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Abstract
This paper presents the approaches developed by UMUTeam in the EXIST 2025 shared task at CLEF 2025. This task
focuses on identifying and classifying sexist content on social media across three modalities: text (e.g., tweets),
images (e.g., memes), and videos (e.g., TikToks). Our systems address all three subtasks—binary sexism detection,
source intention classification, and sexism categorization—under both hard and soft evaluation strategies. We
used multilingual Transformer-based models, including XLM-RoBERTa (base and large versions) for text, ViT for
image features, and VideoMAE for video input. We applied specialized preprocessing and label handling for each
modality. Soft-label learning was implemented using mean squared error (MSE) loss for subtasks 1 and 2, which
involve binary and multiclass classification, respectively, and binary cross-entropy (BCE) loss for subtask 3, which
is a multilabel classification problem. In all cases, annotator votes were transformed into probability distributions
to capture label uncertainty, in line with the LeWiDi framework. For hard-label variants, discrete predictions
were obtained by selecting the class or classes with the highest probability from the model’s output during the
evaluation stage. Out of 244 participating teams that submitted a total of 589 hard-label and 284 soft-label runs,
our systems achieved competitive results, including top-10 rankings in several subtasks.
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1. Introduction

Sexism refers to prejudice, stereotyping, or discrimination based on a person’s sex, typically directed
against women. According to the Oxford English Dictionary, sexism is defined as “prejudice, stereo-
typing, or discrimination, typically against women, on the basis of sex.” Although significant progress
has been made toward gender equality in recent decades, such as the partial closing of the wage gap,
the growing presence of women in leadership roles, and the implementation of educational programs
to prevent gender-based violence, inequality and discrimination persist, especially in digital spaces.
However, these issues persist, especially in digital environments [1].

Social media, in particular, has become a double-edged space. On one hand, it empowers movements
like #MeToo, #Time’sUp, and #8M, for gender justice and provides a platform for women to report
experiences of abuse and discrimination. On the other, it enables the rapid spread and normalization of
sexist discourse, ranging from overtly misogynistic attacks to more subtle, seemingly benign expressions
of gender bias. These forms of sexism are especially challenging to detect and address due to their
implicit nature and cultural variability.

In virtual environments, sexism can manifest in many ways. While overtly misogynistic discourse
is more easily identifiable, a more subtle dimension tends to go unnoticed [2]. This phenomenon can
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manifest in explicit or subtle ways. Glick and Fiske (1996) [3] proposed the notion of ambivalent sexism,
distinguishing between hostile sexism, which is openly negative, and benevolent sexism, which appears
positive but reproduces gender inequalities by idealizing or infantilizing women [4].

In response to the growing need for effective automatic detection of these behaviors, the sEXism
Identification in Social neTworks (EXIST) shared task series was launched in 2021. EXIST seeks to
promote the development of NLP-based systems that can identify a broad spectrum of sexist expressions
across multiple languages and social platforms. Through a series of shared tasks, researchers have
been challenged to address not only explicit hate, but also the subtleties of implicit, normalized, and
“benevolent” sexism.

The upcoming fifth edition of EXIST [5, 6], which is part of CLEF 2025, is a significant advancement
because it introduces a multimodal challenge centered on TikTok videos. This edition reflects the
increasingly complex and multimedia nature of online communication by integrating text, audio, and
visual components. Sexist messages may be embedded not only in written language, but also in tone,
imagery, and gesture. This builds on previous editions, such as EXIST 2024, which used memes to
examine the visual transmission of sexism. This edition therefore expands the scope of analysis by
introducing nine subtasks organized across three media formats: text (tweets), images (memes), and
video (TikToks), in two languages (English and Spanish). For each format, participants are asked to
address three main challenges:

1. Sexism identification: a binary classification task to determine whether content is sexist or not.
2. Source intention detection: a classification of the author’s communicative intent (direct,

reported, or judgmental).
3. Sexism categorization: a multilabel classification of the sexist message according to prede-

fined categories such as ideological inequality, stereotyping, objectification, sexual violence, and
misogyny.

This paper presents the approaches developed by UMUTeam to address the three main tasks defined in
the EXIST 2025 shared task: sexism identification, source intention detection, and sexism categorization,
across text, image, and video modalities. For text-based tasks, we employed fine-tuned versions of
XLM-RoBERTa-base [7] and XLM-RoBERTa-large [7], adapting them for both classification and
regression scenarios using soft-label training strategies.

For image-based subtasks (2.1, 2.2, and 2.3), we proposed a multimodal architecture that integrates vi-
sual embeddings from the ViT-base-patch16 [8] model and textual embeddings from XLM-RoBERTa
or XLM-RoBERTa-large using late fusion techniques, as in [9]. Each multimodal classifier was fine-
tuned independently per subtask, with model variations using both base and large versions of the text
encoder.

