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Abstract
This research addresses the challenge of determining whether specific real medical images were used in the training of  
generative adversarial networks (GANs) that produce synthetic CT scans, a critical task for ensuring transparency and 
accountability in AI-generated medical data. As part of Subtask 1 of the ImageCLEFmed GAN 2025 challenge, the problem is  
framed as a binary classification task where each generated image must be labeled based on the presence or absence of real  
images in its training data. The proposed method employs deep feature extraction using a ResNet-50 model pretrained on 
ImageNet. Real and synthetic images are processed to extract high-dimensional embeddings, and cosine similarity is 
computed between generated images and the pool of real images. A statistical threshold based on the mean and standard 
deviation of the similarity scores is then used to determine the final label. The system was evaluated on the official test set  
and achieved an accuracy of 50.8%, precision of 50.78%, recall of 52.0%, and an F1 score of 51.38%. The Cohen’s kappa score 
was 0.016, indicating only slight agreement beyond chance. While the results reflect the inherent difficulty of reverse 
engineering GAN training data, they demonstrate the potential of feature-based similarity analysis for detecting data usage 
in synthetic medical imaging.
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1. Introduction 

The rapid advancement of generative models, particularly Generative Adversarial Networks (GANs), has 
opened new frontiers in the synthesis of high-quality medical images. While these models hold immense 
potential for augmenting data and enhancing diagnostic tools, they also raise critical questions about 
transparency, ethical usage, and data provenance. One key challenge lies in identifying whether a specific 
real medical image—such as a CT scan—has been used to train a GAN that subsequently generates synthetic  
images. Addressing this question is vital for ensuring the responsible use of medical AI and for protecting 
sensitive patient data. This study is conducted as part of the ImageCLEF 2025 [1], specifically within the 
ImageCLEFmedical 2025 GANs [2] Task which aims to evaluate methods for analyzing GAN-generated 
medical images. Our work focuses on Subtask 1: "Detect Training Data Usage", which involves identifying 
whether a given real image was part of the training data used to generate synthetic counterparts. We present  
the approach and results of Team Medhastra in this subtask, aiming to contribute effective methodologies 
for data traceability in medical image generation. Our code is available on Github 1.

This research addresses the issue by assigning participants the task of creating automated systems 
that assess whether each produced medical image is derived from any specific real image within the 
training dataset.
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This challenge is structured as a binary classification problem and poses considerable technical and 
methodological difficulties due to the nuanced propagation of visual features in content generated by 
GANs. Traditionally identifying the source of synthetic images has depended on watermarking or  
forensic methods, which tend to be either intrusive or have limited effectiveness. These approaches fall  
short when dealing with deep generative models that are trained on extensive,  sensitive datasets, 
making manual verification impractical and lacking explicit identifiers. 

In recent years, deep learning methods, especially convolutional neural networks (CNNs) like ResNet, 
have shown remarkable proficiency in feature representation and similarity analysis across multiple 
fields, including medical imaging. Utilizing these models allows researchers to explore the connections  
between real and generated images within a high-dimensional feature space, employing similarity 
metrics such as cosine similarity to deduce possible training data applications. 

This research proposes a ResNet-based feature extraction and similarity comparison framework. By 
systematically analyzing pairwise relationships between synthetic and real images, the system aims to  
make accurate predictions about whether a real image contributed to the training of a GAN that 
produced a particular synthetic output. The approach emphasizes interpretability and generalization, 
offering  a  foundation  for  further  improvements  in  medical  image  provenance  analysis  and  AI 
transparency.

2. Background

Generative Adversarial Networks (GANs) play a crucial role in medical imaging by enabling the 
creation of realistic medical images for purposes such as data augmentation, domain adaptation, and  
training  simulations.  However,  their  use  has  sparked  concerns  regarding  the  unintentional 
memorization of training data, which can lead to the generation of images that reveal identifiable 
features from the original dataset, thereby threatening patient privacy — a significant concern in  
clinical AI [3], [4]. 

Studies indicate that deep generative models, especially GANs, can retain specific samples under 
particular  training  circumstances,  resulting  in  identifiable  data  leakage  [5].  This  concern  is 
particularly critical in the healthcare industry, which is subject to stringent legal frameworks like 
HIPAA  and  GDPR  that  forbid  the  reidentification  of  individuals  from  ostensibly  anonymized 
information. Therefore, there is a pressing requirement to create tools and techniques capable of 
identifying whether a generated image resembles the training data, a challenge commonly known as  
training data fingerprinting. 

