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Abstract
This working note describes our contributions to the ImageCLEFmedical 2025 Caption Prediction subtask, in
which we investigated various approaches for extracting clinically relevant captions from radiological data. We
made six unique submissions. Our study focused on modifying three vision-language models—Qwen-2B, Qwen2.5-
3B, and SmolVLM-500M—using the ROCOv2 dataset, which contains radiological image-caption pairings. Three
of our submissions employed direct caption generation, whereas the remaining three incorporated an additional
image modality classification phase with a ResNet-50 model. The classifier output (e.g., CT, MRI, Ultrasound,
Radiograph) was included into the prompt to enhance caption generating efficacy. Among all submissions,
Qwen 2B (2B params) emerges as the strongest overall performer, achieving the best scores in Overall (0.2316),
Similarity (0.5704), ROUGE (0.1598), Relevance (0.3717), UMLS Concepts F1 (0.0741), AlignScore (0.1087), and
Factuality Average (0.0914). These results indicate that Qwen 2B is highly effective at producing clinically
accurate and factually aligned captions. In contrast, SmolVLM (Classification) leads in BERTScore (0.5375) and
BLEURT (0.2576), suggesting that it excels in capturing semantic meaning and producing fluent, human-like
text. These complementary strengths reflect different modeling priorities: Qwen 2B focuses more on factual and
structural alignment, while SmolVLM emphasizes linguistic similarity and coherence. These findings underscore
the effectiveness of hybrid pipelines that combine classification with prompt adaptation. Moreover, they show
that even resource-efficient models, when fine-tuned and guided properly, can provide clinically valuable outputs.
Our experiments support the ongoing shift toward smaller, adaptable vision–language systems for medical AI,
offering practical potential for deployment in low-resource settings.
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1. Introduction

Radiological imaging has become much more common in recent years, which has made clinical processes
very difficult. Due to more cross-sectional studies (i.e., CT and MRI) and more complex images, diagnostic
radiologists’ overall workload "has increased considerably," according to studies [1]. A review found
that 97% of UK imaging units couldn’t keep up with clinical demand. This means that many hospitals
are always short of staff [2]. Writing up thorough radiology reports by hand takes a lot of time and
could cause delays or changes in how patients are cared for. These problems have made people want
to automate some parts of the reporting process. In this case, image captioning that is driven by AI
has a lot of potential [3]. As a vision–language task, automated radiology report generation (ARRG) is
similar to image captioning. It has been shown to "have significant clinical value and could alleviate
time pressures" by taking care of routine [4]. Modern vision–language foundation models (VLMs),
pre-trained on large-scale image–text datasets, have demonstrated remarkable capabilities [5]. These
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models effectively learn complex associations between visual and textual information and are able
to perform zero-shot recognition and description across a broad range of tasks. The fact that these
models did well in general-domain vision–language tests suggests that they could be used in medical
imaging after being fine-tuned on data specific to that field [6]. This study investigates the application
of big Vision-Language Models for medical image captioning. The CS_Morgan team engaged in the
ImageCLEFmedical 2025 Caption Prediction subtask, concentrating on the generation of clinically
relevant captions from radiological images. We optimized multiple cutting-edge VLMs such as Qwen-2B
[7], Qwen2.5-3B [8], and SmolVLM-500M [9] using the supplied training data. Certain iterations of
our methodology also included auxiliary modules, such as an image-modality classifier, and employed
prompt-tuning procedures to enhance relevance.

2. Objectives

As part of the ImageCLEFmedical 2025 Caption Prediction task [10, 11], this work investigates and
assesses the potential of vision-language models to produce clinically relevant captions for medical
images. The main goals are:

1. To use advanced vision-language models to produce medically appropriate and descriptive cap-
tions for radiology images from various modalities, including MRI, CT, X-ray, and Ultrasound.

2. To assess the effectiveness of various VLM’s configurations using performance metrics (e.g.,
BERTScore, ROUGE, BLEURT, Relevance, UMLS Concepts F1, AlignScore, and Factuality Average).

3. To examine, using a unified evaluation framework, the generalization potential of different model
architectures, including large-scale language-vision models and lightweight alternatives.

4. To provide the research community with comparative insights into model selection and fine-tuning
strategies for medical image captioning.