For the multi-label output of subtask 2.3, regression-based heads were used and loss functions such
as mean squared error (MSE) were adopted to support soft-target annotations. Video-based tasks (3.1,
3.2, and 3.3) required the handling of temporal information and multimodal alignment. We adopted
VideoMAE-base [10] models that were pre-trained for video classification. We extended these models
to fit the three subtasks using probabilistic label handling, custom data preprocessing with frame
extraction via Decord library, and tailored loss functions (binary cross-entropy or MSE).

2. Related works

The automatic detection of sexist language has been a growing concern within NLP, initially approached
as a subtask of offensive language or hate speech detection. Early works such as [11] laid the foundation
by manually annotating social media posts and employing traditional classifiers like SVMs using extra-
linguistic features in conjunction with character n-grams for hate speech detection. Although effective
in identifying explicit abuse, these methods lacked the sensitivity to detect more subtle and normalized
forms of sexism, such as paternalistic or stereotypical expressions.



The development of transformer-based models, particularly BERT and XLM-RoBERTa, significantly
improved the handling of linguistic context and multilingual text, leading to better detection of nuanced
forms of gender bias. Shared tasks such as AMI [12] and EXIST [13, 14] have promoted fine-grained
classification of sexist content, including distinctions based on author intention and thematic categories
aligned with Glick and Fiske’s (1996) framework of ambivalent sexism [3]. Sexism can be analyzed
at multiple levels depending on the author’s intent or the specific nature of the expression. In all
editions of the EXIST shared task, sexist content is categorized using a predefined set of labels, including
Ideology and Inequality, Stereotyping and Dominance, Objectification, Sexual Violence, and Misogyny and
Non-Sexual Violence. This approach aligns with the framework proposed in SemEval 2023 Task 10 –
Explainable Detection of Online Sexism (EDOS) [15], which introduced a three-level taxonomy designed
to facilitate explainable and hierarchical classification: (1) binary sexism detection, (2) category-level
classification, and (3) fine-grained subcategory identification. Similarly, EXIST adopts a structured
perspective in which sexism is addressed across three dimensions: binary classification for detecting
whether a tweet is sexist, multi-class classification for identifying the author’s intention, and multi-label
classification for categorizing the type of sexism expressed.

While the detection of sexism has traditionally been addressed from a textual perspective, recent
research has increasingly explored visual and multimodal approaches. These approaches acknowledge
that sexist content may appear not only in written language but also in images or in combinations
of audio and visuals as video. Multimodal methods have shown improved performance compared to
single-modality systems in identifying hate speech and misogyny, as demonstrated in recent studies
[16, 17]. From a visual perspective, most previous work focused on detecting offensive, inappropriate, or
pornographic content. However, the symbolic and implicit nature of sexist imagery, particularly in the
form of memes, has received less attention. To address this limitation, the current edition of the EXIST
shared task introduces a new subtask specifically aimed at detecting sexism in memes, broadening the
scope beyond purely textual analysis.

One of the ongoing challenges in sexism detection lies in addressing the biases that may compromise
the fairness and reliability of model performance. Prior studies, such as [18, 19], have explored this
issue primarily through the lens of textual data. While these works have contributed valuable insights,
many existing approaches still fall short in capturing the full complexity of sexism. This phenomenon is
inherently multifaceted and shaped by cultural, social, and individual contexts. Consequently, detection
systems that overlook these dimensions risk reinforcing narrow definitions of sexism and may fail to
recognize subtle or context-specific manifestations.

The multimodal direction continues in 2025 with the EXIST shared task expanding into video content,
reflecting a broader research trend. The growing prevalence of short-form videos on platforms such as
TikTok, YouTube Shorts, and Instagram Reels has shifted part of the research focus toward video-based
sexism detection. In these platforms, sexist messages are often conveyed through a combination of
speech, text overlays, facial expressions, gestures, and audio. This has introduced new challenges that
require models capable of interpreting temporal dynamics and cross-modal interactions. Studies such
as [20] introduced the MuSeD dataset, a Spanish-language corpus of social media videos annotated for
various forms of sexism, highlighting the need for culturally aware and multimodal systems. For this
reason, EXIST 2025 proposes a unified benchmark that systematically addresses sexism detection across
multiple modalities and languages. The task is organized into nine subtasks, distributed across three
content types: text (tweets), images (memes), and videos (TikToks), and conducted in both English
and Spanish. In addition, EXIST 2025 adopts the Learning With Disagreement (LeWiDi) annotation
paradigm, which represents label distributions in order to reflect inter-annotator variability.