Several detection strategies have been proposed, ranging from direct pixel-space comparisons to 
embedding-based  similarity  measures.  The  latter  involves  using  convolutional  neural  networks 
(CNNs), such as ResNet50 [6], to project both real and synthetic images into a high-dimensional  
feature space where semantic similarity can be assessed more robustly. Similarity metrics, such as 
cosine similarity, are often applied in this space to determine the extent of overlap or influence 
between generated and real images [7]. 

This  study  introduces  a  framework  that  identifies  training  data  fingerprints  in  GAN-generated 
medical  images  through deep  feature  embeddings  and  statistical  analysis.  The  process  involves 
extracting feature vectors from both real and synthetic images using a pre-trained ResNet50 model,  
followed  by  the  computation  of  pairwise  cosine  similarity  scores.  By  implementing  statistical  
thresholds based on the distribution of these similarities—such as the mean plus a scaled standard 
deviation—the model determines whether a generated image is likely influenced by any image from 
the reference (real) set. This method draws inspiration from previous work in membership inference  
[8] and neural network attribution detection [9], yet it is specifically adapted for the critical and high-
resolution domain of medical imaging. By advancing training data fingerprint detection, this research  
supports responsible AI practices and ensures that synthetic medical images can be used ethically and  
legally, with minimized risk of data leakage.



3. System Overview

Figure 1: Overall Flow Diagram of the Proposed Model

This research addresses the critical challenge of determining whether a synthetic medical image 
generated by a GAN inadvertently reveals traces of real training data. The core objective is to detect  
training data fingerprints by evaluating the similarity between real and synthetic images in a learned  
feature  space.  To  accomplish  this,  the  proposed  system  integrates  deep  feature  extraction  and 
similarity-based analysis techniques. 
The process begins with a dataset comprising real medical images and GAN-generated counterparts. A  
pre-trained convolutional neural network (CNN), such as ResNet-50, is used to extract deep features 
from both sets of images. These high-dimensional embeddings are passed into a Similarity Analysis  
Module, where cosine similarity between each real and generated image pair is computed. For each  
synthetic image, the system calculates the maximum similarity score to any real image and compares it  
against a dynamic threshold derived from the statistical properties (mean and standard deviation) of  
similarity distributions. If the similarity exceeds the threshold, the system flags the synthetic image as   
likely being influenced by the corresponding real sample, indicating a potential fingerprint. 

In this setup, the model avoids overfitting by using frozen pre-trained feature extractors,  and it 
emphasizes  statistical  robustness  using  multiple  similarity  metrics  (e.g.,  Euclidean  and  Cosine 
distances) during validation. The entire pipeline is optimized for interpretability and computational 
efficiency to enable effective deployment in real-world medical imaging workflows, where ensuring 
privacy and regulatory compliance is paramount. 

Separate evaluations are conducted for different GAN models (e.g., StyleGAN, ProGAN) and data 
modalities (e.g., MRI, CT) to assess the generalizability of the fingerprint detection system. 

3.1. Dataset

The dataset used in this task is sourced from the ImageCLEFmed-GAN 2025 challenge, specifically 
designed to support the task of detecting training data fingerprints in GAN-generated medical images.  
The data is derived from a carefully curated image corpus that includes both real medical images and  
synthetic images generated using GANs trained on known datasets.

3.2. Data Preprocessing

During the data preprocessing phase, missing values were removed and the columns with null values  
were replaced with empty strings. TF-IDF features were extracted from the dataset. During the data 
preprocessing phase, medical images from the generated and real_unknown folders were loaded and  
standardized. Images with palette-based formats were converted to RGBA and then to RGB to ensure  



uniformity. Each image was resized to 224×224 pixels and normalized using the ImageNet mean and  
standard deviation values to match the input requirements of the ResNet-50 model. 

Deep feature embeddings were extracted from the images using a pre-trained ResNet-50 model from  
the torchvision library, with the final classification layer removed. This step converted each image 
into a 2048-dimensional feature vector, enabling similarity-based analysis. 

Cosine similarity was then computed between each generated image and all real_unknown images to  
estimate training data reuse. Based on a dynamic threshold derived from the similarity distribution,  
binary labels (used / not used in training) were assigned to each generated image. These labels were 
stored in run.csv for evaluation and submission.

4. Methodology

4.1. Dataset Preparation

We utilize the ImageCLEF 2025 dataset, which is divided into three categories for training:

 Real Used: Real images known to have been used in GAN training. 

 Real Not Used: Real images excluded from GAN training. 

 Generated: Synthetic images produced by the GAN. 

For inference, we are provided with: 

 Generated (Test): GAN-generated images whose training influence is unknown. 

