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Abstract
This paper presents the DUTH system for the EXIST 2025 shared task on multilingual sexism detection. The

task comprises three subtasks applied to a multilingual tweet corpus annotated with both hard and soft labels: (i)

binary classification of sexist vs. non-sexist content, (ii) single-label classification of the type of sexism, and (iii)

multi-label classification of the intended sexism category. The proposed system employs a transformer-based

multilingual architecture, fine-tuned using techniques such as oversampling, class weighting, and soft-label

learning to address class imbalance and annotator disagreement.

Our system demonstrates robust performance in binary sexism detection, particularly on Spanish data,

achieving competitive results under both hard and soft evaluation metrics. However, performance on the more

nuanced subtasks—classifying the type and intent of sexist speech—remains limited, underscoring the difficulty

of modeling implicit and context-sensitive expressions of sexism. We analyze these challenges and propose future

directions, including discourse-aware modeling, hierarchical label representations, and multimodal learning.

Keywords
Sexism Detection, Transformer Models, Soft Labels, Multi-label Classification

1. Introduction

Sexism remains prevalent in online discourse, often disguised through implicit or veiled expressions,

which complicates automated detection efforts [1]. Social media platforms frequently exacerbate this

issue by amplifying such content [2]. Consequently, effective computational approaches are essential to

meet the growing need for identifying gender-based discrimination.

Detecting sexism automatically is inherently challenging due to linguistic ambiguity, annotator

subjectivity, and cultural variation in its expression [3, 4]. The EXIST 2025 shared task tackles these

challenges by providing a multilingual benchmark dataset consisting of tweets, memes, and TikToks

annotated along multiple sexism-related dimensions [5, 6].

In this paper, we describe our participation in Task 1, which focuses on tweets and includes three

subtasks. We adopt a multi-model architecture based on transformer models fine-tuned for multilingual

and multi-label classification.

Previous work in offensive language and toxic comment detection has evolved from rule-based systems

to deep learning architectures [7]. Transformer models such as BERT and its variants have shown

strong performance across NLP classification tasks, including sentiment analysis, stance detection, and

toxicity recognition [8].

Multilingual transformers like mBERT and XLM-R are particularly effective in cross-lingual scenarios

with limited annotated data [9]. The EXIST series highlights the complexities of modeling sexism,

especially in the presence of annotator disagreement [4]. Recent approaches to address this include soft

labeling, uncertainty modeling, and disagreement-aware learning [3].
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Our prior work on multilingual affective analysis [10] informed our modeling strategy in this

task, underlining the effectiveness of ensemble and hybrid models in tackling nuanced cross-lingual

phenomena such as sexism. Building on these insights, we structure our study as follows: Section 2

describes the dataset, including annotation methodology and statistical distributions, followed by our

implementation environment and modeling approach. Section 3 presents the experimental results,

evaluation metrics, and a detailed subtask analysis. Finally, Section 4 summarizes our findings and

outlines future research directions.

2. Approach

2.1. Dataset

The EXIST 2025 dataset is a multilingual corpus of tweets annotated for three subtasks: binary sexism

detection, intention classification, and multi-label sexism type categorization. Annotations were col-

lected from multiple annotators per instance, with soft labels derived from aggregated votes. Tweets

are annotated in both English and Spanish, providing a realistic and culturally diverse corpus.

Table 1: Statistics for Task 1.1 (Sexist vs Non-Sexist)

Sexist (Yes) Non-Sexist (No)

Train 18,753 22,767

Dev 2,998 3,230

Table 1 presents the label distribution for Task 1.1, which involves binary classification of tweets

as either sexist (Yes) or non-sexist (No). The training set contains 18,753 sexist and 22,767 non-sexist

instances, while the development set includes 2,998 and 3,230 examples, respectively. The overall

distribution is relatively balanced, with a slight majority of non-sexist examples.