3. Dataset

Since 2021, the EXIST shared task series has focused on detecting and categorizing sexist content in social
media, initially through textual analysis. This led to the creation of several annotated tweet corpora
used across different editions to evaluate systems in binary sexist detection, intention classification,



and thematic categorization. With the growing relevance of visual and audiovisual content in online
communication, the EXIST 2024 campaign expanded to include memes, and in this edition EXIST
2025 introduces a significant evolution by incorporating TikTok videos into the dataset. The TikTok
dataset was collected using the Apify TikTok Hashtag Scraper tool, targeting hashtags potentially
associated with sexist content. A manual selection process ensured semantic relevance and balance,
resulting in the identification of 185 Spanish hashtags and 61 English hashtags. To avoid user bias
and enhance generalization, a chronological and author-based partitioning strategy was applied by
organizers. Therefore, the final dataset comprises more than 3,000 videos, with 2,524 used for training
(1,524 in Spanish and 1,000 in English) and 674 for testing (304 in Spanish and 370 in English).

For the annotation process, the organizers considered two primary sociodemographic variables:
gender and age range. Six crowd-sourced annotators, recruited via the Prolific platform, labeled
each meme according to detailed guidelines developed by two gender studies experts. In addition
to core demographic attributes, the annotators’ education level, ethnicity, and country of residence
were also collected. This demographic diversity was intended to minimize potential labeling bias
arising from cultural and social differences. Aligned with the Learning With Disagreement (LeWiDi)
paradigm, the annotation protocol does not assume the existence of a single, definitive interpretation
for each instance. Instead of producing a single “gold” label per item, the dataset includes the full set
of annotations provided by all annotators. This approach captures the natural variability of human
judgment, particularly in subjective tasks such as sexism detection, and encourages the development
of systems that can learn from diverse perspectives. All individual annotations are made available to
participants to support research into soft-label modeling, robustness to disagreement, and fairness-aware
system design.

Table 1 summarizes the number of instances available for each of the three tasks defined in EXIST
2025. For Task 1 (tweets), the organizers provided separate partitions for training, validation, and test
sets. In contrast, for Task 2 (memes) and Task 3 (videos), only the training and test splits were officially
released. Therefore, in order to perform model selection and hyperparameter tuning, we created custom
validation sets by randomly sampling 20% of the training data for each of these two tasks. This ensured
consistency across experiments while preserving the integrity of the test set. As shown in the table, Task
1 includes 10,034 instances in total, Task 2 includes 5,097, and Task 3 includes 3,198. These distributions
reflect the multimodal and multilingual design of the dataset, covering textual, visual, and audiovisual
content.

Table 1
Number of samples per split (train, validation, test) for each EXIST 2025 task.

Task 1 Task 2 Task 3

Train 6,920 3,235 2,019
Val 1,038 809 505
Test 2,076 1,053 674

total 10,034 5,097 3,198

4. Methodology

This section describes the models, training strategies, and evaluation procedures applied to each of the
three main tasks defined in EXIST 2025: Task 1 (tweets), Task 2 (memes), and Task 3 (videos).

To address the three tasks in EXIST 2025, we designed modular pipelines that share a common
structure but are specialized for each modality. As shown in Figures 1, 2, and 3, all systems begin
with preprocessing and label transformation stages that prepare data for either hard-label or soft-label
training. For Task 1 (tweets), we used XLM-RoBERTa-base and large variants with a custom MSE-based
regression trainer to model soft label distributions and hard label distributions. In Task 2 (memes), we
adopted a late-fusion strategy that combines text and image embeddings from XLM-RoBERTa and ViT,



Figure 1: Pipeline overview for Task 1 (tweets), including preprocessing, subtask-specific label encoding, and
soft-label fine-tuning with XLM-RoBERTa.

Figure 2: Pipeline overview for Task 2 (memes), showing multimodal fusion of text and image features via
XLM-RoBERTa and ViT, with separate trainers for soft and hard label learning.

Figure 3: Pipeline overview for Task 3 (videos), based on VideoMAE for visual encoding and custom classification
heads for each subtask.

respectively. For Task 3 (videos), we used VideoMAE to encode uniformly sampled frames, followed by
custom classification heads.

4.1. Task 1

For Task 1, which focuses on tweet-based sexism detection, we developed a transformer-based classi-
fication system using two variants of XLM-RoBERTa (the base and large versions). Each model was
fine-tuned separately for the three subtasks: (1.1) binary sexism identification, (1.2) source intention
classification, and (1.3) sexism categorization. We adopted a probabilistic label encoding strategy that
reflects the distribution of annotations across multiple annotators, enabling soft-label training under
the LeWiDi paradigm.

Prior to tokenization, the raw tweet texts were preprocessed to remove noise and ensure consistency.
This included stripping user mentions, hashtags, markdown artifacts, emojis, and extraneous whitespace.
These steps aimed to standardize inputs across languages and reduce variance introduced by formatting.
After preprocessing, the texts were tokenized using the corresponding XLM-RoBERTa tokenizer, with
truncation to a maximum sequence length of 512 tokens.

For subtasks 1.2 and 1.3, which require multiclass and multilabel outputs, respectively, the labels
were transformed into normalized probability vectors based on annotator agreement. A custom loss
function based on mean squared error (MSE) was implemented to train the models to output probability
distributions over the possible categories. In contrast, for the hard classification setting, we used
categorical cross-entropy loss and standard F1 metrics for validation. All models were trained using
the following hyperparameters: learning rate of 2e-6, weight decay of 0.01, batch size of 8, maximum



sequence length of 512 tokens, and 10 training epochs. In addition, the AdamW optimizer was used,
and dropout regularization was applied as per the default configuration of the pre-trained models.

