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Abstract
In this rapidly advancing digital world, misogynistic dialogue has evolved beyond traditional boundaries, now
seeping into online spaces such as Twitter or X. This study aims to detect and classify instances of sexism in tweets.
We explore three tasks posed by CLEF lab’s EXIST 2025 challenge, focusing on English and Spanish tweets. These
tasks comprise: Binary classification to detect sexist tweets (1.1), multi-class classification to classify the author’s
intention (1.2), and multi-label classification to identify various dimensions of sexism (1.3). Our methodology
leverages several large language models (LLMs), prominently multilingual BERT and XLM_Roberta, combined
with an ensemble learning approach. We employ data augmentation techniques such as cross-translation, EASE,
and AEDA, and develop separate models for English and Spanish to optimize language-specific predictions. Model
evaluation is conducted using hard labels, derived through majority annotator voting, and soft labels, derived
from class probability distributions. We achieved the 4th rank for Spanish predictions and 13th in English and
Spanish combined soft evaluation for task 1.1. In the soft evaluation for tasks 1.2 and 1.3, our team ranked 6th
and 5th, respectively.
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1. Introduction

The rise of digital communication has amplified gender-based discrimination and hate speech, most
of which goes undetected. Models that can detect sexism in tweets are imperative to address this
ever-growing crisis, enabling platforms such as X (formerly Twitter) to take appropriate actions against
harmful content and mitigate sexism in online interactions.

In this research, we participate in the CLEF EXIST Lab’s Task 1: Sexism Detection in Tweets, which
aims to systematically identify and analyze sexist language [1]. The task is divided into three subtasks
with primary objectives: Identification, Source Intention, and Categorization.

1. Subtask 1: Sexism Identification Subtask 1 involves binary classification (YES or NO) to decide
whether or not a given tweet contains or describes sexist expressions or behaviors (i.e., exhibits
sexism, describes a sexist situation, or criticizes a sexist situation).

2. Subtask 2: Source Intention If subtask 1 classifies a tweet as sexist, subtask 2 identifies the
author’s intention. This is a ternary classification of the classes:

• Direct: The intent is to be sexist or endorse sexism.
• Reported: The intent is to report a sexist situation, experienced by a woman, in the first or

third person.
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• Judgmental: The intent is to judge a sexist situation to condemn sexism.

3. Subtask 3: Sexism Categorization If subtask 1 classifies a tweet as sexist, subtask 3 categorizes
the tweet based on the type(s) of sexism it contains. The categories include:

• Ideological and inequality
• Stereotyping and dominance
• Objectification
• Sexual violence
• Misogyny and non-sexual violence

Subtasks 1.1, 1.2, and 1.3 are referred to as Tasks 1, 2, and 3, respectively, throughout this paper.

2. Literature Review

Given the hierarchical nature of this challenge and sexism in textual information, approaches to all
three tasks overlap. In previous years, many approaches to identifying sexism in tweets involved
encoding-based transformer models, augmentation, LLMs/Prompt Engineering, and ensemble learning.
Before fine-tuning, the preprocessing and selection of relevant data are also crucial [2].

Top-performing models in EXIST 2024 were transformer-based architectures fine-tuned to EXIST
datasets. These architectures included BERT, RoBERTa, DeBERTa, and their multilingual variants.
Teams like BAZI [3] and Victor-UNED [4] focused on training a single encoding-based model using soft
labels, achieving top-10 rankings in soft evaluation in 2024 [2]. The models that performed exceptionally
well were multilingual-BERT (mBERT) and XLM_RoBERTa, trained on text from multiple languages,
enabling them to capture cross-lingual semantic similarities and transfer knowledge across languages.
By learning shared representations across languages, the models excel in handling diverse languages,
including those with limited labeled data, making it effective for various NLP applications, such as
machine translation and information retrieval [5]. Naebzadeh et al. from the NICA team utilized
sdadas/xlm-roberta-large-twitter, google-bert/bert-base-multilingual-uncased, and FacebookAI/xlm-
roberta-base, where mBERT outperformed all models in all tasks. They attribute the performance to
the simplicity and reduced number of parameters, as they are less prone to overfitting and generalize
better [6]. For Team frms [7], XLM_Roberta performed best for Task 1, and mBERT performed best for
Task 2 [2]. However, for other teams like BAZI [3], XLM_Roberta was the best for Task 2. This shows
that multiple models must be accommodated for the best overall results.

Ensembling is a technique that combines the capabilities of multiple models. It has shown promise
for all three EXIST tasks from the work done by UMUTeam [8], where they created ensembles of two
Spanish (BETO and MarIA) and two multilingual models (deBERTa v3 and XLMTwitter). Two methods
of ensembling were implemented: Knowledge Integration (KI), which merges all information into one
model, and Ensemble Learning (EL), which trains separate models and combines their predictions.
Through KI, they reached the 8th position in Task 2 [2]. For English tweets specifically, EL performed
better. Their best results were in Spanish, which suggests that BETO and MarIA may be good options to
integrate for Spanish. Also employing EL, Team Awakened [9] merged mono-lingual, multi-lingual, and
domain-specific models like twitter-xlm-roberta-base-sentiment and roberta-hate-speech-dynabench-r4
to create an ensemble of models and used weighted voting to assign higher weights to high-performing
models. Additionally, equal contribution voting with EL was used by teams like CIMAT-CS-NLP [10]
and Medusa [2] [11].