3. Dataset

All of the models mentioned in the introduction section were trained and assessed using the ROCOv2
[12] dataset supplied by the competition organizers [10, 11]. The dataset comprises about 80,091 training,
17,277 validation, and 19,267 test radiology images accompanied by captions and concepts. This dataset
consists of many modalities and anatomical locations, providing an extensive platform for biomedical
captioning. Our objective is to evaluate the efficacy of contemporary VLMs in producing precise,
therapeutically relevant captions within the biomedical field. Figure 1 provides a comprehensive view of
the dataset’s linguistic characteristics. Subfigure (a) shows that the majority of captions are between 10
and 30 words long, with aligned mean, median, and mode across train and validation splits, indicating a
stable annotation style. Subfigure (b) highlights the long-tailed nature of the dataset, revealing rare
captions with more than 500 words. Despite these extremes, central tendencies remain consistent.
Subfigure (c) displays the most frequent words used in the captions after preprocessing (i.e., removing
punctuations, stop words, numeric words, etc.) Together, these subfigures support the inference that
the dataset is well-structured, domain-specific, and linguistically consistent — ideal for training and
evaluating medical image captioning models.

4. Models to Predict Captions

The models employed here are trained to predict captions for the radiology images. This process consists
of three steps: (1) utilizing ResNet50 to categorize the images into four major image modalities such
as CT, MRI, Ultrasound, and Radiograph, (2) training of SmolVLM, Qwen-2B, and Qwen-2.5-3B with
some parameter efficient techniques to predict captions, and (3) using structured prompt engineering to
guide the trained models regarding the predicted modality of test images to generate more relevant



(a) Caption length distribution (log scale) with ≤ 95th percentile trimmed.

(b) Caption length distribution (log scale) without trimming.

(c) Top 20 most frequent words in cleaned captions.

Figure 1: Statistical analysis of medical image captions: (a) shows the distribution of caption lengths with
95th percentile trimming; (b) includes the full length range with outliers; and (c) presents the most frequent
domain-relevant words across all captions.



captions. Figure 2 depicts the corresponding framework and the following sections will elaborate the
relevant parts of this framework.

Figure 2: Conceptual Framework of the Experiments

4.1. SmolVLM

The language model is a simple SmolLM decoder with 500 million parameters. Advanced efficiency
features like Grouped-Query Attention and FlashAttention allow it to handle up to 4,096 token sequences
and provide fast inferences by default. A two-layer MLP projection matrix smooths the integration
of visual and textual input from 1,024-dimensional vision tokens into the language model’s 4,096-
dimensional embedding space. The language model, a streamlined SmolLM decoder with 500 million
parameters, inherits additional efficiency features like Grouped-Query Attention and FlashAttention
to support large sequences (up to 4,096 tokens by default) and quick inference [9]. A two-layer MLP
projection matrix transforms the 1,024-dimensional vision tokens into the 4,096-dimensional embedding
space employed by the language model. This ensures that visual and written information can be
utilized concurrently without any issues. The lightweight SigLIP encoder, in conjunction with the
projection layer and the distilled SmolLM decoder, enables SmolVLM-500M to perform competitively
in captioning and visual question answering, requiring approximately 1.2 GB of GPU memory for a
complete image-to-text conversion. This renders it ideal for deployment on consumer-grade devices.

4.2. Qwen2-VL and Qwen2.5-VL

Qwen2-VL [13] uses a dynamic-resolution ViT encoder to process images of any size into visual
embeddings, which are then mapped into a 4096-dimensional language space using a two-layer MLP.
Its decoder is a 32-layer Qwen-2B model with 2B parameters, employing Grouped-Query Attention
and Flash-style kernels to handle sequences up to 8,192 tokens efficiently. This architecture enables
fine-grained image reasoning and coherent multimodal generation, all deployable on a single GPU.
Qwen2.5-VL [14] builds upon this by using a ViT encoder trained with Naïve Dynamic Resolution
and enhanced with 2D positional encodings. The same MLP structure projects vision tokens to match
the 4096-dimension text space. It incorporates a more powerful 36-layer Qwen-2.5 decoder with over
3B parameters, capable of handling up to 32,768 tokens. Despite its increased capability—supporting
detailed grounding and complex outputs—it remains efficient enough for single-GPU deployment.