Evaluation was carried out using two complementary settings. In the hard-hard setup, models
produced discrete class predictions that were compared against hard ground truth labels derived
via threshold-based majority voting. For subtask 1.1, a label was accepted if at least four out of six
annotators agreed. In subtask 1.2, the threshold was three votes, and in the multi-label subtask 1.3, each
class was included if it received at least two votes. Instances without any class meeting the required
threshold were excluded. Notably, in the hard classification setting for subtasks 1.2 and 1.3, the models
were not trained to predict the “non-sexist” class explicitly. To address this limitation and avoid false
positives, we implemented a two-stage pipeline. First, the best-performing model from subtask 1.1
(binary classification) was used as a filter to identify whether a tweet should be considered sexist or
not. If the output of the 1.1 classifier indicated a non-sexist tweet (label “NO”), the system bypassed
the 1.2 and 1.3 classifiers and directly assigned a label “NO” prediction. Only tweets predicted as sexist
by the 1.1 model were passed to the corresponding models for 1.2 and 1.3, which then produced the
final predictions for intention and category. This approach helped reduce false positives and improved
alignment with the task definition in the absence of explicit “NO” training for the downstream models.

In the soft-soft evaluation, models output probability distributions over the classes, which were
compared directly with the normalized annotator distributions. This evaluation used ICM-soft, an
extension of ICM that supports soft target labels.

4.2. Task 2

Task 2 focuses on detecting sexism in memes by combining textual and visual information. It includes
three subtasks: binary classification (2.1), source intention classification (2.2), and multi-label catego-
rization (2.3). To address these tasks, we implemented multimodal models that integrate pretrained
transformer encoders for text and image. Specifically, we used XLM-RoBERTa (base and large variants)
for text encoding and ViT-base (ViT-base-patch16-224-in21k) for image feature extraction. The [CLS]
representations from both modalities were concatenated and passed through a shared classification
head tailored to each task.

For subtask 2.1, the model was designed for binary classification, producing a two-dimensional output
vector corresponding to the classes YES and NO. In the hard-label setting, the target was a one-hot
vector reflecting the majority-voted class, using a threshold of at least four annotators selecting YES. In
the soft-label setting, we used normalized distributions derived from the proportion of YES and NO
votes as targets. During evaluation, sigmoid probabilities were computed, and the predicted label was
determined using argmax.

For subtask 2.2, which classifies the intention behind a meme, the output dimension depended on
the label encoding. In the hard-label setting, the model produced two logits corresponding to the
DIRECT and JUDGEMENTAL categories, with the NO class excluded. The final label was derived from
a majority threshold of at least three votes. In the soft-label setting, the output layer returned three
values representing the probability distribution over DIRECT, JUDGEMENTAL, and NO. These soft
labels captured the full range of annotator responses and allowed the model to learn from uncertainty
and ambiguity in interpretation.

For subtask 2.3, the model performed multi-label classification using a six-dimensional output
vector, each representing one of the predefined sexism categories. Each output neuron was trained
independently to predict the probability of its corresponding label. In the hard-label configuration,
binary vectors were constructed by assigning a label if it was selected by at least two annotators. In
the soft-label configuration, each label’s target value reflected its relative frequency among annotators,
resulting in a normalized probability distribution across the six categories.

As in Task 1, the models for subtasks 2.2 and 2.3 were not trained to explicitly identify non-sexist
memes. To prevent misclassifications of such instances, we implemented a cascaded decision strategy in
the hard evaluation mode. Specifically, we used the output of the best-performing model from subtask
2.1 as a gatekeeper. If the classifier determined that a meme was non-sexist (label “NO”), the predictions



from the models for subtasks 2.2 and 2.3 were skipped, and label “NO” were assigned. Only when a
meme was classified as sexist by the binary model was it forwarded to the downstream classifiers for
intention and categorization. This pipeline reduced false positives and aligned more closely with the
annotation logic of the dataset.

All models were trained using 10 epochs with early stopping. The training configuration included a
batch size of 8, a learning rate of 2e-5, and a weight decay of 0.01. Loss functions were selected based
on the label type and task characteristics. For soft-label training, we used MSELoss in Tasks 1 and 2, as
their subtasks involved binary or multiclass outputs. For Task 3, which involves multilabel classification,
we employed BCEWithLogitsLoss in the soft setting, applying it independently to each output class.

4.3. Task 3

Task 3 addresses the detection of sexism in short-form video content from TikTok, which presents
unique challenges due to its multimodal nature and temporal structure. The task includes three subtasks:
binary sexism identification (3.1), classification of the author’s communicative intention (3.2), and multi-
label categorization of the type of sexism expressed (3.3). For all subtasks, we used the pre-trained
VideoMAE-base model for video classification, with input videos uniformly sampled into 16 frames and
processed using the associated VideoMAE processor. We implemented both hard-label and soft-label
systems for each subtask to capture annotation uncertainty and enable dual evaluation.