Other than EL, teams tweaked the weights of the attention layer to create better sentence representa-
tion. Team Penta-nlp’s approach accounted for the attention weights of the sentence representation,
which helped their models yield the best results for each task. Their results again underscore that
BERT-based models are best trained to capture the pattern of sexism when considering the attention
layer [12]. Prompt engineering through LLMs also spanned the experimental space in EXIST 2024.
Zero-shot and Few-shot led to the best predictions in hard-hard evaluation compared to encoding-based
transformers. Teams like CIMAT-CS-NLP [10] used summed zero-shot responses from Gemini, while



ABCD [13] created one Llama-2 response per annotator, simulating the annotation process and improv-
ing classification robustness. For hard evaluation in Task 3, the top-performing team was the ABCD
Team. They used LLMs like Llama 2 and T5 and models like XLM_RoBERTa. They divided the datasets
into six subsets corresponding to each annotator group, applied prompt engineering, and fine-tuned
transformer models on each subset. With LLMs and prompt engineering, Team ABCD achieved the
highest ICM-Hard Norm scores of 0.6320 for task 2 and 0.5862 for task 3 [13]. Plaza et al. note that
employing LLMs with encoding-based transformers seems to be most efficient in hard evaluations of
Tasks 2 and 3 [2].

Data augmentation is another technique prevalent in best-performing approaches. The NYCU-NLP
team achieved top ranks in all soft-soft and hard-hard evaluations for task 1 [14]. They employed
augmentation through back-translation using the Google Translate API and AEDA (An Easier Data
Augmentation). While these augmentations are highly efficient in enriching the dataset, Rahman et al.
show that the EASE (Extract Units, Acquire Labels, Sift, and Employ) method for augmentation performs
better in low-resource experiments [15]. In any case, data augmentation has proven to increase model
performance. Like Team ABCD, Team NYCU’s approach also incorporates annotators’ metadata, such
as age, gender, and ethnicity, in the tweet embedding, resulting in a unified vector representation for
each tweet. This approach tunes the models to nuanced and specific biases and stereotypes attached to
certain ages, cultures, and genders [14]. One improvement in this approach would be identifying which
metadata is significant to the prediction and which is irrelevant. This would also help one highlight the
underlying biases attached to specific demographics in society at large.

This review suggests that incorporating mBERT and xlm_RoBERTa with other transformer-based
models to create ensembles, language-specific fine-tuning, and data augmentation has shown much
promise for sexism identification and classification in previous years.

3. Dataset Overview

The dataset contains English and Spanish tweets, each annotated by six annotators. Three datasets are
expected from the lab: “Training" for training the models, “Development" for validation and pre-testing,
and “Testing" for final testing and creating prediction files to be submitted to the lab. The stats of these
datasets are shown in Table 1.

Table 1
EXIST Datasets: Statistics

Dataset Total Count English (EN) Spanish (ES)
Training 6920 3260 3660
Development 1038 489 549
Testing 2076 978 1098

Tasks & Annotations - Learning with Disagreement Whether a tweet is sexist or not is highly
subjective. Even with clear descriptions of the term and its meaning, many points of view arise, all of
which may be valid considering the socio-cultural norms and other factors that vary from individual
to individual. To assign such diversely identified labels to tweets, EXIST adopts the Learning with
Disagreements paradigm [1]. This paradigm involves 6 annotators for each tweet, with 6 distinct
standpoints. The differing standpoints are encapsulated in the metadata dictionary given with each
tweet in all datasets, where annotators’ demographics such as gender, age, ethnicity, nationality, and
study level are stated. The overall distribution of demographics is largely normalized, with each tweet
containing 1 annotator from each age group and an equal number of males and females. The rest of the
demographic groups vary from tweet to tweet, but overall, the dataset contains equal representation
from each group of individuals.

Tweet annotation for each annotator is illustrated hierarchically in Figure 1. A tweet is either labeled
sexist or non-sexist (Task 1 - Binary - Green). If it is not labeled sexist, Tasks 2 and 3 are automatically



assigned the label “NO" for that annotator. If the tweet is labeled sexist, annotators assign one of three
labels to identify source intention (Task 2 - Multi-class - Yellow) and any number of labels out of five to
categorize the tweet (Task 3 - Multi-label - Blue). Hard labels are obtained by finding the majority vote
of 6 annotators for each task. The hard label statistics are given in Table 2.

Figure 1: Annotation Hierarchy

Table 2
Hard Labels Statistics

Task Training Development
Task 1
NO 3367 479
YES 2697 455
Task 2
NO 3367 479
DIRECT 1294 204
REPORTED 459 75
JUDGEMENTAL 376 83
Task 3
NO 3367 479
OBJECTIFICATION 1103 183
SEXUAL-VIOLENCE 675 123
STEREOTYPING-DOMINANCE 1423 241
IDEOLOGICAL-INEQUALITY 1113 212
MISOGYNY-NON-SEXUAL-VIOLENCE 856 158

4. Approaches

For the development phase, the “Development" dataset is used for testing instead of validation to
compare and contrast the performance across various approaches. In this phase, validation is performed
by splitting the “Training" dataset into an 80/20 ratio, where 80% is used for training and 20% is used
for validation.