 Real Unknown: Real images with unknown usage status. 

All images are verified and converted to RGB format using the Python Imaging Library (PIL) to ensure 
consistent input for feature extraction.

4.2. Feature Extraction

To  convert  each  image  into  a  compact  and  informative  representation,  we  utilize  ResNet-50,  a  deep 
convolutional  neural  network  pre-trained  on  the  ImageNet  dataset.  Rather  than  using  the  model  for 
classification, we repurpose it as a feature extractor by removing the final fully connected classification layer. 
Each input image is resized to 224×224 pixels and normalized using the standard mean and standard deviation  
values of ImageNet. The preprocessed image is then passed through the ResNet-50 model in evaluation mode, 
ensuring that the inference behavior remains consistent and unaffected by training-time mechanisms like 
dropout or batch normalization updates. The output is a 2048 dimensional feature vector obtained from the 
penultimate layer of the network. 

This vector captures high-level semantic information about the image, including structure,  texture,  and 
contextual patterns, while discarding low-level pixel variations. Formally, for an input image III, the extracted 
feature vector is denoted as f(I)=ResNet50features(I), where f(I)∈R2048.These feature embeddings are later used  
for measuring similarity between synthetic and real images to infer potential training data usage. 

4.3. Cosine Similarity Matching

For each generated image G, we compute the cosine similarity between its feature vector and that of each 
real image R from both real_used and real_not_used sets: 

   cos _ sim ( f (G ) ,  f (R ))  =  [ f (G )  ·  f (R )]  /  ( | | f (G ) | |  ·  | | f (R ) | |),                                     (1)

We retain the maximum similarity from each set,



                                     
Su = max

R∈  real used 
cos _ sim ( f (G ) , f (R ))

Sn = max
R∈  real not used 

cos _ sim ( f (G ) , f (R ))
,                                                        (2)

4.4. Threshold – Based Classification

To make binary predictions on whether a generated image was influenced by real training data, we 
use a dynamic threshold: 

                                           T  =  μ  +  α  ⋅  σ                                                                                  (3)

where μ and σ are the mean and standard deviation of combined similarity scores across both 
real_used and real_not_used images, and α=0.5 is a tunable factor. 

In our threshold-based classification, the scaling factor α in the equation (3) plays a pivotal role in 
determining the classifier’s sensitivity to similarity scores. The parameter α directly influences the 
balance between false positives and false negatives: lower values of α make the system more permissive  
by lowering the threshold, potentially increasing recall but also false positives; higher values raise the  
threshold, improving precision but risking missed detections.

To identify an appropriate value, we performed a grid search over α∈ {0.1,0.3,0.5,0.7,1.0} using our 
training set, evaluating each setting based on precision, recall, F1-score, and area under the ROC curve  
(AUC). We observed that α=0.5 achieved the best trade-off between precision and recall, maximizing 
the F1-score while maintaining a balanced ROC performance. Specifically, thresholds lower than 0.3 
resulted in high false positive rates,  while values beyond 0.7  significantly reduced recall  without  
meaningful gains in precision. 

This empirical selection of α=0.5 ensures the threshold adapts effectively to the distribution of similarity  
scores, providing robustness against outliers and moderate variation across different GAN-generated 
samples. Future work could further refine α dynamically per image or batch using adaptive methods or  
Bayesian optimization to account for distribution shifts across datasets or GAN architectures.

The image is classified as “used in training” if: 

                                              Su>Sn  ∧  Su>T                                                                          (4)

This  heuristic  is  chosen to account  for  the subtle  differences in similarity  while  being robust  to  
outliers.

4.5. Logistic Regression for Classification 

In addition to rule-based thresholding, we trained a logistic regression model using Max Used Similarity and  
Max Not Used Similarity as features. This offered a statistically grounded alternative to hard thresholding. 
The dataset is split into an 80-20 training-testing set to evaluate: Precision, Recall, F1 Score, AUC (Area 
under ROC curve). 

4.6. Evaluation and Inference 

During testing, the same feature extraction and similarity computation pipeline is used between each 
generated image and the real_unknown set. The dynamic thresholding technique is applied to produce  
the final binary labels. These predictions are saved as run.csv in the required format.

5. Results 

To evaluate the effectiveness of our approach in identifying whether a synthetic (GAN-generated) 



medical image has been influenced by real training data, we performed multiple analyses based on deep  
feature similarity. The results obtained from the dataset and subsequent model evaluation are presented  
below. The results  reported on the test  dataset correspond to Run ID:  1288,  as  submitted on the 
competition platform.