For subtask 3.1, the model was trained to classify videos as sexist (YES) or non-sexist (NO). The
classifier produced a two-dimensional output, and training was performed using binary cross-entropy
with logits in the hard-label variant. In the soft-label version, we used probabilistic targets based on the
proportion of YES and NO votes, training the model with MSE loss.

In subtask 3.2, the objective was to determine the author’s intention. In the hard-label setup, the
model produced two outputs (DIRECT and JUDGEMENTAL), trained using binary cross-entropy with
majority-vote thresholds. In the soft-label version, a third class (NO) was added to reflect cases where
the annotators indicated no clear sexist intention. We modeled the label distribution across these three
categories and trained the model using MSE loss, regressing against soft targets.

For subtask 3.3, we framed the problem as multi-label classification across five sexism categories.
In the soft-label setup, an additional NO class was added to capture annotator uncertainty. The
model returned a six-dimensional output vector, and was trained using BCEWithLogitsLoss applied
independently to each class, in order to approximate the soft label distributions. In the hard-label
version, we considered labels valid if they were selected by at least two annotators and trained the
model using binary cross-entropy.

As in the other tasks, in the hard-label setting for subtasks 3.2 and 3.3, the models were not trained
to explicitly predict the “NO” class. To address this limitation, we applied a sequential filtering strategy:
the output of the best-performing classifier for subtask 3.1 was used as a gating mechanism. If a video
was predicted as non-sexist in 3.1, the classifiers for 3.2 and 3.3 were bypassed, and label “NO” were
assigned. If a video was predicted as sexist, the corresponding models for 3.2 and 3.3 were applied to
generate the final output. This approach reduced false positives and aligned with the design of the
dataset and the competition evaluation criteria. It should be noted, in the evaluation and inference
stages, if a video could not be processed, the model automatically assigned it the NO label or a label
distribution centered on the NO class in each task. This fallback mechanism ensured robustness and
completeness in prediction outputs.

All models were trained using a batch size of 2, a learning rate of 2e-5, weight decay of 0.01, and 10
training epochs. Videos were preprocessed by extracting uniformly sampled frames and resizing them
to 224×224 pixels.

5. Results

Regarding evaluation, EXIST 2025 defines two complementary evaluation settings: hard-hard and soft-
soft. In the hard-hard setting, systems produce a hard label, which is compared against a ground-truth



label derived by majority voting with probabilistic thresholds specific to each subtask. For example, in
subtasks 1.1 and 2.1, a class is accepted if annotated by more than 3 annotators; in 1.2 and 2.2, more than
2; and in multi-label subtasks 1.3 and 2.3, any class with more than 1 vote. For video subtasks (3.1 to 3.3),
the complexity of annotation requires a more lenient threshold, accepting any class labeled by more than
one annotator. Instances without majority consensus are excluded from this evaluation. In the soft-soft
setting, systems produce probability distributions over the possible labels, which are compared against
the aggregated probability distributions from human annotators. This variant captures uncertainty
and ambiguity in both system predictions and human judgments, making it particularly suitable for
subjective tasks such as sexism detection.

The official metric for both evaluation modes is the Information Contrast Measure (ICM) [21], a
generalization of pointwise mutual information that quantifies the similarity between predicted and
reference distributions.

5.1. Results of Task 1

Task 1 was addressed using two variants of the UMUTeam system. UMUTeam 1 corresponds to the ver-
sion based on XLM-RoBERTa-base, while UMUTeam 2 uses XLM-RoBERTa-large. The following tables
summarize the official results for both systems under the soft-soft and hard-hard evaluation schemes
across subtasks 1.1 (binary classification), 1.2 (intention classification), and 1.3 (sexism categorization),
with results reported globally and by language (Spanish and English).

Table 2 and Table 3 show the official results for Task 1.1. In both evaluation schema, UMUTeam 2
(large version) clearly outperformed UMUTeam 1, which based on XLM-RoBERTa-base. Under the
soft-soft evaluation, UMUTeam 2 achieved a positive ICM-soft score (0.0138), archiving 41st overall,
while UMUTeam 1 scored negatively (-0.1729). Similarly, in the hard-hard setting, UMUTeam 2 obtained
an ICM of 0.5799 and ranked 11th overall, compared to UMUTeam 1’s 0.5064 and 49th place. These
results demonstrate the superior performance of the large model, particularly in capturing the subjective
nature of the task across both languages.