4.1. Models Overview

The following models were used in all three tasks:

• BERT multilingual base model (uncased): Trained in 102 languages, including English and
Spanish, using a masked language modeling (MLM) objective [16].



• BERT multilingual base model (cased): Similar to uncased, however, this model treats capital-
ization as a different word, whilst uncased treats it the same.

• XLM_RoBERTa: Multilingual variant of RoBERTa model trained on 100 different languages
[17].

In addition to these multilingual baselines, we employed a variety of monolingual and region-specific
models tailored to English and Spanish for ensembling in Task 1.

• distilroberta-base: A distilled and computationally efficient variant of RoBERTa trained exclu-
sively on English data.

• bert-base-uncased: BERT trained on English text with uncased tokens.
• roberta-base: An enhanced version of BERT trained on larger corpora with improved training

strategies, including dynamic masking and longer sequences.
• PlanTL-GOB-ES/roberta-base-bne: A RoBERTa variant specifically pre-trained on Spanish

text.
• dccuchile/bert-base-spanish-wwm-cased: A Spanish BERT model utilizing whole-word mask-

ing (WWM) during pretraining.
• xlm-roberta-base: Although multilingual, it was also included as a Spanish model due to its

balanced multilingual training and demonstrated effectiveness on Spanish tasks.

4.2. Data Augmentation

To enhance our dataset, we applied data augmentation through translation, EASE, and AEDA. The
training dataset was split into Spanish and English tweets for language-specific fine-tuning. To enrich
and increase the size of the datasets, each was translated into the other language while keeping all
other parameters constant. This involved translating all English tweets into Spanish and adding them
to the Spanish dataset, and vice versa. The translation was done via the Helsinki-NLP translation model.
We refer to this technique as cross-translation and the resulting datasets as cross-translated datasets.

In addition to cross-translation, we incorporated an enhanced version of the EASE (Extract Units,
Acquire Labels, Sift, and Employ) approach [15]. First, meaningful units (sentences or facts) are extracted
using the NLTK library. Then, pre-trained models generate labels for these units. Next, shorter-length
samples are filtered, and the augmented data is integrated with the original training set. To further refine
the data, we introduced an additional layer of synonym replacement before merging the augmented set
back into the original dataset.

We also implemented AEDA (An Easy Data Augmentation), which involved randomly introducing
punctuation marks at different positions in tweets. This augmentation strategy was employed by
the NYCU team, who dominated the charts of all three tasks in 2024 [14][2]. Training on the AEDA-
augmented cross-translated dataset significantly improved the scores of all three tasks, as demonstrated
in Section 5. As shown in Table 3, through these augmentations, the size of the training dataset was
increased by more than double.

Table 3
EXIST Datasets Post Augmentation: Statistics

Dataset Total Count English (EN) Spanish (ES)
Cross-Translation 13840 6920 6920
EASE-S + Cross-Translation 25840 12920 12920
AEDA + Cross-Translation 24408 12204 12204

4.3. Base Architecture

Our architecture primarily consists of twelve independently fine-tuned models. For each of the three
tasks, we use four models: two for English (EN) and two for Spanish (ES) (for hard and soft probabilities



each). Each model within a task is language-specific to aid tailored fine-tuning, accommodating linguistic
nuances. This multilingual approach helps the models be better fine-tuned in their respective languages.

Our proposed framework comprises the following main components:

1. Preparing Dataset: The dataset is split into EN and ES and preprocessed for each task.
2. Data Augmentation: Cross-translation, AEDA, and EASE-S augmentation are applied. Spanish

tweets are translated into English and vice versa, resulting in mirrored datasets. Thus, EN and
ES datasets contain equal tweets (Table 1). AEDA and EASE are performed on cross-translated
datasets with optimizations for each task.

3. Fine-tuning the Models: Each Model undergoes separate fine-tuning using either the EN or
ES augmented datasets. The EN and ES models for a given task share the same architecture
and training hyperparameters. The datasets contain labels from all six annotators for each task,
which are replaced by the hard and soft labels extracted from gold files. Across tasks, different
approaches may be used. For instance, Ensemble Learning is only used in Task 1, metadata is
incorporated in Task 2, and EASE is used in Task 3. Fine-tuning may also be done separately
for hard and soft labels to optimize evaluation-specific output, with separate models trained to
predict soft and hard labels.

4. Post-processing: The prediction outputs from both EN and ES models are collected and aggre-
gated. For soft labels, we calculate the probability distribution over possible classes. To reflect
the real-world annotation process (six annotators), these probabilities are snapped to the nearest
1
6 interval. This adjustment helps simulate annotator agreement more accurately. While the
“snapping" works well for Task 3, additional steps are taken for Tasks 1 and 2 to ensure that the
sum of all probabilities after finding the nearest 1

6 equals 1. The output is then formatted to match
the required submission specifications.

5. Final Output: We produce two types of outputs:

• Soft Labels: Represented as probability distributions across classes. For Tasks 1 and 2
(multi-class), these probabilities must sum to 1. For Task 3 (multi-label), the sum may not
equal 1.

• Hard Labels: Derived from soft label probabilities by applying thresholds inspired by the
gold label creation criteria:

– Task 1 (Multi-class): Class selected if picked by more than 3 annotators.
– Task 2 (Multi-class): Class selected if picked by more than 2 annotators.
– Task 3 (Multi-label): Class selected if picked by more than 1 annotator.

