture, it is essential to present the IRADAH methodological
framework that guides requirement engineering, then show how this framework is transposed to
agricultural actors, and finally propose a target dimensional model adapted to agricultural sectors.

3.1. Brief Presentation of IRADAH

The IRADAH framework structures requirement engineering into four complementary phases, each
providing a specific perspective on the decision support solution requirements[10]:

• User-driven: gathering expectations and constraints of end users — farm managers, cooperative
facilitators, union leaders — through interviews, workshops, and questionnaires.

• Goal-driven: establishing strategic goals and key performance indicators (KPIs) that reflect the
vision of the organization, which includes digital inclusion, sustainability, and resilience.

• Data-driven: inventorying and qualifying available or deployable data sources (IoT sensors,
paper records, billing systems), assessing their quality and reliability.

• Process-driven:identifying business events and items to historize in the data warehouse by
modeling operational workflows and business processes, such as crop cycles, input logistics, and
member training.

Figure 1: IRADAH framework[10].

The articulation of these axes ensures the complete alignment between the data structure, strategic
goals, and operational requirements.



3.2. Applying Methodology to the Agriculture Industry the Agricultural Sector

In order to go from the ecclesiastical experience to agriculture, we first identify important key actors
and map their needs:

• Individual farmers (agro-pastoralists, smallholders):
– Granular monitoring of yield per plot and crop cycle;
– Online or mobile access to weather predictions and summary information on input avail-

ability.

• Cooperatives and producer unions:

– Combining aggregated data (stocks, sales, and memberships);
– Management tools for group input negotiation and distribution planning.

• Umbrella organizations and syndicates:

– Monitoring of collective performance and compliance with standards (organic certification,
traceability);

– Strategic dashboards for decision-making at regional or national level.

The needs mapping intersects these profiles with IRADAH phases (see Table 1).

Table 1
IRADAH Phase vs Agricultural Actors Mapping

IRADAH Phase Individual Farmers Cooperatives/Unions Umbrella Organizations

User-driven Simple mobile reports Aggregated web reports Strategic dashboards
Goal-driven Yield/cost KPIs per cycle Cooperation rate, economies of scale KPIs Compliance, sustainability KPIs
Data-driven Soil/rainfall sensors, CSV logs Membership files, invoices, stocks Certification databases, satellite data
Process-driven Sowing-harvest cycles, input mgmt. Group logistics, lot assembling Audits, reverse traceability, regulation reporting

3.3. Target Dimensional Model

We propose a target dimensional model for an agriculture-focused data mart centered on yield, inte-
grating specific needs of different stakeholders identified in the IRADAH approach.

Table 2
Attributes of fact tables for the Agricultural Yield data mart

Fact table (grain) Measures / key attributes

Fact_Yield (plot × crop × harvest) Quantity_Produced, Production_Cost, Labor_Hours,
Quality_Index, Gross_Margin†, Yield_Gap†, Sustainability_Score†;
FKs: Plot_ID, Crop_ID, Harvest_Date_ID, Farmer_ID, Org_ID,
Season_ID

Fact_Input (plot × input application) Input_Type_ID, Input_Quantity, Unit_Cost, Total_Cost, Savings,
Deviation_From_Recommendation;
FKs: Plot_ID, Crop_ID, Operation_Date_ID, Farmer_ID

Fact_Operations (plot × operation event) Operation_Type, Duration_Hours, Labor_Hours, Machine_Hours,
Operation_Cost;
FKs: Plot_ID, Crop_ID, Operation_Date_ID, Farmer_ID

Fact_Collective_Performance (organisation
× season)

Adoption_Rate, Certification_Compliance, Traceability_Index;

FKs: Org_ID, Season_ID

†Derived measures are stored only when historical traceability is required; otherwise they are computed on-the-fly in BI
views.



Table 3
Attributes of dimension tables for the Agricultural Yield data mart

Dimension table Key attributes

Dim_Plot Plot_ID (SK), GPS_Coordinates, Area_ha, Soil_Type, Irrigation_System,
Tenure_Status

Dim_Crop Crop_ID (SK), Crop_Name, Variety, GMO_Flag, Maturity_Group
Dim_Farmer (SCD-2) Farmer_ID (SK), Name, Age, Experience_Years, Training_Level,

Credit_Access, Household_Size
Dim_Organization (SCD-2) Org_ID (SK), Org_Type, Membership_Count, Coverage_Area,

Current_Certifications
Dim_Date Date_ID (SK), Calendar_Date, Day, Month, Quarter, Year, Season
Dim_Season Season_ID (SK), Campaign_Label, Start_Date_ID, End_Date_ID
Dim_Input_Type Input_Type_ID (SK), Category (Seed / Fertiliser / Pesticide), Product_Name,

Active_Ingredient
Dim_Weather Weather_ID (SK), Avg_Temp, Rainfall_mm, Wind_Speed,

Weather_Event_Flag
Dim_Market Market_ID (SK), Product, Market_Price, Currency
Dim_Subsidy Subsidy_ID (SK), Program_Name, Amount, Eligibility_Flag
Dim_Alert Alert_ID (SK), Alert_Type, Severity, Description

Figure 2: Illustrative star schema of the Agricultural Yield Data Mart Slice

This yield-centric star schema can be reused as the core of future data mart slices (inputs, operations,
collective performance) as new analytic questions emerge.