Table 2: Statistics for Task 1.2 (Sexism Type)

Reported Judgmental Direct Unknown

Train 4,652 5,015 9,004 82

Dev 757 863 1,378 0

Table 2 shows the label distribution for Task 1.2, which focuses on classifying the type of sexism

expressed in tweets. The categories include: Reported Speech, Judgemental, Direct, and Unknown.

In the training set, most sexist tweets fall under the Direct category (9,004 instances), followed by

Judgemental (5,015) and Reported Speech (4,652), with only a small number labeled as Unknown (82).

The development set follows a similar pattern. This distribution reflects a prevalence of explicit sexist

content in the dataset and indicates that the Direct category is the most dominant, which may influence

model learning and performance.

Table 3: Statistics for Task 1.3 (Sexism Intentions)

Intentional Unintentional Ideological Non-Sexist

Train 10,587 8,391 8,778 22,767

Dev 1,643 1,408 1,419 3,230

Table 3 summarizes the label counts for Task 1.3, which involves multi-label classification of sexism

intentions. Each tweet can be annotated with one or more of the following categories: Intentional,
Unintentional, Ideological, and Non-Sexist. In the training set, Intentional sexism is the most common

category (10,587 tweets), closely followed by Ideological (8,778) and Unintentional (8,391). The Non-Sexist
class corresponds to tweets without sexist content (22,767 instances) and can co-occur with the others

due to the soft-label nature of the task. This distribution suggests that intentionality and ideology are



prominent aspects of sexist expression in the dataset.

The test set consists of 2,076 tweets annotated with soft labels for all three subtasks. For Task 1.1,

each instance includes a probability distribution over the binary classes (Sexist vs. Non-Sexist). For

Tasks 1.2 and 1.3, soft multi-label annotations are provided for each of the respective categories. These

probabilistic labels capture annotator disagreement and are intended to support evaluation methods

beyond traditional classification metrics.

2.2. Implementation and Environment

All experiments were conducted in Python 3.10, using the HuggingFace Transformers library and

the PyTorch framework.

The core software stack included transformers (v4.38.1) for model loading and fine-tuning,

datasets (v2.18.0) for data handling, scikit-learn (v1.4.2) for evaluation metrics, and pandas
(v2.2.1) and numpy (v1.26.4) for data manipulation. We used torch (v2.2.0) as the main backend for deep

learning operations. Auxiliary libraries such as accelerate, evaluate, tqdm, json, and argparse
supported training and evaluation.

The implementation supports soft-label training, class reweighting, and multi-label classification

where applicable. Annotator labels were manually preprocessed into hard or probabilistic targets

according to the task requirements.

2.3. Methodology

Task 1.1 – Binary Sexism Detection

For Task 1.1, we formulated the problem as a binary classification task, aiming to distinguish between

sexist and non-sexist tweets. We filtered the training instances to retain only those with annotations

from at least three annotators, and assigned hard labels based on majority vote. To address class

imbalance, we applied oversampling to the minority class (sexist instances). We employed the multilin-

gual xlm-roberta-large transformer model and fine-tuned it using a custom training routine with

class-weighted cross-entropy loss to mitigate bias toward the majority class. Hyperparameters were

tuned using stratified training-validation splits and early stopping based on F1-score.

Task 1.2 – Sexism Type Classification

Task 1.2 involves single-label classification of sexist tweets into three categories: Reported Speech,

Judgmental, and Direct. Instances were labeled according to the most frequently selected category

among annotators. Due to skewed class distributions, we balanced the training data via oversampling

to ensure equal representation across categories. The cardiffnlp/twitter-xlm-roberta-base
model was fine-tuned using a custom training pipeline that dynamically computed class weights based

on the frequency of each label in the training set. Optimization was guided by macro-averaged F1-score,

and early stopping was applied to prevent overfitting.

Task 1.3 – Multi-label Sexism Intention Classification

For Task 1.3, we treated the classification of sexism intentions as a multi-label problem, where tweets

could be associated with one or more categories from a predefined set. We performed label normalization

to unify semantically overlapping tags and filtered out inconsistently annotated or ambiguous instances.