In cases where no class meets the threshold, ’NO’ is selected as output.

4.4. Approach for Task 1: Sexism Identification in Tweets

This task asks for binary classification of tweets, determining whether a given tweet is sexist (“YES") or
non-sexist (“NO"). We first filtered the dataset to include only the parts essential for Task 1, removing
the rest of the metadata provided with each tweet. In hard evaluation, predictions are discrete. If at
least 3 out of 6 annotators annotated a tweet “YES", it is processed as sexist. In contrast, soft evaluation
considers the probability distribution over labels, capturing and returning the probabilities of whether
the tweet is sexist or non-sexist, and evaluating the model’s ability to predict probabilities close to
human judgment.

4.4.1. Soft Models

In initial experimentation, Bert-base-multilingual-cased and DistilRoBERTa demonstrated strong base-
line results. Cross-translation improved generalization across linguistic variations, while AEDA offered
minimal gains on top of the cross-translated dataset. The most effective approach was language-aware
ensemble models built upon the other approaches: AEDA and cross-translation.

For Ensemble Learning (EL), two ensembles were created for augmented EN and ES datasets:



• EN: distilroberta-base, bert-base-multilingual-cased
• ES: bert-base-multilingual-cased, dccuchile/bert-base-spanish-wwm-cased

Each model in the ensemble contributed weighted probabilities based on its performance on validation
data. The optimal weights were determined using a trial-and-error approach with different weights.

At inference time, the system dynamically assigned weights based on the tweet’s language: the
English ensemble’s output dominated predictions for English tweets, and a similar pattern was observed
for the Spanish ensemble. This adaptive, language-specific ensembling strategy delivered our best
results, achieving strong ICM, ICMNorm, and Cross Entropy scores shown in section 5.1.

4.4.2. Hard Models

Hard models for Task 1 also incorporated cross-translation, AEDA, and EL. Cross-translation pre-
served label semantics while improving model performance across languages, and AEDA improved
generalization by making models more resilient to the informal and variable nature of tweets.

Similar to the soft models through EL, two ensembles were created for augmented EN and ES datasets:

• EN: distilroberta-base, bert-base-uncased, roberta-base
• ES: PlanTL-GOB-ES/roberta-base-bne, dccuchile/bert-base-spanish-wwm-cased,
xlm-roberta-base

Ensemble weights were optimized via grid search and other common optimization techniques to
maximize the overall F1 score. This unified approach using AEDA, cross-translation, and EL consistently
outperformed any individual model or augmentation strategy.

4.5. Approach for Task 2: Source Intention in tweets

Task 2 involves a multi-class classification task where the source intentions of the tweets are identified.
The approaches for this task included pre-processing, cross-translation, AEDA, and incorporating
annotators’ metadata.

The preprocessing steps for this task included:

• Removal of URLs and mentions.
• Removal of residual special characters except for basic punctuation.
• Reduced repetition of letters and punctuation to reduce noise, following Team Medusa [11].
• Normalizing whitespace.

XLM_RoBERTa and mBERT were fine-tuned on two versions of augmented datasets—cross-translated
with AEDA and cross-translated without AEDA—for EN and ES separately, resulting in eight fine-tuned
models. After training with each model and approach, EN and ES predictions were collected from
separate models and merged, giving four ALL (EN+ES) prediction files with scores discussed in section
5.3.

AEDA For task 2, tweets with class “NO" are the overwhelming majority and result in class imbalance
(Table 2). Hence, AEDA was only applied to tweets with hard labels “REPORTED," “JUDGMENTAL," or
“DIRECT." The resulting datasets overcame the class imbalance and yielded improved results, especially
with XLM_RoBERTa’s Twitter variant as the base model.

Separate Training For Hard Models While the model fine-tuned with AEDA augmentation worked
well for soft labels, it did not yield the same improvement for hard labels. Hence, various approaches
were implemented to improve the scores for hard labels. These approaches included decreasing the class
imbalance further by augmenting more tweets that belonged to the underrepresented class. Furthermore,
for the previous models, the ground truth labels were taken as a vector of probabilities from the gold
file for soft labels. This was replaced with the gold file for hard labels, and instead of a probabilities
vector, the ground truth label was used for training.



Annotator’s Metadata Another approach for this task was to utilize the annotators’ metadata
dictionary to capture socio-cultural biases that may arise while labeling tweets. This was done following
the approach by the ABCD team, first ranked in Tasks 2 and 3 in 2024, where Quan et al. split the
dataset into 6 subsets on the annotator’s data and subsequently trained 6 component models on the
split data [13]. We adopted this approach and trained 12 models, 6 for English and 6 for Spanish. The
hard and soft labels were obtained by aggregating the predictions of each model, as described in section
4.3. Due to the long training time, larger models such as Roberta Large, used by Quan et al., were not
fine-tuned, and a smaller augmented dataset without AEDA was used.

4.6. Approach for Task 3: Sexism Categorization in tweets

Task 3 was a multi-label classification task aimed at identifying multiple categories of sexism present
in each tweet. We developed separate models for English and Spanish tweets and applied EASE-S
and AEDA augmentation. These were done on top of cross-translation, enabling better alignment and
generalization across both languages.

