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Abstract
A lightweight pipeline is presented for biomedical concept normalisation that placed 1st in the Russian track
and 2nd in the bilingual track of the BioNNE-L 2025 shared task. The method combines language-aware
preprocessing with multilingual GAT-based embeddings and cosine-similarity retrieval over a 4M-entry bilingual
UMLS vocabulary. Without any task-specific fine-tuning, the system reaches Accuracy@1 0.72, Accuracy@5
0.83, MRR 0.76 on the hidden Russian test set and 0.68 / 0.84 / 0.75 respectively in the bilingual setting. Beyond
performance, an uncertainty analysis shows that high softmax entropy reliably predicts errors under extreme
partial terminology, highlighting the need for confidence-aware re-ranking and the enrichment of Russian
biomedical lexicons.
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1. Introduction

Medical concept normalisation (MCN) - also known as entity linking - maps free-text mentions of
biomedical entities to canonical concepts in resources such as the Unified Medical Language System
(UMLS). Accurate MCN underpins evidence retrieval, pharmacovigilance, and clinical decision support,
yet it remains challenging in multilingual, low-resource settings, where many concepts lack standardised
lexical variants. The BioNNE-L 2025 shared task, organised within the CLEF BioASQ lab [1], targets
this gap with three subtasks: English (Track 2), Russian (Track 1), and a combined bilingual setting
(Track 3) [2].

The Russian subtask requires linking mentions of diseases (DISO), chemicals (CHEM), and anatomi-
cal structures (ANATOMY) to UMLS Concept Unique Identifiers (CUIs). This track presents unique
challenges due to the partial Russian coverage of UMLS - with only approximately 2% of concept names
available in Russian [3] - which forces systems to resolve Cyrillic mentions against English entries.
Furthermore, the task includes nested entities, meaning that mentions can overlap and require joint
reasoning over inner and outer spans.

Recent work has shown that graph-augmented multilingual encoders such as BERGAMOT-GAT
achieve state-of-the-art performance in zero-shot biomedical concept linking across ten languages [4].
Motivated by these findings, we build a lightweight pipeline that keeps BERGAMOT-GAT frozen and
integrates language-aware preprocessing, a pre-encoded bilingual UMLS vocabulary of approximately 4
million terms, and a hybrid inference strategy that prioritises exact-match lookup, leverages cached
predictions, and falls back on cosine similarity search within semantic-type partitions.

Even without task-specific fine-tuning, the system ranked first in the Russian track and second in the
bilingual track. In addition to strong leaderboard performance, we explore how partial terminology
coverage affects predictive uncertainty. Our analysis shows that missing Russian synonyms inflate
predictive entropy and error rates, whereas cosine distance offers little additional signal under full
partial-terminology.
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All code and reproducible notebooks are publicly available.1

2. Related Work

Early approaches to biomedical concept normalisation relied on dictionary look-ups coupled with fuzzy
matching and heuristic ranking rules, which proved effective in English but deteriorated sharply in cross-
lingual scenarios because they presupposed the existence of target-language synonyms in the ontology
[5]. The introduction of multilingual transformers shifted the field toward contextual embeddings:
multilingual BERT enabled the first zero-shot pipelines, yet its alignment for specialised terms remained
limited [6]. SapBERT improved cross-lingual transfer by training with synonym-contrastive objectives
and achieved large gains on XL-BEL and COMETA [7, 3].

Further improvements were achieved through self-alignment objectives [8] and domain-specialised
pretraining for biomedical linking tasks [9]. These models laid the foundation for modern cross-lingual
medical entity linking, but they still struggle in settings with severely partial terminology.

A complementary research line enriches textual embeddings with ontology structure. Graph-
augmented encoders such as BERGAMOT-GAT incorporate UMLS neighbourhoods via graph attention
and outperform both SapBERT and the string-matching baseline adopted in the first BioNNE task [4, 2].
Because BERGAMOT-GAT generalises well across ten languages without fine-tuning, it is adopted
unchanged in our system. A related approach, CODER, combines knowledge-infused term embeddings
with contrastive objectives to improve cross-lingual normalisation, demonstrating particular gains in
low-resource settings [10].

In parallel, generative models for entity linking have gained traction. Autoregressive retrievers
generate entity identifiers token-by-token using language models trained to mimic KB lookups [11],
while biomedical variants leverage synonym-aware objectives and KB-guided pretraining to improve
robustness in sparse domains [12]. Though effective, such methods typically require fine-tuning and
careful control over generation constraints.

For Russian biomedical NLP, early studies focused on terminology expansion and bilingual projection,
while RuCCoN introduced the first large clinical normalisation corpus and showed that SapBERT
markedly outperforms rule-based methods [13]. The BioNNE-L shared-task series extends this line of
work by adding nested mentions and a bilingual track, highlighting the challenges posed by partial
Russian terminology [2].