To alleviate class imbalance, we applied targeted data augmentation using paraphrased versions of

underrepresented instances. We fine-tuned a multilingual xlm-roberta-base model with sigmoid

activation on the output layer and binary cross-entropy loss. The model was trained using stratified

sampling and evaluated with micro-averaged F1-score.



2.4. Training Details

All systems were developed using the Hugging Face Transformers library with a PyTorch backend.

Stratified training-validation splits (typically 80/20 or 90/10) were used to preserve label distributions.

Early stopping was employed to prevent overfitting, with patience values ranging from 2 to 3 epochs.

Below, we outline the specific hyperparameter settings and preprocessing strategies adopted per subtask.

Task 1.1 – Binary Sexism Detection. We employed the xlm-roberta-large transformer model,

fine-tuned using the AdamW optimizer. Training data was filtered to retain examples with at least

three annotators and binarized via majority vote. Minority class oversampling and a class-weighted

cross-entropy loss were used to address label imbalance. Learning rate: 1e–5 Batch size: 4 Epochs:

up to 10 (early stopping patience: 2) Max sequence length: 128 Class weights: [1.0, 1.3]

Task 1.2 – Sexism Type Classification. The cardiffnlp/twitter-xlm-roberta-base model

was fine-tuned using class-balanced oversampling and a dynamically computed class-weighted cross-

entropy loss. Learning rate: 1e–5 Batch size: 4 Epochs: 6 (early stopping patience: 2) Max sequence
length: 128 Loss weighting: inverse label frequency (normalized)

Task 1.3 – Multi-label Intention Classification. We used xlm-roberta-base in a multi-label

setup with sigmoid activation and binary cross-entropy loss. Label normalization and label-aware

paraphrasing were applied to address semantic overlap and class imbalance. Learning rate: 2e–5 Batch
size: 8 Epochs: 3 Max sequence length: 128 Augmentation strategy: paraphrasing underrepresented

categories to at least 300 examples per class

All models were evaluated using macro- or micro-averaged F1-score depending on the task. Mixed-

precision (FP16) training was enabled when supported by the hardware.

3. Results

3.1. Evaluation Metrics

The evaluation of submitted systems in EXIST 2025 relies on a diverse set of metrics tailored to the

nature of each subtask.

Information Contrast Measure (ICM): ICM is a hierarchical-aware metric that compares pre-

dicted and gold labels by incorporating the semantic distances between hierarchical classes [11]. It is

particularly suitable for hard-label classification tasks involving taxonomies.

ICM-soft extends ICM to the soft-label setting by evaluating predicted probability distributions

against annotator consensus distributions. It rewards models that capture annotator uncertainty and

disagreement, aligning with recent trends in disagreement-aware learning and probabilistic labeling

[3].

F1-score is used in subtasks with binary or imbalanced classification. It is defined as the harmonic

mean of precision and recall, and may be reported per class or for the positive class (YES) depending on

the evaluation protocol [12].

Cross-Entropy measures the divergence between predicted and reference probability distributions,

offering insight into the probabilistic calibration of classifiers. It is particularly relevant for soft-label

and uncertainty-based modeling [13].

3.2. Experimental Results

To assess system performance, the EXIST 2025 organizers adopted metrics that reflect both accuracy

and agreement with annotator uncertainty.



ICM-Soft (Inter-Class Matching – Soft) is a divergence-based metric that compares predicted dis-

tributions with soft gold labels representing annotator consensus. It rewards systems that approximate

the degree of disagreement among annotators rather than enforcing a single hard label [14, 15].

Normalized ICM-Soft rescales ICM-Soft relative to a random baseline, producing values between 0

and 1 for easier interpretation. A higher score indicates stronger alignment with annotators.

Cross Entropy measures the average divergence between predicted and true soft label distributions.

