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Abstract
In this paper, we present our system for the EXIST2025 shared task on sexist content detection in English
and Spanish. We experimented with several transformer-based models, including DeBERTa, mDeBERTa, XLM-
RoBERTa, Detoxify, and HateBERT, alongside three levels of text preprocessing: Light, Classic, and Aggressive
Cleaning. Although various data augmentation strategies were tested, such as translation-based augmentation
using Meta AI’s NLLB model and pseudo-labeling with the EDOS dataset, the final submitted system did not
include these enhancements. The system achieved competitive rankings in the soft evaluation setting, placing in
the top 15 for several subtasks.
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1. Introduction

With the proliferation of internet access, social media has woven itself into the fabric of everyday life.
Platforms like X (formerly Twitter), TikTok, and Instagram provide users with the means to express
themselves freely and connect with others across the globe. Yet, these same spaces have also become
breeding grounds for harassment and abuse, especially targeting women [1, 2, 3, 4, 5, 6].

This article presents the working notes for our submission to EXIST 2025 [7, 8, 9], representing the
effort of team NetGuardAI. EXIST (sEXism Identification in Social neTworks) is a series of scientific
events and shared tasks focused on identifying sexism in social networks. Its goal is to promote the
automatic detection of sexism in all its forms, ranging from overt misogyny to more subtle, implicit
sexist behaviors.

For this edition, we tackled one of the three tasks, focusing on the Natural Language Processing
(NLP) challenges.

• Subtask 1.1: Sexism Identification - binary classification
• Subtask 1.2: Source Intention - multi-class (4) classification
• Subtask 1.3: Sexism Categorization - multi-class (6) classification

Our system utilized multilingual DeBERTa (mDeBERTa) [10, 11] and XLM-RoBERTa [12] models
fine-tuned for the detection of sexist content. Before using model inference, we applied pre-processing
techniques such as lowercasing, punctuation normalization, and removal of special characters to clean
the text data. To enhance the diversity and robustness of the training data, we augmented the existing
dataset by translating it using NLLB (No Language Left Behind) [13]. The processed and augmented
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inputs were then fed into the mDeBERTa and XLM-RoBERTa models, which were trained to classify
and identify sexist language based on contextual understanding.

The rest of the paper is structured as follows. Section 2 presents the current studies for sexism
identification. Section 3 describes the experimental setup. Section 4 presents and discusses the results.
Finally, Section 5 concludes our work and hints at future directions.

2. Related Work

Harmful content detection has been tackled in recent years from three different perspectives. The
most common approaches use word and transformer embeddings together with deep learning models
to classify the textual content [14, 15, 16, 17, 18]. Another approach is to enhance the context using
metadata such as social context [19] or the information diffusion within a network [20]. Moreover,
novel approaches also propose the use of network immunization to stop the spread of harmful content
online [21, 22, 23, 24, 25, 26]. Furthermore, full-fledged architectures that analyze social media in
real-time have been developed [27, 28].

When analysing the EXIST 2024 competition, we find that a variety of learning strategies were
employed for sexism detection across multiple modalities and languages. Traditional machine learning
models, including Logistic Regression, Support Vector Machines, Random Forests, and ensemble methods
like stacking and boosting, were used effectively, especially when combined with careful feature
engineering and text pre-processing [29, 30]. However, transformer-based architectures dominated the
competition.

Transformer models such as BERT, RoBERTa, and especially XLM-RoBERTa were widely used and
consistently ranked among the top-performing models across tasks [29, 31, 32, 33, 18, 34, 35, 36, 37].
BERT variants (including BERT multilingual, BETO for Spanish, and DeBERTa-v3) were employed in
several configurations, often fine-tuned on competition-specific data [29, 31, 32, 18, 34, 35, 36]. XLM-
RoBERTa stood out as a strong baseline across multiple tasks, being used both as a standalone model
and in ensembles [31, 32, 33, 18, 34, 35, 37].