We fine-tuned BERT-multilingual-cased as the base model for both languages. While we also experi-
mented with XLM_Roberta, the multilingual BERT variant consistently yielded better performance.
Similarly, a combined augmentation pipeline (EASE-S + AEDA) was evaluated but did not outperform
EASE-S or AEDA individually.

Each language model produced soft probabilities for each potential category, representing the like-
lihood that a tweet belonged to that category. These probabilities were then snapped to the nearest
1
6 interval, reflecting the presence of six annotators. This snapping allowed the soft outputs to better
emulate real-world annotation distributions and led to improved alignment with gold labels.

To convert the soft scores into hard labels, we applied a thresholding mechanism: any category with
a probability greater than or equal to 0.167 (i.e., 1

6 ) was included in the final label set for that tweet. If
no category met this threshold, the tweet was labeled as “NO", indicating the absence of sexist content.
This threshold was based on the assumption that a label assigned by at least one annotator should be
considered valid, maintaining consistency with the annotation schema.

Finally, the predictions from the English and Spanish models were unified by merging their soft
probability JSON files before thresholding, ensuring a comprehensive, multi-lingual label assignment.

5. Results and Discussions

The following sections present the results from our models across different tasks, organized into two
phases: Dev Pre-testing & Experimentation and Test Results & Ranking. The pre-testing results were
obtained using the Development (Dev) set, for which we had access to gold labels, enabling detailed
experimentation, analysis, and comparison. This division allows us to highlight the range of techniques
and experiments that informed model development—insights that would be lost if we only reported
final test scores. Notably, the ICM-Soft Norm scores on the Dev set closely mirrored those on the Test
set, reinforcing the reliability and generalizability of our approach. The Test Results & Ranking section
shows the final results on the Test set and the rankings obtained through our runs.

5.1. Task 1: Soft Models

5.1.1. Dev Pre-testing & Experimentation

The results in Table 4 indicate a clear improvement when data augmentation techniques are applied
compared to the baseline. The AEDA method outperforms both the Baseline and Cross-Translation
across all three evaluation metrics: ICM-Soft, ICM-SoftNorm, and Cross-Entropy.

For ICM-Soft, the baseline score is negative (−2.388), suggesting poor alignment or inconsistency,
while Cross-Translation significantly improves this to 0.526, and AEDA further enhances it to 0.712,
indicating stronger soft-label consistency. Similarly, ICM-Soft Norm, which normalizes soft-label



Table 4
Task 1: Soft-soft Evaluation using bert-base-multilingual-cased

Metric Baseline Cross-Translation AEDA
ICM-Soft -2.388 0.526 0.712
ICM-Soft Norm 0.114 0.585 0.615
Cross Entropy 4.799 0.810 0.943

confidence, increases from 0.114 (Baseline) to 0.585 (Cross-Translation) and peaks at 0.615 with AEDA.
Cross-entropy shows a notable decrease from 4.799 to 0.810 (Cross-Translation), and 0.943 with AEDA,
indicating the predictions match the gold labels more with the cross-translated and AEDA-augmented
model.

Table 5 shows the result of soft-soft evaluation scores for the three ensemble models Ensemble_EN,
Ensemble_ES, and the Combined Ensemble. As can be seen among all the approaches, the final ensemble
model, Combined Ensemble, achieves the highest ICM-Soft, ICM-SoftNorm, and Cross Entropy scores.
This indicates that combining both English and Spanish ensembles attains the highest performance
compared to the individual ensembles.

Table 5
Task 1: Soft-Soft Evaluation for Ensemble Models

Metric Ensemble_EN Ensemble_ES Combined Ensemble
ICM-Soft 0.670 0.809 0.870
ICM-Soft Norm 0.608 0.630 0.640
Cross Entropy 0.966 1.023 0.881

5.1.2. Test Results & Ranking

We submitted one run for the test set, evaluated across both languages combined (ALL), Spanish (ES),
and English (EN) subsets. As can be seen from Table 6, the results show variations across languages.
On the test set, the Spanish subset showed the best performance in terms of ICM-Soft and ICM-Soft
Norm, with values of 0.8426 and 0.6351, respectively, and achieved a rank of 4. The ALL subset followed
with an ICM of 0.6767, ICM-Soft Norm of 0.6085, and rank 13. The English subset dropped behind in
ICM-Soft and ICM-Soft Norm, scoring 0.5034 and 0.5808, and ranked 24. The Spanish subset’s overall
stronger performance highlights the effectiveness of the base models used in the Spanish ensemble
and our cross-lingual augmentation strategies. As for the English ensemble, a bigger and better model
might have given better results. While the ranking performance is consistent with trends seen in
development, further refinements may be needed to improve English-specific generalization and better
balance performance across all languages.