Lower values signify better probabilistic calibration and alignment with annotator judgments.

These metrics, drawn from recent research in learning with disagreement [14, 15], are particularly

suited to tasks involving subjective or multi-annotator data such as sexism detection.

Table 4: Task 1.1 – Evaluation Summary for Team DUTH

Instance Set ICM-Hard ICM-Hard Norm F1 YES ICM-Soft ICM-Soft Norm Cross Entropy

ALL 0.4628 0.7326 0.7432 0.1960 0.5314 2.1029

ES 0.4720 0.7360 0.7656 0.2949 0.5473 2.0821

EN 0.4374 0.7232 0.7126 0.0078 0.5013 2.1263

Table 4 presents a comparative summary of the performance of the DUTH system across all, Spanish

(ES), and English (EN) instances in Task 1.1, evaluated under both hard and soft settings.

For the ALL instances, the system demonstrates balanced performance. The normalized hard-label

score (ICM-Hard Norm = 0.7326) and a relatively high F1 score for the YES class (0.7432) indicate

consistent behavior in detecting positive instances across both languages. The soft-label performance

(ICM-Soft = 0.1960; ICM-Soft Norm = 0.5314) and reasonably low cross-entropy (2.1029) reflect fair

model calibration and uncertainty estimation.

On Spanish (ES) instances, the system performs best. It achieves the highest F1 YES score (0.7656),

with both hard (ICM-Hard = 0.4720; Norm = 0.7360) and soft (ICM-Soft = 0.2949; Norm = 0.5473) metrics

supporting its robustness. The lowest cross-entropy (2.0821) further underscores the model’s confident

and accurate predictions in Spanish.

In contrast, English (EN) instances show relatively weaker performance. Despite a very low ICM-

Soft score (0.0078), suggesting high confidence, the corresponding F1 YES score (0.7126) and ICM-Hard

(0.4374) are the lowest among subsets. This disparity may indicate overconfidence or miscalibration in

English-language predictions.

In summary, while the system maintains overall stable performance, it exhibits notably stronger

results on Spanish instances—highlighting possible language-specific biases or training data imbalances

that warrant further attention.

Table 5: Task 1.2 – Evaluation on All Instances for Team DUTH

System ICM-Hard M-Hard No Macro F1 ICM-Soft M-Soft Norm Cross Entropy

ALL -1.8988 0.0000 0.1967 -18.5641 0.0000 7.3212

Our system exhibited limited effectiveness on Task 1.2, achieving a Macro F1 score of only 0.1967,

which reflects poor balance across the three target classes. This result suggests that the model struggled

particularly with identifying minority categories, especially those involving subtle or non-explicit

expressions of sexist intent. Additionally, the high Cross Entropy value (7.3212) indicates substantial

uncertainty and miscalibration in the model’s probabilistic outputs.

These outcomes are not unexpected given the inherent complexity of Task 1.2. Unlike binary

classification, this task requires the ability to distinguish between nuanced forms of sexism—such as

ideological versus unintentional intent—and to interpret implicit language cues embedded in varying

cultural and social contexts. Such subtleties often challenge general-purpose text encoders, which may

lack the inductive bias needed to generalize over pragmatic and contextual features.



Table 6: Task 1.3 – Evaluation on All Instances for Team DUTH

System ICM-Hard M-Hard No Macro F1 ICM-Soft ICM-Soft Norm Cross Entropy

ALL -1.5980 0.1289 0.3897 -25.9339 0.0000 –

In Task 1.3, our system obtained a Macro F1 score of 0.3897, indicating moderate performance in

distinguishing between the multiple categories associated with sexist intent. While the model captures

certain patterns in the data, it struggles to generalize across all intent types in a balanced manner.

This relatively low score is not unexpected, given the inherent difficulty of Task 1.3, which involves

not only identifying the presence of sexist content but also inferring the underlying intention—a

subjective and highly context-sensitive construct. Distinguishing between intentional, unintentional,

ideological, and non-sexist statements requires sensitivity to pragmatic cues, cultural nuances, and

discourse-level features that go beyond surface-level lexical signals.