Data augmentation techniques were used to enhance model generalization. These included synonym
replacement, contextual augmentation with transformers, back-translation, and methods like AEDA
[29, 34]. Some teams enriched data through few-shot learning using large language models such as
GPT-3.5 and GPT-4, particularly effective in multimodal tasks involving memes [33, 38, 36].

Domain-specific adaptation was another notable trend. Models pretrained on sentiment, hate speech,
or Twitter-specific data showed competitive results when fine-tuned for EXIST tasks [18, 34, 35].
Additionally, participant teams used demographic metadata (e.g., annotator gender, age, ethnicity) to
enrich input representations and tailor predictions [34, 37].

3. Method

3.1. Task Description

The EXIST 2025 shared task is divided into three components: 1) tweet classification (Task 1), 2) meme
classification (Task 2), and 3) video classification (Task 3). Our participation focused exclusively on tweet
classification. Within this domain, Task 1.1 is a binary classification task that aims to detect whether
a tweet expresses sexist intent. Task 1.2 involves multiclass classification, where tweets identified as
sexist are further assigned to one of three predefined categories based on the perceived intent of the
author. Lastly, Task 1.3 is a multi-label classification task, allowing sexist tweets to be associated with
one or more relevant categories.

3.2. Dataset

The 2025 edition includes nine subtasks in English and Spanish, covering three classification tasks:
sexism identification, source intention detection, and sexism categorization applied to three different



types of media: text (tweets), images (memes), and videos (TikToks). We present each subtask for Task
1 as follows:

• Subtask 1.1 - Binary Sexism Detection: A binary classification where models predict whether a
post is sexist or not. (6 920 samples: 3 367 non-sexist, 2 697 sexist)

• Subtask 1.2 - Category of Sexism: For sexist posts, a four-class classification to determine the
type of sexism: Direct, Judgemental, Reported, Unknown (Total: 2 697 samples).

• Subtask 1.3 - Fine-grained Vector of Sexism: A 6-class classification further detailing sexist
content: Ideological and inequality, Stereotyping and Dominance, Objectification, Sexual Violence,
Misogyny and Non-Sexual Violence (Total: 2 697 samples)

The tweets dataset is divided into three distinct sets: train, development, and test (Table 1).

Table 1
EXIST 2025 Tweets Dataset for Task 1

Set English Tweets Spanish Tweets Total

Train 3 260 3 660 6 920
Dev 489 549 1 038
Test 978 1 098 2 076

3.3. Pre-processing & Data Augmentation

Multiple pre-processing techniques were explored to prepare the textual data for analysis [39]. The
initial Light Cleaning phase involved removing emojis, URLs, and mentions, as well as normalizing
whitespace to reduce noise. Building on this, the Classic Cleaning step extended the process by
removing non-ASCII characters, punctuation, and digits, and converting all text to lowercase for
consistency. The third method, Aggressive Cleaning, included the steps from Classic Cleaning,
followed by the removal of stopwords and the application of stemming to reduce words to their root
forms.

Given the bilingual nature of the data, an augmentation step is included to add translated versions of
the tweets. This step ensures that both Spanish and English content are represented more uniformly
across the dataset, improving the generalization of the model. Two translation solutions were explored:
the first used the Google Translate API, and the second leveraged the NLLB [13] (No Language Left
Behind) model developed by Facebook. Both approaches aimed to maintain translation quality while
handling domain-specific language effectively.

3.4. Model Architecture

For our experiments, we began by evaluating a range of transformer-based models (Table 2). The initial
evaluation was conducted using the test data from Task 1. Our classification approach prioritized the
most frequently occurring label per tweet; in cases of a tie, the tweet was classified as sexist. We also
tested the impact of light pre-processing and used accuracy and F1-Score [40] metrics to determine the
best-performing models (Table 3).