4. Proposed Open-Source BI Architecture

In this section, we describe an end-to-end BI architecture based on proven open-source components. It
is structured in three parts: the general functional architecture (Sec. 4.1), the technology stack (Sec.
4.2), and finally metadata governance and quality strategy (Sec. 4.3).



4.1. Functional Architecture

The designed architecture adheres to the traditional four-layer pipeline:

• Data Ingestion Zone: where heterogeneous data (weather APIs, simulated IoT streams, and
CSV files exported from the field) is entered. Extracting and preliminary cleaning tasks (format
standardization, duplication detection, minimum enrichment) are carried out via Talend jobs.

• Data Warehouse (DW): based on PostgreSQL, historized and normalized in star schema, fed by
Talend ELT processes configured in incremental mode. Each fact and dimension table is based on
the modeling defined in Sec. 3.3.

• Summary Tables: aggregated tables and materialized views arranged by subject (training, yield,
and stocks). These summary tables improve analytical queries and are updated on a weekly or
daily basis, depending on the user’s needs.

• Dashboard Layer: The Metabase interface, which is installed in a Docker container, provides
end users (farmers, cooperatives, and unions) with interactive reports and dashboards. Groups
and profiles are used to control access privileges.

Figure 3: functional architecture of the DSS

4.2. Technology stack

To solve deployment, modularity, and cost restrictions in low-resource contexts open-source solutions
are given priority in the design:

• PostgreSQL as the DW engine, for its reliability, indexing capabilities, and native support of
geographic types (PostGIS) useful for mapping plots[11].

• Talend Open Studio to design ETL/ELT workflows, with its graphical components facilitating
maintenance and skill development for local teams[12].

• Metabase for reporting, due to its intuitive web interface, native support for dynamic filters, and
simple Docker deployment[13].

• Docker for containerization, which guarantees environment portability, service isolation, and
component update simplicity.

• DBeaver for administration of the different databases in the DSS.



Figure 4: Containerized infrastructure and interactions between components

This component selection makes it possible to create a lightweight ecosystem that is scalable for
functional expansion and simple to install on a single server or virtual machine.

4.3. Metadata Governance, Quality Integration and Stress-Tests

The robustness of a DSS depends on formalized metadata governance and an integrated quality policy:

• A centralized metadata catalog (stored in MariaDB) lists for each table, column, and indicator:
description, origin, update frequency, and business owner.

• Versioned Talend logs (stored in PostgreSQL) provide the traceability of the ETL process, enabling
replays or the diagnosis of irregularities in data batches.

• Referential integrity checks, outlier thresholds, and completeness are examples of automated
rules that are used in a quality control approach. These rules are triggered during loading and
logged in a monitoring dashboard.

• To guarantee that each profile may only access pertinent data, access permissions are controlled
in Metabase (user groups) and at the PostgreSQL database level (roles and schemas).

To ensure the reliability and accuracy of each indicator, advanced validation mechanisms should be
put in place: Beyond referential integrity checks and outlier thresholds, we plan to conduct a series
of robustness tests (stress tests) and sensor error simulations to measure the impact of missing or
corrupted data on key indicators. Automatic alerts are triggered in the event of quality drift (>5% of
data outside limits), and a manual review module allows corrections to be made prior to loading into
the Data Warehouse

By combining these mechanisms, the architecture ensures not only availability and performance, but
also stakeholder trust in the reliability of the produced indicators.

4.4. Edge Computing and Offline Mode

To address rural connectivity constraints, the architecture will include at the end:



• Edge Nodes (Raspberry Pi or mini-servers) pre-processing IoT streams (aggregation, compression)
and storing data locally in offline mode.

• Delta Sync: when reconnecting, only increments are transmitted, optimising bandwidth usage.
• Adapted mobile interface: Progressive Web Application (PWA) enabling offline data entry and

automatic synchronisation as soon as the network is available.

5. Prospective Proof of Concept (Simulated Use Case)

To illustrate the transferability of our approach, we propose a proof of concept (PoC) based on a typical
producer cooperative scenario. This simulation details the monitored key indicators, the fictitious
datasets, the ETL process workflow, and the implementation of prototype dashboards, followed by an
analysis of the expected benefits and limitations.

5.1. Typical Scenario: Producer Cooperative

Let us consider an agricultural cooperative gathering about fifty small farmers. The following indicators
are selected to monitor activities:

• Average yield (kg/ha) per crop cycle and per plot;
• Harvest collection delay (days) between the end of harvest and delivery to the central silo;
• Input availability rate (%) — percentage of fulfilled requests at the beginning of the sowing season.

5.2. Fictitious Datasets

Two types of data are generated over a six-month period to simulate the cooperative’s functioning:

• Simulated IoT streams: hourly sensor readings (temperature, humidity, harvest flow) formatted
in JSON and injected into the staging area.