Table 2
Official results for Task 1.1 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 44 -0.1729 45 -0.2307 47 -0.1367
UMUTeam 2 41 0.0138 42 -0.0183 43 0.0196
baseline majority class 64 -2.3585 63 -2.5421 61 -2.1991
baseline minority class 66 -3.1726 64 -2.5742 66 -3.8158

Table 3
Official results for Task 1.1 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 49 0.5064 44 0.5052 71 0.4963
UMUTeam 2 11 0.5799 19 0.5699 10 0.5786
baseline majority class 154 -0.4413 143 -0.4897 154 -0.3965
baseline minority class 157 -0.5742 145 -0.5106 157 -0.6646

Subtask 1.2 results are shown in Table 4 and Table 5. Again, UMUTeam 2 consistently outperformed
UMUTeam 1 in all settings. In the soft-soft evaluation, UMUTeam 2 achieved a better alignment with



annotator distributions (ICM-soft: -3.6965 vs. -3.8401), and in the hard-hard setting, it reached an ICM of
0.3064 (12th), ahead of UMUTeam 1’s 0.2647 (18th). This consistent margin of improvement highlights
the benefits of deeper textual representation in modeling nuanced author intention.

Table 4
Official results for Task 1.2 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 23 -3.8401 23 -3.8492 22 -3.8059
UMUTeam 2 22 -3.6965 22 -3.6857 21 -3.6890
baseline majority class 37 -5.4460 37 -5.6674 34 -5.2028
baseline minority class 56 -32.9552 54 -28.7093 55 -39.4948

Table 5
Official results for Task 1.2 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 18 0.2647 23 0.2973 15 0.2073
UMUTeam 2 12 0.3064 19 0.3123 6 0.2736
baseline majority class 106 -0.9504 102 -1.0391 105 -0.8529
baseline minority class 139 -3.1545 135 -2.9390 139 -3.4728

In subtask 1.3, as reported in Table 6 and Table 7, the large-model system also led across the board. In
the soft-soft evaluation, UMUTeam 2 ranked 4th overall with an ICM-soft of -1.6711, whereas UMUTeam
1 ranked 8th with a score of -3.0327. Similarly, in the hard-hard setting, UMUTeam 2 achieved an
ICM of 0.4506 and ranked 7th, while UMUTeam 1 scored 0.3276, ranking 15th. These results confirm
the robustness of the large model for multi-label classification tasks involving fine-grained sexism
categories.

Overall, UMUTeam 2, based on XLM-RoBERTa-large, consistently outperformed UMUTeam 1 in
all subtasks and evaluation conditions. The combination of deeper language modeling and soft-label
training allowed it to better capture subtle cues and disagreement patterns present in the annotations.

Table 6
Official results for Task 1.3 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 8 -3.0327 12 -3.3571 8 -2.5755
UMUTeam 2 4 -1.6711 4 -1.5920 4 -1.7900
baseline majority class 26 -8.7089 26 -9.0314 26 -8.2105
baseline minority class 53 -46.1080 49 -45.4260 51 -46.9473

5.2. Results of Task 2

Task 2 evaluates sexism detection in memes across three subtasks: binary classification (2.1), intention
classification (2.2), and category classification (2.3). We submitted two system variants: UMUTeam 1,



which uses XLM-RoBERTa-base as the text encoder, and UMUTeam 2, which employs XLM-RoBERTa-
large. Both systems integrate textual and visual features using a multimodal architecture that combines
outputs from the text encoder with ViT-based image representations.

Table 8 and Table 9 report the official results for subtask 2.1 under the soft-soft and hard-hard
evaluation schemes. In the soft-soft setting, UMUTeam 2 ranked 6th overall with an ICM-soft of -0.9623,
slightly ahead of UMUTeam 1, which ranked 7th with -1.2113. In the hard-hard evaluation, UMUTeam
2 ranked 13th, compared to UMUTeam 1 at 14th. Both systems outperformed the majority and minority
baselines by a substantial margin, confirming the benefit of multimodal modeling even in the binary
case.

In subtask 2.2 (author intention classification), UMUTeam 1 obtained the best performance among
all participants, ranking 1st in the soft-soft evaluation with an ICM-soft of -1.6327 overall, -1.7469 in
Spanish, and -1.5643 in English. UMUTeam 2 ranked 4th overall in the same setting, with a global
ICM-soft of -2.4994. Under the hard-hard evaluation (Table 11), UMUTeam 2 ranked 8th globally with
an ICM of -0.7265, outperforming UMUTeam 1, which ranked 12th with -0.7730. These results suggest
that while the base model better captures soft-label ambiguity in intention, the large model maintains a
slight advantage in hard classification settings.