In the second phase, we focused on assessing the effectiveness of the three pre-processing strategies
using the mDeBERTa model. Among Light, Classic, and Aggressive Cleaning, the Classic Cleaning
approach yielded the best results (Table 4). Based on these initial findings, we selected mDeBERTa
and XLM-RoBERTa-base for further training and evaluation across the three tasks, as both models
demonstrated strong performance.

To enhance the training data, we implemented two data augmentation strategies. The first involved
translation-based augmentation using Meta AI’s NLLB model to generate high-quality translations and
promote a more balanced bilingual dataset. The second strategy utilized external data augmentation



Table 2
The Proposed models for our experiments

Model Name Multilingual

DeBERTa [11, 10] No
mDeBERTa [11, 10] Yes
XLM-RoBERTa [12] Yes
HateBERT [41] No
Detoxify [42] No
RoBERTa-hate-speech [43] No

Table 3
Transformers Performance Comparison Across Misogyny Detection Tasks 1

Model Pre-processing Accuracy F1-No F1-Yes

DeBERTa Yes 0.80 0.82 0.77
DeBERTa No 0.81 0.82 0.79
mDeBERTa-large Yes 0.76 0.81 0.69
mDeBERTa-large No 0.79 0.82 0.75
mDeBERTa-base Yes 0.80 0.83 0.76
XLM-RoBERTa Yes 0.80 0.83 0.76
XLM-RoBERTa No 0.80 0.83 0.76
HateBERT Yes 0.75 0.73 0.74
HateBERT No 0.78 0.81 0.75
Detoxify Yes 0.78 0.80 0.77
Detoxify No 0.77 0.82 0.71
RoBERTa-hate-speech Yes 0.76 0.80 0.68
RoBERTa-hate-speech No 0.78 0.81 0.74

Table 4
Model Performance Comparison Based on pre-processing

Model Pre-processing Accuracy F1-No F1-Yes

mDeBERTa Light 0.81 0.82 0.80
mDeBERTa Classic 0.82 0.83 0.80
mDeBERTa Aggressive 0.80 0.80 0.80

with the EDOS (Evaluation Dataset for Online Hate Speech) dataset [44]. For this, we applied a pseudo-
labeling technique: a model trained on the original labeled data was used to predict labels for the
unlabeled EDOS examples. To maintain label quality, we filtered predictions based on confidence scores,
retaining only those above 80% for Task 1 and above 60% for Tasks 2 and 3, due to their increased
complexity and subjectivity.

Figure 1: Proposed Architecture

This combined augmentation strategy aimed to increase both the volume and diversity of the training
data while preserving label reliability, ultimately boosting the robustness and generalization of the
model. As shown in Tables 5, 6, and 7, the best-performing configuration across all three tasks was



achieved using the mDeBERTa model with Classic Cleaning and translation-based augmentation via
the NLLB model, while excluding additional augmentation from the EDOS dataset as we can see in
Figure 1.

Table 5
Task 1.1 - Results

Model Pre-processing Augmented
Translation

Augmented
EDOS Accuracy F1-Score

mDeBERTa Classic No No 0.82 0.81
mDeBERTa Classic Yes No 0.82 0.81
XLM-RoBERTa-base Classic Yes No 0.81 0.80
mDeBERTa Classic Yes Yes 0.81 0.81

Table 6
Task 1.2 - Results

Model Pre-processing Augmented
Translation

Augmented
EDOS Accuracy F1-Score

mDeBERTa Classic No No 0.64 0.46
mDeBERTa Classic Yes No 0.66 0.48
XLM-RoBERTa-base Classic Yes No 0.65 0.36
mDeBERTa Classic Yes Yes 0.65 0.37

Table 7
Task 1.3 - Results

Model Pre-processing Augmented
Translation

Augmented
EDOS Accuracy F1-Score

mDeBERTa Classic No No 0.64 0.47
mDeBERTa Classic Yes No 0.65 0.50
XLM-RoBERTa-base Classic Yes No 0.64 0.45
mDeBERTa Classic Yes Yes 0.65 0.48

4. Results

Tables 8 and 9 show the official leaderboard results. The evaluated model was mDeBERTa, using
classic pre-processing without any data augmentation. It is hypothesized that incorporating translations
could have led to improved performance.