Table 6
Task 1: Soft-soft Evaluation on Test Set & Ranking

Run Language Rank ICM-Soft ICM-Soft Norm Cross Entropy
Run 3 ALL 13 0.6767 0.6085 0.8894
Run 2 ES 4 0.8426 0.6351 0.8609
Run 1 EN 24 0.5034 0.5808 1.0516

5.2. Task 1: Hard Models

5.2.1. Dev Pre-testing & Experimentation

Table 7 compares the performance of different techniques applied to Task 1 under hard evaluation
metrics: ICM-Hard, ICM-Hard Norm, and FMeasure. We started with a baseline model (DistilRoBERTa



trained without augmentation, ensembling, or cross-translation), which gave relatively low scores of
0.223, 0.612, and 0.700 for ICM-Hard, ICM-Hard Norm, and F1 score, respectively. These are better than
the baseline, but not very good, indicating that the base model alone was not sufficient to accurately
classify sexist content in tweets. This could be due to less training data or its multilingual capacity. With
cross-translation and ensemble modeling together, the results across all metrics improved significantly,
yielding scores of 0.531, 0.766, and 0.843 for ICM-Hard, ICM-Hard Norm, and F1, respectively. This was
a tremendous shift from the baseline, indicating the importance of enriching the training data and using
more language-specific models. Finally, we incorporated AEDA into the already-designed ensembles
and cross-translation setup. This gave the best overall results, with the highest scores in every metric.
ICM-Hard rose to 0.575, ICM-Hard Norm became 0.788, and F1 increased to 0.858.

Table 7
Task 1: Hard-Hard Evaluation on Dev-set

Metric Baseline Base
Model

Ensemble
+ Cross Translation

Ensemble + AEDA
+ Cross Translation

ICM-Hard -0.481 0.223 0.531 0.575
ICM-Hard Norm 0.256 0.612 0.766 0.788
F1 Score 0.316 0.700 0.843 0.858

5.2.2. Test Results & Ranking

As done for soft-soft evaluation, we submitted one run for the test set, broken down into ALL (EN+ES),
EN, and ES. Overall, the performance on the test set is slightly lower than that on the development set.
On the dev set, our best configuration (ensemble + cross-translation + AEDA) achieved strong results
with ICM = 0.575, ICMNorm = 0.788, and F1 = 0.858. However, on the test set, the best F1 score achieved
was 0.7750 for the ES subset, followed by 0.7558 for ALL and 0.7302 for EN (Table 8). This drop indicates
the inability of the models to generalize to unseen variations in the test set. The same fall is seen in
scores for ICM and ICM Norm that came out to be 0.4953 and 0.7490, respectively, for ALL, 0.4962 and
0.74810 for ES, and 0.4800 and 0.7449 for EN. Notably, the Spanish subset performed best across all
metrics, indicating that our multilingual and cross-translation strategies were particularly effective for
non-English data. Meanwhile, the English subset lagged, which may point to dataset-specific nuances
and base model choice. Even though the overall performance was quite consistent with dev scores,
the overall rankings were not comparable to the competition. With ALL achieving a rank of 56, ES
achieving a rank of 50, and EN achieving a rank of 90, it is clear that other approaches, such as zero-shot
learning, should be explored, and specific heed must be paid to English models.

Table 8
Task 1: Hard-Hard Evaluation on Test Set & Ranking

Run Language Rank ICM-Hard ICM-Hard Norm F1 Score
Run 3 ALL 56 0.4953 0.7490 0.7558
Run 2 ES 50 0.4962 0.7481 0.7750
Run 1 EN 90 0.4800 0.7449 0.7302

5.3. Task 2: Source Intention in tweets

5.3.1. Dev Pre-testing & Experimentation

For this subtask, we experimented with five different approaches and tested them in the development
phase. The models for both soft-soft and hard-hard evaluations were trained together with these
five types of approaches. First, we evaluated scores for the cross-translation approach on mBERT and
xlm_RoBERTa models. xlm_RoBERTa consistently performed better than mBERT, yielding overall better
scores as shown for both soft-soft and hard-hard evaluations in Tables 9 and 10. The addition of AEDA



augmentation improves the performance of both models, mBERT ICM-SoftNorm goes from 0.36 to 0.38,
and xlm_Roberta from 0.40 to 0.41. A similar improvement is seen in the hard-hard evaluations, where
xlm_Roberta improves from 0.44 to 0.46 ICM Norm. This highlights that managing class imbalance
and introducing more samples of underrepresented classes through AEDA augmentation helps models
identify the overall patterns and nuances better.

The last approach of Metadata incorporation performed better than the mBERT models; however, it
did not outperform xlm_RoBERTa trained on cross-translated and AEDA-augmented data. The Metadata
incorporation has promised improvement in scores for teams such as ABCD in 2024 [13]. In our case,
the less favorable scores could be linked to the lack of AEDA augmentation while training component
models for each language, and using the xlm_RoBERTa base model instead of xlm_RoBERTa Large.
Training with augmented data and a bigger model posed an excessive computational overhead and
hence was skipped.

Table 9
Task 2: Soft-soft Evaluation on Dev Set

Metric Base
Model

mBERT
Cross

Translation

xlm_RoBERTa
Cross

Translation

mBERT
+ AEDA

xlm_RoBERTa
+ AEDA

xlm_RoBERTa
+ Annotators’

Metadata
ICM-Soft -5.8599 -1.7699 -1.2154 -1.5778 -1.2165 -1.7906
ICM-SoftNorm 0.0537 0.3652 0.4074 0.3833 0.4103 0.4006
Cross Entropy 4.8106 1.8722 1.8057 1.8823 1.8220 1.8906

Table 10
Task 2: Hard-Hard Evaluation on Dev Set

Metric Base
Model

mBERT
Cross

Translation

xlm_RoBERTa
Cross

Translation

mBERT
+ AEDA

xlm_RoBERTa
+ AEDA

xlm_RoBERTa
+ Annotators’

Metadata
ICM -1.0234 -0.3568 -0.1606 -0.3555 -0.1126 -0.2092
ICMNorm -1.0234 0.3884 0.4497 0.3888 0.4647 0.4345
FMeasure 0.1579 0.4469 0.5013 0.4677 0.5330 0.5102

5.3.2. Test Results & Ranking

Soft-soft evaluations We submitted three runs on the best identified model, xlm_RoBERTa trained
on Cross-translation and AEDA-augmented datasets, split into ALL-EN+ES (Run 3), ES (Run 2), and EN
(Run 1) tweets. The splits helped gauge the model’s performance in English and Spanish together and
separately.