Finally, although accuracy has dominated prior evaluations, the reliability and confidence calibration
of multilingual normalisers remains underexplored. Sevgili et al. [14] highlight the limited attention
given to predictive uncertainty, particularly in multilingual or low-resource settings. Recent work on
uncertainty estimation has focused on other structured-prediction tasks - for instance, Somov and Tu-
tubalina quantify how entropy-based confidence scores can detect errors in Text-to-SQL generation [15].
To the best of our knowledge, no study has yet investigated how the absence of target-language syn-
onyms in UMLS modulates predictive uncertainty in biomedical concept normalisation. Our analysis in
present work aims to fill this gap.

3. Task and Data

The BioNNE-L 2025 shared task targets biomedical concept normalisation (MCN) under three settings:
Russian-only (Track 1), English-only (Track 2), and a combined bilingual scenario (Track 3) [16]. The
annotated corpora are built on top of the NEREL-BIO dataset of Russian and English biomedical abstracts
with nested entities [3, 17].

In all tracks, systems are required to map free-text entity mentions to UMLS Concept Unique Identifiers
(CUIs). Mentions may be nested and overlapping, and are evaluated using Accuracy@1, Accuracy@5,
and Mean Reciprocal Rank (MRR). In this work, we focus primarily on the Russian and bilingual tracks,

1https://github.com/AlbinaBurlova/bionn-gat-uncertainty
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where partial terminology coverage and missing Russian synonyms pose significant challenges for
normalization.

The organisers released dedicated training and development sets, along with a hidden test set for
final evaluation. Although documents do not repeat across splits, entity mentions often recur verbatim,
motivating optimisations based on mention-level caching. Statistics for the training and development
data are shown in Table 1, while Table 2 summarises the test subsets.

Table 1
Training and development data. Unique counts are lowercased.

Subset Mentions Unique Strings

Train (EN+RU) 26,945 9,817
Dev RU 2,334 1,684
Dev EN 2,494 1,512
Dev Bilingual 4,828 3,026

Table 2
Test set sizes and unique mentions.

Subset Mentions Unique Strings

Test RU 6,215 3,326
Test EN 6,661 2,827
Test Bilingual 12,876 6,040

To construct the linking vocabulary, we combined the bilingual UMLS lexicon distributed by the
organisers with all text–CUI pairs found in train and dev sets, including nested spans. Mentions were
normalised by lowercasing and lemmatising Russian terms using pymorphy3 2, while English terms
remained unchanged, as lemmatisation reduced accuracy.After filtering duplicates, we obtained a search
space of 4.0 million rows, spanning over 1.5 million unique CUIs.

A notable fraction of mentions across both training and development sets lacked associated UMLS
identifiers and were marked as CUILESS. These cases were excluded from all metric calculations and
from the vocabulary used in retrieval. Table 3 reports their distribution.

Table 3
Frequency of CUILESS mentions.

Subset Total Mentions CUILESS Count Share

Train (EN+RU) 26,945 2,520 9.35%
Dev RU 2,334 143 6.13%
Dev EN 2,494 99 3.97%
Dev Bilingual 4,828 242 5.01%

Although these mentions were ignored during evaluation, their high prevalence prompted an ex-
ploration of dedicated CUI-less classifiers. However, none of the tested approaches outperformed
random-choice baselines, and were thus omitted from the final pipeline.

Since identical strings appear repeatedly, we implemented memoisation at inference: each unique
mention is embedded once, and cached predictions are reused across documents. This optimisation
reduces runtime by around 30% without affecting output quality.

2pymorphy3 library: https://github.com/no-plagiarism/pymorphy3
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4. Method

The system follows a modular inference pipeline based on frozen multilingual encoders and a precom-
puted vocabulary index. We prioritise generalisability and inference speed, avoiding any task-specific
fine-tuning. The overall architecture consists of five stages: language-aware preprocessing, encoder-
based embedding computation, type-partitioned vocabulary indexing, hybrid retrieval, and prediction
postprocessing. Figure 1 provides a high-level overview of the system.

Figure 1: Overview of the concept normalisation pipeline.

4.1. Preprocessing and Language Detection

Each entity mention is lowercased and assigned a language tag via a heuristic based on Unicode
script ranges. Russian strings are further lemmatised to reduce morphological sparsity. Stemming was
empirically found to degrade Accuracy@1 to English mentions on the English track from 0.640 to 0.523,
and thus these steps are omitted for Latin-script entries. The normalised form also serves as a key for
downstream caching and matching steps.