For subtask 2.3 (category classification), UMUTeam 1 again achieved the top rank in the soft-soft
evaluation, placing 1st across all language subsets with a global ICM-soft of -4.7791. UMUTeam 2
followed closely, ranking 2nd with -4.8825. In the hard-hard setting, UMUTeam 1 ranked 10th overall,

Table 7
Official results for Task 1.3 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 15 0.3276 17 0.3130 8 0.3258
UMUTeam 2 7 0.4506 9 0.4650 4 0.4168
baseline majority class 108 -1.5984 108 -1.7269 105 -1.4563
baseline minority class 128 -3.1295 125 -3.3196 127 -2.9279

Table 8
Official results for Task 2.1 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 7 -1.2113 7 -1.3398 7 -1.0907
UMUTeam 2 6 -0.9623 6 -1.0271 6 -0.9012
baseline majority class 8 -2.3568 8 -2.4997 9 -2.2236
baseline minority class 10 -3.5089 9 -3.9408 10 -3.1235

Table 9
Official results for Task 2.1 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 14 -0.3043 13 -0.3064 18 -0.3021
UMUTeam 2 13 -0.2957 14 -0.3169 17 -0.2744
baseline majority class 17 -0.4038 15 -0.4001 19 -0.4076
baseline minority class 20 -0.6468 16 -0.6557 20 -0.6381



while UMUTeam 2 ranked 12th. These results demonstrate the base model’s capacity to model fine-
grained, multi-label decisions effectively, especially under soft-label conditions.

In summary, UMUTeam 2 (XLM-RoBERTa-large) performed best in binary classification and in most
hard evaluations, while UMUTeam 1 (XLM-RoBERTa-base) showed stronger performance in subjective
and soft-label tasks. Across all three subtasks and both evaluation schemes, both models consistently
outperformed the baselines. Notably, UMUTeam 1 ranked 1st in Task 2.2 and Task 2.3 (soft-soft),
positioning the system among the top performers in the competition.

Table 10
Official results for Task 2.2 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 1 -1.6327 1 -1.7469 1 -1.5643
UMUTeam 2 4 -2.4994 4 -2.7757 3 -2.2635
baseline majority class 6 -5.0745 5 -5.5913 6 -4.6049
baseline minority class 7 -18.9382 6 -20.3091 7 -18.1227

Table 11
Official results for Task 2.2 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 12 -0.7730 10 -0.7553 12 -0.7912
UMUTeam 2 8 -0.7265 7 -0.6791 11 -0.7735
baseline majority class 14 -1.0445 11 -1.0504 14 -1.0385
baseline minority class 17 -2.0637 13 -2.0866 17 -2.0410

Table 12
Official results for Task 2.3 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 1 -4.7791 1 -4.9258 1 -4.6710
UMUTeam 2 2 -4.8825 2 -4.9552 2 -4.8909
baseline majority class 6 -9.8173 5 -10.4121 6 -9.2886
baseline minority class 8 -50.0353 6 -47.3973 8 -53.0762

Table 13
Official results for Task 2.3 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 10 -1.5624 8 -1.6943 11 -1.4714
UMUTeam 2 12 -1.8869 10 -1.9764 13 -1.8424
baseline majority class 14 -2.0711 11 -2.1173 14 -2.0015
baseline minority class 16 -3.3135 13 -3.2599 16 -3.3506



5.3. Results of Task 3

Task 3 focused on detecting sexism in short-form video content from TikTok across three subtasks:
binary identification (3.1), intention classification (3.2), and multi-label categorization (3.3). Only one
run was submitted for this task, denoted as UMUTeam 1, based on the VideoMAE-base architecture.
The evaluation was conducted under both the soft-soft and hard-hard paradigms using the ICM metric.

Table 14 and Table 15 present the results for subtask 3.1. In the soft-soft evaluation, UMUTeam 1
achieved an ICM-soft of -1.9857 (ranked 30th), outperforming the minority baseline (-2.0051) and close
to the majority baseline (-1.2877). In the hard-hard evaluation, UMUTeam 1 obtained an ICM of -0.6926
(rank 43), performing better than the minority baseline (-0.6036) but slightly behind the majority class
baseline (-0.4244). These results suggest that the system could effectively learn from distributional
annotations but may still face challenges under strict classification constraints, particularly given the
complexity and ambiguity of video data.

Table 14
Official results for Task 3.1 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 30 -1.9857 30 -2.2412 31 -1.9222
baseline majority class 26 -1.2877 20 -0.8905 30 -1.7009
baseline minority class 31 -2.0051 32 -2.5626 29 -1.6647

Table 15
Official results for Task 3.1 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 43 -0.6926 39 -0.8216 43 -0.6192
baseline majority class 40 -0.4244 35 -0.3708 40 -0.4836
baseline minority class 42 -0.6036 38 -0.7411 42 -0.5174

For subtask 3.2, the results are shown in Table 16 and Table 17. In the soft-soft setting, UMUTeam
1 ranked 26th overall with an ICM-soft of -3.0703, which was superior to the minority baseline (-
15.4368) and comparable to the majority class baseline (-3.1337). In the hard-hard evaluation, the system
achieved an ICM of -1.1856 and ranked 36th overall. These results indicate that the model was able to
identify intent with reasonable alignment to annotator disagreement, although its performance slightly
decreased in the hard classification scenario.