Our runs performed exceptionally well on soft-soft evaluations as shown in Table 11. ALL achieved
the rank 6th, ES was also ranked 6th, and EN achieved the rank of 7th out of 192 submissions [1]. The
test scores are comparable to the dev scores (Table 9) and indicate that the model was well-equipped to
generalize and predict soft probabilities for unseen tweets. It is to be noted that the model did not show
any significant bias either for English or Spanish tweets while predicting soft probabilities.

Table 11
Task 2: Soft-soft Evaluation on Test Set & Ranking

Run Language Rank ICM-Soft ICM-Soft Norm Cross Entropy
3 ALL 6 -1.0572 0.4148 2.0396
2 ES 7 -0.9479 0.4241 2.0352
1 EN 6 -1.3180 0.3923 2.0446



Hard-hard evaluations The model was trained on the gold soft dataset instead of the gold hard
dataset, which played a substantial role in the model’s predictions. While the model predicted the
relative difference of probabilities in soft predictions well, as indicated by the ranks and scores in soft
evaluations, the trend understandably did not hold for hard evaluations.

The hard predictions were calculated by selecting the most probable class from soft predictions.
Here, a curious disparity is found. Overall, the ranks are lower than the soft evaluations, which is
expected because the training was performed with soft vectors. However, instead of a unanimous worse
performance, the model performed especially worse for English tweets with Run 1 at rank 65, while
Run 2 and 3 are ranked 21 and 26, respectively (Table 12). This hints at a bias in the xlm_RoBERTa base
model for Spanish, but could also be linked to other participants’ focus on English tweets specifically,
which would explain the similar disparity in the ranks of Task 1.

Table 12
Task 2: Hard-Hard Evaluation on Test Set & Ranking

Run Language Rank ICM-Hard ICM-Hard Norm Macro F1
3 ALL 26 0.1987 0.5646 0.5101
2 ES 21 0.3022 0.5944 0.5439
1 EN 65 0.0488 0.5169 0.4566

5.4. Task 3: Soft Models

5.4.1. Dev Pre-testing & Experimentation

For the multi-label classification task, we evaluated the performance of several augmentation strategies
on the soft models. The baseline results, derived from using unprocessed soft labels, were notably poor,
with an ICM-Soft of –8.7 and a normalized ICM-Soft of 0.0. These metrics highlighted the need for
improved label estimation strategies.

Our first attempt, which involved predicting hard labels using the base model and then applying
softmax to reconstruct soft probabilities, yielded slightly better results (–7.0, 0.0), but ultimately proved
conceptually flawed. This approach ignored the inherent distributional nature of soft labels and
introduced error by artificially re-softening hard decisions. A substantial improvement was observed
with cross-translation, where the dataset was expanded by translating tweets between English and
Spanish. Training language-specific models on these extended corpora and then merging predictions led
to a major boost in performance (–2.59 ICM-Soft, 0.36 ICM-Soft norm). This demonstrated that increasing
dataset diversity can significantly enhance model understanding. However, further augmentations
using EASE-S (synonym replacement) showed a slight decline in performance. Despite increasing the
dataset with an additional 6,000 tweets, the model’s ICM-Soft dropped to –2.79 with a normalized
score of 0.35, suggesting that excessive or noisy augmentation can introduce semantic drift and reduce
effectiveness.

EASE-AEDA, which combined EASE-S and AEDA, offered marginally better performance than
EASE-S alone (–2.78,0.35), but still underperformed compared to cross-translation. Interestingly, AEDA
alone yielded the best results. By selectively augmenting only the underrepresented categories with
minor random noise, the model achieved its highest accuracy with –2.51 ICM-Soft and 0.37 ICM-Soft
norm. This highlights that AEDA was the best technique for augmentation for this task. This can be
summarized in the Table 13.

Table 13
Task 3: Soft-soft Evaluation on Dev Set

Metric Baseline Base Model Cross-Translated EASE-S EASE-AEDA AEDA
ICM-Soft -8.7 -7.0 -2.59 -2.79 -2.78 -2.51
ICM-Soft norm 0.0 0.0 0.36 0.35 0.35 0.37



5.4.2. Test Results & Ranking

We submitted three runs on the best-performing augmentation strategy identified during development:
AEDA. As shown in Table 14, our rankings were 5th for ALL, 6th for ES, and 6th for EN out of 181
submissions, highlighting the robustness and competitiveness of our models in a multilingual, multi-
label classification task. These results reaffirm the strength of the AEDA-based augmentation approach,
which is well generalized from the development set to the testing set.