Our models showed robustness in binary classification but underperformed in the nuanced distinctions

required by Tasks 1.2 and 1.3. The use of standard transformers, without explicit modeling of label

hierarchy or annotator disagreement, likely contributed to the poor handling of ambiguous or multi-

intent tweets. Performance was particularly limited in cases with rare label co-occurrence or high

inter-annotator variance.

We hypothesize that incorporating hierarchical label modeling, disagreement-aware loss functions,

and graph-based representation learning could substantially improve performance. Error analysis also

highlighted the need for pragmatic and discourse-level features, which were lacking in our current

token-level input representations.

3.3 Results Analysis

The experimental results across the three subtasks reveal several insights regarding the capabilities and

limitations of our system.

In Task 1.1 (Binary Sexism Detection), the system demonstrated robust performance, particularly

on the Spanish dataset. The highest normalized ICM-Hard and F1-YES scores across all language subsets

suggest stronger alignment with the linguistic characteristics of Spanish sexist content. We hypothesize

that greater consistency of lexical cues in Spanish tweets, coupled with the model’s cross-lingual

generalization capabilities, contributed to this outcome. In contrast, the relatively lower performance

on English may reflect increased linguistic ambiguity or higher annotation noise.

In Task 1.2 (Sexism Type Classification), the system performed considerably worse. The macro-

averaged F1 score of 0.1967 indicates substantial class imbalance and difficulty in distinguishing

between closely related categories such as Judgemental and Reported Speech. The high cross-entropy

further suggests that the model was poorly calibrated, frequently producing overconfident but incorrect

predictions. The lack of explicit contextual signals in short tweet texts likely impeded its ability to

disambiguate intent-related expressions.

In Task 1.3 (Sexism Intention Classification), the system achieved moderate performance (Macro
F1 = 0.3897) but struggled with overlapping labels and fine-grained distinctions. The task’s multi-label

nature, which requires handling interdependent and co-occurring classes, posed significant challenges.

The absence of structured label modeling may have further constrained performance. Moreover, the

extremely low or negative ICM-Soft scores highlight a misalignment with annotator disagreement,

underlining the complexity of learning from soft-label distributions in subjective contexts.

Overall, while our system was effective at identifying explicit forms of sexism, it underperformed

when required to infer nuanced, context-dependent phenomena such as intention or ideological framing.

These findings are consistent with prior observations that transformer-based models, though strong in

binary classification, benefit from extensions such as discourse-aware architectures, hierarchical label

modeling, and pragmatic signal integration when applied to subjective or multi-dimensional annotation

schemes.



4. Conclusion and Future Work

In this paper, we presented our approach for the EXIST 2025 shared task on multilingual sexism

detection, addressing three subtasks involving binary, single-label, and multi-label classification. Our

architecture leveraged transformer-based multilingual models trained with both hard and soft labels to

accommodate the subjectivity and annotator disagreement inherent in the dataset [3, 16].

Our system achieved robust performance in Task 1.1, particularly on Spanish instances, demonstrating

strong alignment with annotator labels in both hard and soft evaluation metrics. However, results on

Tasks 1.2 and 1.3 revealed significant challenges in modeling subtle forms of intent and distinguishing

fine-grained classes under conditions of low inter-annotator agreement. These tasks require more than

lexical matching—understanding pragmatic cues, intent, and socio-linguistic context is essential [17].

For future work, we aim to enhance the modeling of subjective and ambiguous instances by integrating

hierarchical and graph-based label representations [18]. We also plan to incorporate discourse-aware

and pragmatics-driven features, possibly through large language models with conversational grounding

or attention to speaker roles and framing. Agreement-aware loss functions and uncertainty modeling

will be further explored to better align model behavior with the soft-label structure of the dataset.
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