5. Submissions for the Caption Prediction Task

5.1. Submission 1: LoRA fine-tuning of SmolVLM-500M

This submission modifies the publicly available SmolVLM-500M-Instruct checkpoint—a 12-layer ViT-B
vision encoder paired with a 32-layer text decoder—to produce captions for ROCO-v2 radiological
images. Rather than updating all 500 million parameters, we utilized LoRA on each linear transformation
within both the vision and text stacks. The language model’s projection head (lm_head) and token



embeddings (embed_tokens) were also kept trainable. The technique combines low-rank adaptation
with selectively updated weights to capture domain-specific vocabulary while reducing memory usage
and overfitting risks.
LoRA was configured with a rank of 𝑟 = 64, a scaling factor of 𝛼 = 16, and a dropout rate of 0.10 to

regularize the adapter pathways. The bias terms were fixed (bias="none"), while the use_rslora
flag enabled the more memory-efficient RS-LoRA formulation. The adapters added around 7.4 million
trainable parameters, constituting about 1.5% of the model’s overall size, enabling the entire process to
be efficiently executed on a single A100-80 GB GPU with bfloat16 precision.

5.1.1. Training Process

Training was executed with the Transformers Trainer, gradient check-pointing, and FlashAttention
to optimize memory use. The modality-balanced ROCO-v2 split underwent processing for two complete
epochs (about 5,006 optimization steps) with an effective batch size of 32 (per-device batch of 2, gradient
accumulation of 16). Optimization utilized AdamW (𝛽 = 0.9/0.999, 𝜖 = 1× 10−8) with a base learning
rate of 5 × 10−5, following a cosine decay schedule and included 500 warm-up steps. Checkpoints
and evaluations were documented after each epoch; the first-epoch checkpoint—training loss = 2.5229,
validation loss ≈ 2.58597—exhibited the minimal loss values and was hence selected for downstream
inference. The adapters from this checkpoint were integrated with the fixed backbone, and captions
were produced using greedy decoding (temperature = 1.0, num_beams = 1, max_new_tokens
= 64).

5.2. Selective fine-tuning of Qwen-2B

For this run, the Qwen-2 Vision-Language checkpoint with two billion parameters was loaded. The
backbone connects a 32-layer vision transformer (hidden = 1,280) to a 28-layer text decoder (hidden =
1,536) using a trained multimodal projector. LoRA was used to achieve parameter-efficient adaptation,
with a rank 𝑟 = 32, lora_alpha = 32, and dropout rate = 0.10. Adapters were injected into each
self-attention block’s key (k_proj), query (q_proj), value (v_proj), and output (o_proj) projections,
as well as the up, down, and gate projections (up_proj, down_proj, gate_proj) of each MLP. The
identical set of projections in the vision attention blocks, as well as both fully connected layers of
the vision MLP (mlp.0 and mlp.2), were addressed. Furthermore, the language head (lm_head)
and input embeddings (embed_tokens) were left trainable to provide domain-specific vocabulary
adaption. This selective technique activated 504,217,600 parameters out of 2,713,203,200, which means
that approximately 18.6% of the model can be updated during training.

5.2.1. Training Process

To reduce memory usage, training was undertaken using the Transformers Trainer, gradient check-
pointing (use_reentrant = False), and Flash-Attention. The modality-balanced ROCO-v2
split ran through the data three times, recording and saving every 500 optimization steps; batches were
streamed in bfloat16 with a per-device size of one, and no gradient accumulation. Optimization used
AdamW (𝛽 = 0.9/0.999, 𝜖 = 1× 10−8, weight decay = 0.01) with a base learning rate of 3× 10−4 and a
typical cosine schedule. The validation loss fell from 4.41 at step 500 to a low of 4.18 at step 2,500 (with
a corresponding training loss of around 3.74); this checkpoint was automatically recognized as the best.
The adapters from checkpoint-2500 were combined with the frozen backbone for inference, and
captions were created using greedy decoding (temperature = 1.0, num_beams = 1, max_new_tokens
= 64).