5.1. Similarity Score Analysis

After extracting deep features using the ResNet-50 backbone for all images in the real_used, real_not_used,  
and generated folders, we computed pairwise cosine similarities between each generated image and the real  
images. For every synthetic image, the maximum similarity with both real_used and real_not_used images  
was computed. These values were saved to a CSV file for analysis. 

To visualize the distribution of similarity scores, we plotted histograms of the maximum cosine similarities.  
Figure 2 shows the histogram of maximum cosine similarity scores. We observe that the distributions for 
both "Used Similarity" and "Not Used Similarity" overlap significantly, with both peaking in the range of 0.91  
to 0.94. However, the distribution for images that were used in training (blue) tends to have slightly higher  
frequency toward the upper end of the similarity range. This subtle shift suggests that GAN-generated 
images tend to exhibit marginally greater feature-level resemblance to the real images they were trained on,  
which supports the hypothesis that training data may leave detectable fingerprints. 

 

Figure 2: Histogram of Cosine Similarities between generated images and real images that were used (blue) 
or not used (orange) during training. 

5.2. ROC Curve Evaluation

The Receiver Operating Characteristic (ROC) curve is a graphical tool used to evaluate the performance of 
a binary classifier by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various 
threshold settings. In this context, we used the maximum cosine similarity between a generated image and  
the real images as the decision score to predict whether a particular real image was used in training. Ideally,  
a well-performing classifier will yield a ROC curve that bows sharply toward the top-left corner, indicating  
high sensitivity and specificity. However, as shown in the ROC curve (Figure 3), the plot is relatively close 
to  the  diagonal,  suggesting  that  the  similarity-based  detection  approach  has  limited  discriminative 
capability. This implies that while the similarity metric does capture some signal related to training data 
usage, its effectiveness as a standalone indicator is modest, and further refinement or complementary 
techniques may be needed for stronger detection.



Figure 3: ROC curve evaluating the ability of similarity scores to predict whether a real image was 
used in GAN training.

5.3. Logistic Regression Performance 

Table 1
Metrics Evaluation for the Model

Metric Training
Data

Test 
Data

Precision 0.8738 0.5078
Recall 0.7743 0.52
F1Score 0.8211 0.5138
Accuracy 0.8288 0.508

As shown in Table 1, the model achieves strong performance on the training set, with a precision of 87.38%, 
recall of 77.43%, and F1-score of 82.11%, indicating its ability to learn relevant patterns for detecting training data  
usage. However, test performance is notably lower, with metrics around 51%, suggesting limited generalization  
to unseen samples. This gap highlights the challenge of distinguishing subtle similarities in GAN-generated 
images and suggests that while the feature-based approach is effective on known data, further improvements 
are needed for better generalization. Future work will explore richer feature representations and more robust 
classifiers to enhance cross-distribution performance.

5.4. Limitations and Future Work

While our method shows promising results in detecting training data fingerprints in GAN-generated medical 
images, it is not without constraints. Recognizing these limitations can guide improvements and inspire future  
research directions. 

• The approach uses ResNet-50 features pre-trained on natural images, which may not fully capture 
medical-specific or GAN-induced artifacts. 

•  The detection is evaluated only on a specific dataset and GAN type, limiting the generalizability across 
modalities and generative models. 

•  Explore domain-adapted or medical-image-specific feature extractors to improve detection sensitivity.

•   Extend the method to handle multiple GAN types and assess robustness across diverse medical 
imaging modalities. 



6. Conclusion

In this subtask, we successfully developed a detection framework leveraging deep feature extraction 
from ResNet-50 combined with a logistic regression classifier to identify the presence of training data 
fingerprints in GAN-generated medical images. The approach demonstrated effective discrimination 
capability, highlighting the significance of deep features for forensic analysis of synthetic medical 
images.  Future work can explore  ensemble  methods and more  sophisticated classifiers  to  further 
improve detection accuracy and robustness. Overall, this study contributes valuable insights toward 
ensuring the integrity and trustworthiness of medical image synthesis.

Declaration on Generative AI

During the preparation of this paper titled "Detecting Training Data Fingerprints in GAN Generated 
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enhance the quality and clarity of the manuscript. 
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Overview,  Methodology,  Results,  Conclusion,  and Future Work sections  relevant  to  GAN 
fingerprint detection. 

  C2. Grammar and spell checking – to correct language, spelling, and punctuation for improved  
readability and precision. 

 C3. Text summarization and rephrasing – to articulate technical findings from experimental 
analysis and model implementation in concise academic language. 
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