Table 16
Official results for Task 3.2 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 26 -3.0703 19 -3.9102 28 -2.9509
baseline majority class 27 -3.1337 16 -3.3756 29 -3.3354
baseline minority class 31 -15.4368 30 -35.3991 31 -9.7700

Subtask 3.3, the multi-label categorization task, posed a more significant challenge. In the soft-
soft evaluation (Table 18), UMUTeam 1 ranked 26th with an ICM-soft of -9.0825, outperforming the



minority class baseline (-11.6668) and the majority baseline (-6.8222). In the hard-hard setting (Table 13),
UMUTeam 1 ranked 40th with an ICM of -2.7332, again better than the minority baseline (-6.7467),
though below the majority class (-0.9530). The relatively low ICM scores in this subtask reflect the
complexity of modeling nuanced, co-occurring sexist categories in audiovisual content.

It should be noted, a critical factor affecting the overall performance in Task 3 was the model’s inability
to process a substantial portion of the test videos. Due to frame extraction or decoding failures during
inference, these videos were automatically assigned the label “NO” in all subtasks. As a result, many true
positive cases were misclassified as non-sexist, significantly increasing the number of false negatives.
This issue had a direct and negative impact on both soft and hard evaluation metrics, particularly in
the hard-hard setting, where missing detections are penalized more severely. However, in summary,
UMUTeam 1 consistently outperformed the minority baseline and was competitive with the majority
baseline in some settings.

6. Conclusions and further work

In this work, we presented a comprehensive system for sexism detection in social media, developed
for the EXIST 2025 shared task. Our approach covered all three content modalities: text, images, and
videos, and addressed each of the three subtasks across hard and soft evaluation settings. We employed
multilingual transformer-based models, such as XLM-RoBERTa (base and large versions) for text, ViT
for image features, and VideoMAE for video input. Specialized preprocessing and label handling were
applied for each modality. Despite the fact that we leveraged transformer-based encoders adapted to

Table 17
Official results for Task 3.2 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 36 -1.1856 36 -1.3289 35 -1.0901
baseline majority class 34 -0.7537 33 -0.6304 34 -0.8657
baseline minority class 38 -2.4749 37 -2.9537 38 -2.1890

Table 18
Official results for Task 3.3 with the Soft vs Soft scheme, including the Spanish and English results. Ranking is
by runs.

Soft vs Soft ALL Soft vs Soft ES Soft vs Soft EN

Team Rank ICM-Soft Rank ICM-Soft Rank ICM-Soft

UMUTeam 1 26 -9.0825 25 -10.4828 27 -9.8929
baseline majority class 9 -6.8222 11 -7.5409 11 -6.8246
baseline minority class 28 -11.6668 12 -7.7430 29 -11.4332

Table 19
Official results for Task 3.3 with the Hard vs Hard scheme, including the Spanish and English results. Ranking is
by runs.

Hard vs Hard ALL Hard vs Hard ES Hard vs Hard EN

Team Rank ICM-Hard Rank ICM-Hard Rank ICM-Hard

UMUTeam 1 40 -2.7332 39 -2.8851 40 -2.6572
baseline majority class 31 -0.9530 24 -0.8103 34 -1.0678
baseline minority class 41 -6.7467 40 -5.6377 41 -8.4611



each modality, we implemented a modular architecture that incorporates both discrete and probabilistic
label modeling. The use of soft-label learning with MSE and BCE loss allowed our systems to account
for annotator disagreement, while the hard-label setup used thresholded ground truth for comparison.
Additionally, to reduce false positives in downstream classification (subtasks 1.2, 1.3, 2.2, 2.3, and 3.2,
3.3), we integrated a binary prediction filter based on the outputs of subtasks 1.1, 2.1, and 3.1.

Our systems demonstrated strong performance across tasks. In the text modality (Task 1), UMUTeam
2 (XLM-RoBERTa-large) ranked as high as 12th and 7th in subtasks 1.2 and 1.3 (hard-hard), confirming
the value of large-scale models and soft-label learning. In the image modality (Task 2), UMUTeam 1
achieved 1st place in both subtasks 2.2 and 2.3 under the soft-soft setting, and both models consis-
tently outperformed the baselines across evaluation types. For video (Task 3), while the system faced
limitations due to frame extraction failures, it still outperformed the minority baseline and remained
competitive with the majority baseline in several subtasks. Overall, our results validate the effectiveness
of multimodal, disagreement-aware approaches in modeling the complexity and subjectivity inherent
in sexism detection tasks.

Although our systems achieved competitive results, several areas remain open for improvement.
First, in the video modality, decoding errors and frame extraction failures affected the completeness and
reliability of the inference stage. Future work will focus on improving preprocessing robustness and
integrating additional modalities such as audio and automatic speech recognition to capture spoken
content. Additionally, we plan to use LLM techniques, such as prompt engineering, as described in
[22] and [23] to improve sexism identification and source intention detection. Finally, in the image and
video pipelines, we plan to explore stronger multimodal fusion strategies such as cross-attention to
better capture interactions between modalities.
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