5.3. Selective fine-tuning of Qwen-2.5-3B

This experiment utilized the multimodal backbone Qwen-2.5-VL-3B, which integrates a 32-layer vision
transformer with a 36-layer causal text decoder including 2,048 hidden units. Parameter-efficient adap-



tation was achieved by Low-Rank Adaptation. Rank-32 adapters, configured with a lora_alpha of
16 and regularized by a 0.10 dropout, were incorporated into every query, key, value, and output
projection of the self-attention blocks, as well as the up_, down_, and gate_projection pathways of
each MLP in both the vision and text stacks. The identical adapter template was utilized for the two fully
connected layers within the vision-side MLP. Furthermore, the language-model head (lm_head) and the
token-embedding matrix (embed_tokens) were retained as trainable components to enable the model
to enhance its medical lexicon. This selective technique optimized 702,435,328 weights—approximately
15.76% of the 4,457,058,304 parameters in the original checkpoint—while the remaining layers remained
fixed in bfloat16.

5.3.1. Training Process

Training was conducted via the Transformers Trainer, with gradient check-pointing (re-entrant path
disabled) and Flash-Attention kernels. Caption pairings from the modality-balanced ROCO-v2
corpus were transmitted to the GPU in bfloat16 format for four notional epochs; each optimization
step handled a single image-caption pair, as both the training and evaluation batch sizes were configured
to one, and no gradient accumulation was employed. AdamW was used for optimization using a base
learning rate of 3 × 10−4, cosine decay scheduling, and a weight decay coefficient of 0.01. Every
500 optimization steps, a full evaluation and check-pointing were done. An early-stopping callback
monitored the validation loss with a threshold of 0.01 and a patience of three evaluations.

The first evaluation at step 500 showed a training loss of 4.52 and a validation loss of 4.09. Later
evaluations indicated a continuous decline in validation loss, reaching its lowest point of 3.79 at step
5,000, at which the best-model flag was set. As a result, the adapters saved in checkpoint-5000 were
used for subsequent caption generation. This was done using greedy decoding with a temperature of
1.0, a single beam, and a maximum of 64 new tokens.

5.4. Captioning with Classification

In the ROCOv2 dataset, the four major imaging modalities—CT (28,005), MRI (12,669), Radiograph
(26,789), and Ultrasound (11,425)—were chosen because they are the categories that occur the most
frequently and have the most significant diagnostic implications. There were 1,203 images that were
labeled as "Other," This included some other modalities, such as nuclear scans and positron emission
tomography (PET). They could have caused class imbalance and instability in the modeling activities
that followed.

To prevent class imbalance, each modality’s training set was downsampled to match the smallest
class size, ensuring equal representation for robust learning on the imbalanced dataset [15]. Cross-
entropy loss and validation oversight were used throughout the ResNet classifier’s entire training phase,
which lasted five epochs from the start. When each class was downsampled, it was assigned to the
category that was the smallest. This ensured that all classes were represented equally. Although the
training period was relatively short, the classifier was able to achieve stable validation performance,
with accuracy, precision, and recall reaching 96.46%. This indicates that the model was successful in
capturing modality-specific properties. In light of the fact that test labels were not available at the time
of submission, the evaluation was limited to validation metrics. The classifier’s predictions for test
images were subjected to distributional sanity checks, which ensured that the output was balanced
across all modalities.

Figure 3 shows the overview of the proposed hybrid pipeline integrating classification and prompt-
based captioning.

A ResNet-50 convolutional neural network [16], trained from scratch without ImageNet pretraining,
was adapted to output four modality classes. The model was trained for five epochs using cross-entropy
loss and optimizers such as Adam or SGD, with checkpoints saved each epoch and validation monitoring
to avoid overfitting [17].

The classifier achieved high validation accuracy (96.46%) and balanced precision, recall, and F1-scores



Figure 3: Framework for Medical Image Captioning Using Modality-Informed Vision-Language Models

(approximately 96.4%), indicating effective feature learning and minimal bias. Finally, the trained model
predicted modalities on the test set, outputting results as a CSV file for subsequent caption generation.