Table 14
Task 3: Soft-soft Evaluation on Test Set & Ranking

Run Language Rank ICM-Soft ICM-Soft Norm
3 All 5 -2.4632 0.3699
2 ES 6 -2.6287 0.3632
1 EN 6 -2.3548 0.3710

5.5. Task 3: Hard Models

5.5.1. Dev Testing & Experimentation

For the hard classification model, the baseline performance was relatively poor, with an ICM of –1.72,
ICM-Norm of 0.11, and an F1-score of 0.10. This served as a reference point for evaluating the impact
of various augmentation strategies. Our initial base approach using only the original dataset without
augmentation achieved -0.51 ICM, 0.26 ICM-Norm, and 0.27 F1. This was better than the baseline;
however, the model was still limited due to insufficient diversity in training data.

Significant improvement was observed with cross-translation, where tweets were translated between
English and Spanish to enlarge and diversify the dataset. This resulted in a noticeable performance
jump, with an ICM of –0.30, ICM-Norm of 0.43, and F1-score of 0.467. On top of this, AEDA on
underrepresented tweets further improved performance to –0.268, 0.44, and 0.478, respectively.

Interestingly, combining both EASE and AEDA (EASE-AEDA) led to a slight drop in performance
(–0.29, 0.44, 0.47). While still better than using cross-translation alone, the combination did not yield
the expected gains (likely due to noise or redundancy introduced by combining both augmentation
techniques). The best results were achieved using EASE-S alone. This method yielded the top scores
across all metrics: –0.24 ICM, 0.445 ICM-Norm, and 0.482 F1 (Table 15). This suggests that strategically
chosen augmentations can significantly enhance hard multi-label model performance by increasing
generalization without overwhelming the semantic integrity of the tweets.

Table 15
Task 3: Hard-Hard Evaluation on Dev Set

Metric Baseline Base Approach Cross-Translated EASE-S EASE-AEDA AEDA
ICM -1.72 -0.51 -0.3 -0.24 -0.29 -0.268
ICM Norm 0.11 0.26 0.43 0.445 0.44 0.44
F1 0.10 0.27 0.467 0.482 0.47 0.478

5.5.2. Test Results & Ranking

We submitted three test runs for the ICM-Hard evaluation, again with AEDA identified as most effective
during development. In contrast to the Soft evaluations, the results for the hard evaluations are not as
impressive. The EN model, submitted as Run 1, achieved a 69th-place ranking, slightly lower than our
ES model in Run 2, which placed 67th. Despite this ranking difference, both models achieved compa-
rable Macro F1 scores (0.5184 for EN and 0.5210 for ES), suggesting relatively balanced classification
performance across both languages.



Run 3, which combined predictions from both EN and ES models, ranked 65th overall, showing a
slight improvement in the ICM-Hard Norm (0.4188) and a better Macro F1 of 0.5205. These results
indicate that, although our models performed better under soft evaluations, they remained moderate
in the hard setting. Since this was a multi-label task, it is highly possible for the model to have been
overconfident and predicted more than one label (when there wasn’t) or have higher confidence in
the wrong classes. Any value above the threshold we set resulted in the label being included, whereas
our soft models just compared how near the values were to the original values (not considering the
label as absolute if it was). However, the consistency across evaluation types once again reinforces the
effectiveness of our AEDA-driven modeling pipeline. The balanced performance in ICM-Hard Norm
and Macro F1 further highlights our model’s capacity for multilingual generalization in both Spanish
and English in a multi-label environment. This can be summarized in Table 16.

Table 16
Task 3: Hard-Hard Evaluation on Test Set & Ranking

Run Language Rank ICM-Hard ICM-Hard Norm Macro F1
3 All 65 -0.3499 0.4188 0.5205
2 ES 67 -0.4361 0.4026 0.5210
1 EN 69 -0.2708 0.4336 0.5184

6. Conclusion

This paper presents our approach for the EXIST 2025 Tasks 1.1, 1.2, and 1.3 involving sexism identification
and classification in tweets. We employed ensemble architectures and augmentation techniques to
generate both soft and hard predictions. Our methodology included cross-translation between English
and Spanish to enhance data diversity, along with the data augmentation techniques EASE-S and AEDA.
These augmented datasets were utilized across all three tasks.

For Task 1.1, an ensemble approach was adopted, comprising two or three English and Spanish models,
which delivered improved scores and demonstrated the benefit of combining multiple models to mitigate
individual weaknesses and enhance robustness. In Task 1.2, xlm_RoBERTa trained on a cross-translated
and AEDA class-targeted augmented dataset significantly outperformed other approaches, indicating
that xlm_RoBERTa variants are well-suited for multilingual sexism-related classification tasks and that
augmenting underrepresented classes can help address class imbalance. For Task 1.3, EASE-S performed
best on the hard sub-task, whereas AEDA achieved superior results on the soft sub-task.

These findings underscore the importance of carefully selecting models and employing augmentation
and ensemble strategies to address linguistic and contextual challenges in sexism classification. We
intend to experiment with zero-shot and few-shot learning to improve our hard sub-task models, given
their demonstrated performance in the literature. Additionally, we aim to incorporate annotator-specific
contextual embeddings and evaluate how different annotator data affect the results. This will help large
language models (LLMs) learn the vast diversity of human perspectives and socio-cultural nuances, and
integrate them into their predictions.
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