4.2. Encoder: Frozen BERGAMOT-GAT

The publicly available model andorei/BERGAMOT-multilingual-GAT is used, which combines
multilingual BERT with biomedical graph structure via a Graph Attention Network over the UMLS
ontology [4]. The encoder is trained with multi-objective contrastive and classification losses and
produces a 768-dimensional [CLS] embedding per mention. Model weights remain frozen throughout
our pipeline to ensure robust cross-lingual generalisation and eliminate fine-tuning overhead.

For the English-only evaluation track (Track 1), which prohibits multilingual encoders, we used a
separate model andorei/gebert_eng_gat pre-trained on English biomedical data. Despite tuning
parameters (max_length = 64, batch_size = 512), this model achieved third place on the
leaderboard with Accuracy@1 = 0.64, highlighting the difficulty of competing against fine-tuned
English baselines. Nonetheless, the primary focus remained on the bilingual and Russian tracks.

4.3. Vocabulary Embeddings and Type Indexing

The concept vocabulary combines all unique mention–CUI pairs from the train and dev sets with the
official bilingual UMLS lexicon. After deduplication and lemmatisation of Russian entries, we obtain
approximately 4 million entries covering over 1.5 million unique CUIs. Each entry is embedded once
using the frozen encoder and stored on CPU. To reduce memory usage and speed up cosine retrieval,
the vocabulary is split into three semantic-type partitions: DISO, CHEM, and ANATOMY.



Table 4
Performance across tracks and preprocessing/model variants.

Setting Accuracy@1 Accuracy@5 MRR

Track 2: Bilingual
+ Lemmatisation, no lang filter 0.669 0.810 0.728
+ Lemmatisation, + lang filter 0.631 0.761 0.685
No lemmatisation, no filter 0.609 0.802 0.691

Track 1: Russian
+ Lemmatisation, no lang filter 0.716 0.828 0.761
Lowercase only, no filter 0.689 0.752 0.716
+ Lemmatisation, + lang filter 0.687 0.746 0.712

Track 1: English
gebert_eng_gat, lowercase 0.640 0.833 0.719
sapbert, lowercase 0.639 0.838 0.721
gebert_eng_gat, stemming 0.523 0.524 0.523

4.4. Inference Pipeline

During inference, the system applies a three-step hybrid retrieval strategy:

1. Exact match: if a mention string exactly matches a vocabulary entry (after normalisation), the
corresponding CUI is returned.

2. Cache lookup: repeated mentions are resolved via a key–value cache that maps (text, type) pairs
to previously retrieved predictions.

3. Cosine search: for unmatched cases, the mention is encoded and compared against 100k-sized
chunks of the corresponding type-specific partition using cosine similarity. Top-100 scores per
chunk are retained and merged before deduplication.

The final output consists of the top-𝑘 predictions (𝑘 = 5). If fewer than five candidates survive
deduplication, the last one is repeated to meet format constraints.

4.5. Efficiency and Hardware Setup

All experiments were conducted on a single NVIDIA A100-40GB GPU in Google Colab. The offline
embedding stage is CPU-bound, while inference uses GPU acceleration. Our key hyperparameters are:

• batch_size = 512
• max_length = 48 (increased to 64 for English track)
• cosine index chunk size = 100,000 embeddings

The full bilingual test set (12,876 mentions) is processed in under two hours, including I/O.

5. Results

We evaluate our system on all three tracks of the BioNNE-L 2025 shared task. Table 4 summarises the
performance under various settings. All runs use the same frozen encoder and retrieval logic, varying
only in preprocessing, language filters, and the underlying encoder model (for Track 1: English).

5.1. Track 2: Bilingual

Our best bilingual result is obtained without language filtering: all mentions — regardless of script
— search against the full bilingual vocabulary. This setting combines Russian lemmatisation with
aggressive lowercasing, yielding Accuracy@1 of 66.9% and MRR of 72.7. Restricting the vocabulary by
language degrades performance by over 3 pp, confirming that Russian mentions often resolve better
against English entries due to partial Russian coverage.



5.2. Track 1: Russian

The Russian track mirrors this pattern: using the full bilingual vocabulary outperforms language-
constrained alternatives by a margin of nearly 3 pp in Accuracy@1. Lemmatisation consistently
improves retrieval accuracy compared to plain lowercasing. Our system achieves Accuracy@1 of 71.6%,
ranking first among all participating systems.

It is hypothesised that this gain partially stems from transliterated mentions in the Russian test set —
e.g., Latin-script tokens referring to Russian concepts. In such cases, allowing retrieval from the English
subgraph helps bridge the gap in Russian lexical coverage.