5.5. Contextual Guidance in Caption Generation

Structured Prompt Conditioning: The ResNet-50 classifier generated predicted modality labels,
which were then saved to a CSV file containing image identifiers and modality categories. During
inference, each captioning model determined the predicted modality for a given test image and included
it in the input prompt. For example, prompts were formatted as follows: "CT image: Describe the
medical image." This modality-aware conditioning helped the vision-language models generate more
context-specific and clinically acceptable captions. Importantly, modality information was employed
only during inference, not model training. This method enabled all three models—SmolVLM-500M,
Qwen-2B, and Qwen2.5-3B—to remain modular and flexible while retaining modality-specific vocabulary
and structure in their outputs.

Caption Generation with Modality Context: During inference, each captioning model processes
the input image along with the modality-conditioned prompt to generate a relevant textual description.
Conditioning on the modality enables the use of modality-specific vocabulary—such as ultrasound terms
for ultrasound images or scanning sequence references for MRI—reducing ambiguity and ensuring
modality-accurate captions.

All three captioning models (Qwen-2B, Qwen2.5-3B, and SmolVLM-500M) employ this structured
guidance, analyzing both the modality-conditioned prompt and image simultaneously. This two-stage
pipeline—modality classification followed by modality-aware captioning—effectively adapts general
vision-language models to produce clinically relevant, modality-consistent medical image captions.

6. Evaluation Metrics

Overall Average: This cumulative score is the mean of all individual metric scores for a submission,
providing a comprehensive assessment of caption quality in terms of relevance and factual accuracy. A
higher Overall Average indicates better performance and was used by organizers to rank systems.

Image-Caption Similarity: Measures semantic consistency between image content and caption by
embedding both via a medical image-text model and computing their similarity. A high score reflects
accurate depiction beyond simple lexical overlap.

BERTScore [18] evaluates text similarity by comparing BERT embeddings of candidate and reference
captions, capturing semantic meaning more effectively than traditional methods.



ROUGE [19] assesses overlap of n-grams, word sequences, and pairs between candidate and reference
texts, commonly used for summarization and translation evaluation.

BLEURT [20] is a learned metric leveraging fine-tuned pretrained transformers to predict human
judgment scores for natural language generation.

Relevance Average: The average of Image-Caption Similarity, BERTScore, ROUGE-1, and BLEURT,
measuring how well captions match reference content and language. A high score indicates informative
and on-topic captions.

UMLS Concept F1: Evaluates factual overlap of clinical concepts by extracting medical entities
from generated and reference captions using UMLS [21]. The F1-score compares true positives, false
positives, and false negatives of these entities.

AlignScore: Uses a RoBERTa-based verifier to break captions into claims and verify their support by
the image context [22]. This checks true factual alignment rather than mere word overlap, with higher
scores indicating better claim support.

Factuality Average: The mean of UMLS Concept F1 and AlignScore, reflecting overall factual
accuracy by balancing term-level concept overlap and sentence-level claim verification.

7. Results and Discussions

In order to explore the effects of model capacity, modality conditioning, and inference design on
semantic and clinical performance, our team assessed six captioning techniques. The first two entries
used vision-language backbones that had already been trained on medical image-caption pairings, Qwen
2B and Qwen 2.5-3B. Qwen 2B (Submission 3) obtained the best overall composite score (0.2316), despite
having a higher BERTScore (0.5296), which is probably because to its larger decoder size. Inadequate
factual basis was demonstrated by the poor Factuality Averages of both models (e.g., 0.0601 for Qwen
2.5–3B). Submissions 4 and 5 presented a two-stage methodology wherein each test image was initially
categorized into one of four primary imaging modalities—CT, MRI, Radiograph, or Ultrasound—utilizing
a ResNet-50 classifier. The anticipated label was subsequently employed to build a structured input
prompt, for instance, “MRI image: Describe the medical image.” This directed the captioning model
towards language relevant to the modality. The independently trained classifier, utilized solely during
inference, had a notable impact: Qwen 2.5 with classification (Submission 4) enhanced BLEURT from
0.2040 to 0.2263 and UMLS Concepts F1 from 0.0225 to 0.0271, in contrast to its non-classification
equivalent. These advancements indicate both semantic enhancement (assessed by BLEURT, which
evaluates linguistic fluency and contextual alignment) and clinical significance (measured by UMLS
Concept F1, which quantifies the intersection of medically relevant ideas).