The submitted system delivered competitive results in the EXIST2025 competition, particularly in
the soft evaluation setting. As shown in Table 8, the system ranked within the top 15 for Task 1.1
across languages, reaching 11th place out of 66 for English and 14th overall. Performance was even
stronger in Task 1.2, with the system placing 8th out of 56, demonstrating robustness across both
English and Spanish subtasks. However, results were less competitive for Task 1.3, with rankings
around the middle of the leaderboard. In the hard evaluation (Table 9), rankings were generally
lower, with a peak performance of 38th place for Task 1.1 in Spanish, while the English results lagged
behind. These outcomes suggest that while the model generalized well under soft evaluation metrics,
it struggled to maintain top-tier performance under strict classification thresholds. The absence of
augmentation and translation strategies might have limited the model’s adaptability, particularly in
handling language-specific nuances and subtler forms of sexist content.



Table 8
Ranking and Results in EXIST2025 competition - Soft

Task Evaluation Rank Total systems ICM-Soft ICM-Soft-Norm Cross Entropy

1.1 Soft-Soft-All 14 67 0.6707 0.6076 0.8774
1.1 Soft-Soft-ES 21 64 0.6737 0.6080 0.8558
1.1 Soft-Soft-EN 11 66 0.6295 0.6011 0.9015
1.2 Soft-Soft-All 8 56 -1.3444 0.3917 1.5681
1.2 Soft-Soft-ES 9 54 -1.1955 0.4043 1.5688
1.2 Soft-Soft-EN 8 55 -1.6199 0.3676 1.5674
1.3 Soft-Soft-All 17 53 -3.9061 0.2937 -
1.3 Soft-Soft-ES 16 49 -3.8908 0.2975 -
1.3 Soft-Soft-EN 17 52 -3.8994 0.2863 -

Table 9
Ranking and Results in EXIST2025 competition - Hard

Task Evaluation Rank Total systems ICM-Hard ICM-Hard-Norm F1-Score

1.1 Hard-Hard-All 55 160 0.4966 0.7496 0.7553
1.1 Hard-Hard-ES 38 153 0.5112 0.7557 0.7775
1.1 Hard-Hard-EN 102 158 0.4664 0.7380 0.7261
1.2 Hard-Hard-All 54 140 0.0969 0.5315 0.4567
1.2 Hard-Hard-ES 56 136 0.1045 0.5327 0.4733
1.2 Hard-Hard-EN 59 139 0.0663 0.5229 0.4334
1.3 Hard-Hard-All 48 132 -0.1516 0.4648 0.4357
1.3 Hard-Hard-ES 47 128 -0.1454 0.4675 0.4599
1.3 Hard-Hard-EN 61 131 -0.1692 0.4585 0.3968

5. Conclusion and future directions

The experiments conducted in this study explored various transformer models, pre-processing tech-
niques, and data augmentation strategies to address the EXIST2025 shared task on sexist content
detection. Among the evaluated approaches, the combination of the mDeBERTa model with Classic
Cleaning pre-processing consistently demonstrated strong performance, particularly in the soft evalua-
tion setting. Despite not incorporating data augmentation or translation-based enhancements in the
final submission, the system achieved competitive results, thus ranking within the top 15 for multiple
subtasks.

However, the lower rankings in the hard evaluation suggest that the model’s robustness could be
further improved by integrating additional strategies, such as translation-based augmentation and
external datasets like EDOS. These findings underscore the importance of both model selection and
pre-processing, while also highlighting the potential impact of thoughtful data augmentation. Future
work will focus on refining augmentation techniques and exploring ensemble approaches to enhance
classification performance, especially under stricter evaluation conditions and across multiple languages.
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