5.3. Track 1: English

The monolingual English track required a separate model. We tested gebert_eng_gat and sapbert,
both fine-tuned on English biomedical data. The best result (Accuracy@1 of 64.0%) comes from
gebert_eng_gat with minimal preprocessing. Stemming, by contrast, leads to a dramatic drop of
11 pp, highlighting the fragility of surface-level changes in monolingual settings.

6. Uncertainty and Multilingual Behaviour

Because gold CUIs for the hidden test set are not publicly available, uncertainty is evaluated on the
bilingual development split bi_dev. After deduplicating mentions by their lower-cased, lemmatised
string, we obtain a clean evaluation pool of 2,571 unique mentions. For each mention, we store (i) the
cosine similarity to its gold embedding, (ii) softmax entropy of the top-20 similarity scores, and (iii) the
language of the surface form at rank 1. These variables are then correlated with prediction accuracy to
test our uncertainty hypotheses.

Spearman’s 𝜌 between cosine distance and entropy is 0.015 (𝑝 = 0.54), providing no evidence
for H1/H2. Cosine distances are tightly clustered in the 0.63–0.71 range, reflecting the fully partial-
terminology scenario in which all Russian mentions must be mapped to English concepts. This low
variance effectively saturates the distance signal and makes it uninformative for uncertainty estimation.

In contrast, entropy shows a strong link with model confidence. Table 5 bins the 2,571 mentions into
entropy quintiles. Accuracy@1 falls from 0.87 in the lowest-entropy bin to 0.10 in the highest, while
MRR drops four-fold-strongly supporting H5. The high-entropy quintile (Q5) contains only 49 correct
predictions out of 514; by contrast, Q1 contains 448 correct answers. Setting an entropy threshold at
the 80th percentile would remove 59% of all errors at a cost of just 13% of correct predictions. This
highlights entropy as a reliable proxy for confidence despite its narrow numerical range (2.98–2.99).

Table 5
Performance across entropy quintiles on bi_dev. Entropy is computed over the top-20 softmax-normalised
similarities.

Entropy quintile 𝑛 Acc@1 MRR

Q1 (1.61–2.99) 515 0.870 0.412
Q2 514 0.872 0.409
Q3 514 0.839 0.383
Q4 514 0.595 0.212
Q5 (2.99–3.00) 514 0.095 0.040

Uncertainty also varies by mention length and semantic type. One-token mentions achieve Acc@1
= 0.78 and mean entropy of 2.98, whereas seven-token or longer mentions fall to Acc@1 = 0.20 and
reach the highest entropy (≈ 2.99). Although such long entities represent only 11% of the data, they
account for 38% of the lowest-ranked predictions. In terms of semantic category, chemical entities
are normalised with slightly higher accuracy and lower entropy than diseases and anatomy, partially
confirming H6.



For every mention in bi_dev, the top-ranked surface form is in English. As no gold CUI in this slice
has a Russian synonym, the variable top1_lang is constant, rendering H3/H4 untestable. Importantly,
this absence of Russian forms does not result in higher entropy per se - the bottleneck appears to be
terminological, not linguistic.

In summary: (i) cosine distance fails to reflect uncertainty under extreme partial-terminology; (ii)
entropy is a robust predictor of error and supports entropy-aware filtering; (iii) longer and more complex
entities are harder to normalise; (iv) enriching UMLS with Russian surface variants remains crucial.
These findings directly motivate two future directions to be outlined: automatic expansion of Russian
UMLS terminology and entropy-based abstention for safe biomedical deployment.

7. Conclusion

We introduced a compact, fine-tuning-free pipeline for biomedical concept normalisation that couples
script-aware preprocessing, a frozen BERGAMOT-GAT encoder and a lightweight retrieval scheme
over a 4 M-entry bilingual UMLS vocabulary. Despite its simplicity, the approach achieved competitive
results in the BioNNE-L 2025 shared task, placing first in the Russian track and second in the bilingual
track (0.72 / 0.83 / 0.76 and 0.68 / 0.84 / 0.75 for Acc@1, Acc@5 and MRR, respectively).

To better understand the system’s behaviour, we carried out an uncertainty analysis on a deduplicated
development subset. While cosine distance to the gold concept proved uninformative under full partial
terminology, soft-max entropy over the top-20 candidates emerged as a reliable confidence signal: the
most entropic quintile contained the vast majority of errors. We also observed higher uncertainty for
long nested mentions and for anatomy/disease entities, whereas chemical terms were linked more
confidently.

Future work. These findings point to two directions we plan to explore: (i) automatic expansion of
Russian surface forms in UMLS to reduce the terminology gap, and (ii) integration of entropy-aware
re-ranking or abstention mechanisms to improve reliability in downstream applications.
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