Qwen 2B with classification (Submission 5) shown robust performance across all metrics, enhanc-
ing both Relevance Average (from 0.2853 to 0.3132) and Factuality Average (from 0.0351 to 0.0523).
These enhancements underscore the advantages of modality-aware prompting in augmenting both the
interpretability and clinical accuracy of generated captions.

Submissions 1 and 6 employed the smaller SmolVLM-500M model to investigate performance-
efficiency trade-offs. The baseline model (Submission 1) attained substantial semantic alignment
(BERTScore 0.5361, BLEURT 0.2518), although exhibited diminished factual content (Factuality 0.0380).
The implementation of classification-based prompts in Submission 6 enhanced BLEURT to 0.2576
and achieved the highest Relevance Average among tiny models at 0.3646, demonstrating that even
lightweight architectures can gain from modality conditioning.

Significantly, these classification-driven improvements were attained without altering the fundamen-
tal VLM settings. By implementing predicted modality labels solely during inference, we maintained
the system’s flexibility and modularity. This design decision was intentional: including modality labels
during training would necessitate architectural alterations and re-tuning of model weights, hence
augmenting complexity. Utilizing classifier outputs as prompts facilitates controlled, domain-specific
captioning while maintaining efficiency—an advantageous characteristic for practical clinical use when
minimal updates are desired.



Although we did not perform formal ablation tests, the comparative results of each model with
and without classifier assistance offer implicit proof of the technique’s influence. Modality-informed
prompting enhanced semantic overlap (BLEURT, BERTScore), clinical correctness (UMLS F1), or struc-
tured contextual alignment (Relevance Average) across all evaluated backbones. These findings indicate
that hybrid pipelines integrating independent classifiers with optimized VLMs provide a scalable and
efficient approach for medical caption production. Future research will examine the comparative efficacy
of training-time integration of modality features against our inference-only configuration, as well as
the potential benefits of combined optimization methodologies.

Table 1
Evaluation metrics for captioning submissions

Sub # Model Overall Similarity BERTScore ROUGE BLEURT Relevance UMLS Concepts F1 AlignScore Factuality Average

3 Qwen 2B (2B params) 0.2316 0.5704 0.5180 0.1598 0.2385 0.3717 0.0741 0.1087 0.0914
2 Qwen 2.5-3B 0.1882 0.4456 0.5296 0.0873 0.2026 0.3163 0.0244 0.0956 0.0601
6 SmolVLM (Classification) 0.1928 0.4202 0.5375 0.1361 0.2576 0.3646 0.0233 0.0725 0.0479
4 Qwen 2.5 (Classification) 0.1819 0.4507 0.5111 0.0919 0.2040 0.3512 0.0225 0.0762 0.0494
5 Qwen 2B (Classification) 0.1827 0.3925 0.5089 0.1347 0.2164 0.3132 0.0171 0.0874 0.0523
1 SmolVLM 0.2001 0.4143 0.5361 0.1362 0.2518 0.3622 0.0157 0.0602 0.0380

8. Conclusion

This study explored a modular approach to medical image captioning by fine-tuning vision-language
models and incorporating image modality prompts during inference. The models included Qwen-
2B, Qwen-2.5-3B, and SmolVLM-500M, each fine-tuned on radiology captioning tasks. A ResNet-50
classifier was trained to predict the modality of each input image, and these modality labels were
included as prompts during caption generation to provide contextual guidance. The introduction of
modality prompts did not improve overall captioning performance across all models. However, it led to
measurable gains in factual accuracy and medical concept coverage for smaller model. For example,
the SmolVLM baseline achieved a Factuality Average of 0.0380 and UMLS Concept F1 of 0.0157, while
the modality-informed variant reached 0.0479 and 0.0223. These results suggest that even minimal
contextual signals can help smaller models better align with domain-specific terminology and clinical
details. The framework prioritized simplicity and modularity by limiting the classifier to inference
and focusing on major modality categories. This structure allowed for efficient reuse of components
and rapid experimentation without requiring retraining of the core models. Future directions include
incorporating modality information during training, expanding the modality taxonomy, and conducting
component-level ablation studies. The findings suggest that contextual guidance provides a practical
approach for enhancing the specificity and factual accuracy of generated captions in clinical applications.
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