• Cooperative records in CSV format: monthly files containing input requests and deliveries,
harvest dates, and delivered quantities.

5.3. Proof of Concept Workflow

The PoC unfolds in four steps:

• Extraction: Talend jobs import the CSV files and consume the JSON streams, apply format
checks, and store raw data in the staging area.

• Transformation and DWH loading: defined transformations populate the fact tables (Yield,
Stocks, Training) and dimension tables (Plot, Cycle, Input, Farmer) in the Data Warehouse.

• Summary table loading: materialized views and aggregations for each indicator are created
and refreshed based on a configurable schedule (daily or weekly).

• Metabase prototyping: development of interactive dashboards exposing indicators with dynamic
filters by cooperative, cycle, and plot.

5.4. Expected Benefits and Limitations

The simulation highlights several potential benefits:

• Reduction in data consolidation delays;
• Improved indicator reliability through automated checks and process traceability;
• Enhanced accessibility for farmers via lightweight web and mobile interfaces.



6. Discussion

6.1. Advantages

The IRADAH approach, coupled with the Kimball lifecycle and implemented using an open-source
ecosystem, presents several advantages for the agricultural sector:

• Modularity: each component (ingestion, DWH, Data Marts, dashboards) can be deployed, scaled,
or replaced independently, facilitating both functional and technical evolution.

• Reduced cost: the absence of proprietary licenses (PostgreSQL, Talend Open Studio, Metabase,
Docker) reduces initial investments and maintenance costs — a critical criterion for low-budget
farms.

• Reproducibility: the definition of a unified blueprint and the standardization of ETL processes
guarantee rapid replicability in different contexts (crop types, cooperative sizes) while ensuring
result consistency.

• Digital inclusion: lightweight and mobile interfaces (Metabase) meet the constraints of inter-
mittent connectivity and the diverse technical profiles of users, thus fostering appropriation.

6.2. Limitations and Mitigation Strategies

Despite these benefits, some constraints must be considered:

• Dependence on data quality: the effectiveness of the DSS relies on the reliability of input
streams; input errors, missing or incorrect data can significantly impact the indicators, hence the
need for robust validation mechanisms. It’s why We have integrated stress tests and automated
validation workflows to reduce the impact of errors.

• User training: even with simple interfaces, initial support and continuous assistance are neces-
sary; the absence of local BI expertise may slow adoption and limit advanced use of tools (custom
report creation, ad hoc analyses).

• Connectivity and infrastructure: although the system can operate in degraded mode, data
synchronization and dashboard access require a stable connection; in rural areas, network inter-
ruptions or limited bandwidth may affect responsiveness and update frequency. The mitigation
strategy here is to use edge computing and PWA extension that ensure offline operation and
minimise bandwidth consumption. Delta synchronisations limit network requirements.

• Limited real-world deployment. The PoC relies on simulated data. A pilot deployment is
recommended to measure adoption, satisfaction, and performance in a real-world environment
(KPIs: collection time, data completeness rate, report generation time).

7. Conclusion and Perspectives

7.1. Summary of Methodological and Architectural Contributions

This article presented the transposition of the IRADAH framework and the Kimball lifecycle, initially
developed for the Archdiocese of Cotonou, to the context of Agriculture 4.0 farms. We demonstrated
that:

• The IRADAH approach, articulating user-, goal-, data-, and process-driven phases, enables the
formalization of varied business requirements and ensures the quality and traceability of business
needs and the stability of dimensional conceptual models.

• The Kimball bottom-up method provides a reusable schema for modeling facts and dimensions,
guaranteeing consistency and extensibility by integrating DMs via a dimensional bus.

• The DSS project management is firmly based on the Kimball lifecycle.
• PostgreSQL, Talend, Metabase, and Docker are examples of open-source ecosystems that provide

agricultural stakeholders in sub-Saharan nations with a flexible, affordable, and easily available
infrastructure.



7.2. Recommendations for a Real Pilot and Partnerships

In order to verify this proof of concept in practical settings, we advise:

• Choosing a pilot cooperative with a diverse range of farmer profiles and strong leadership
commitment;

• Putting in place a plan for end users’ training and ongoing support, which includes hands-on
workshops and a support platform;

• Forming alliances with regional organizations (such as INRAB and agricultural associations) and
IoT sensor suppliers to supply the DWH with actual field data.

7.3. Future Research Directions

Several directions could extend and deepen this work:

• Extension to other sectors: adapting the dimensional model and indicators to specific crops
(rice, cotton, horticulture) or livestock;

• Enhanced predictive analysis: integrating machine learning modules for yield forecasting,
phytosanitary anomaly detection, and irrigation optimization;

• IoT–DWH automation: deploying real-time data pipelines between sensors and the warehouse,
supporting near-real-time analytics;

• Advanced traceability: experimenting with blockchain technology to guarantee the immutabil-
ity of logistical records and strengthen market trust.

By combining these directions, it will be possible to realize a true smart farming ecosystem capable
of addressing the challenges of sustainability, inclusion, and economic performance of agricultural
operations in developing countries.
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