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Abstract
This paper proposes Meta-LoRA, a new paradigm that combines meta-learning with efficient parameter fine-
tuning, aiming to address the challenges in multimodal reasoning tasks. Traditional methods either suffer from
excessive parameter updates during full model fine-tuning or perform poorly in terms of few-shot adaptability.
Our method introduces a two-stage optimization framework that uses meta-learning to actively learn the optimal
initialization point of the cross-modal LoRA matrix, achieving task-specific adaptation through rank-constrained
updates that only require 0.3% - 1.2% of the original model parameters. The cross-modal dependency pattern
meta-learned in this paper dynamically adjusts the adaptability of the visual and textual paths to improve the
discriminative ability of the model. Finally, we select the model weights that perform best in the validation set.
We achieved an average score of 0.5226 in multi-language multimodal reasoning on the test set.
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1. Introduction

With the rapid growth of multimodal AI, integrating and reasoning across vision, language, and other
modalities remains a key challenge. Benchmarking initiatives like ImageCLEF have driven progress in
this field, offering standardized evaluations for tasks ranging from medical image analysis to argument-
based retrieval. The ImageCLEF 2025 edition continues this tradition with four tasks, including a
new MultimodalReasoning challenge designed to test advanced reasoning in vision-language models
(VLMs)[1][2].

Vision-Language Models[3] have demonstrated powerful capabilities in cross-modal tasks such as
image description generation and visual question answering (VQA)[4]. However, existing models still
have significant limitations when faced with scenarios that require deep logical reasoning or complex
hypothesis analysis (such as interpreting causal relationships in scientific diagrams and answering
cultural metaphor questions that rely on multi-step inference). This challenge is particularly prominent
in cross-language[5] and cross-disciplinary scenarios[6] - the model may not be able to perform effective
reasoning due to language differences or lack of domain knowledge.

While modern VLMs excel at basic tasks like image captioning, they often struggle with complex
logical inference, hypothetical scenarios, and deep cross-modal understanding. The MultimodalRea-
soning task addresses this gap by evaluating models on multilingual, domain-diverse inputs requiring
structured reasoning. In this work, we focus on this task,In this study, Meta-LoRA is proposed, a method
that combines meta-learning[7] with efficient parameter fine-tuning Lora[8] to solve ImageCLEF 2025
– Multimodal Reasoning task[1]. The task requires the model to select the only correct option based
on a given image (such as an infographic containing mathematical formulas or a scene with cultural
symbols) and its associated 3-5 candidate answers[2]. Compared with existing VQA tasks, our design
focuses on three core challenges:
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Cross-modal causal reasoning: It is necessary to combine visual elements (such as chart trends and
spatial layout) with text questions (such as questions containing negative conditions) to establish logical
associations;

Multilingual generalization: The questions and answers may be presented in Chinese, English, or
low-resource languages, requiring the model to overcome language bias;

Multidisciplinary generalization: The subject areas involved in the questions include physics, chem-
istry, biology, and other subjects, requiring the model to overcome the challenges brought by the scope
of knowledge according to the characteristics of the subjects.

2. Related Work

Since 2003, ImageCLEF has been a driving force in the research of multimodal retrieval and visual
understanding [1]. Initially, its focus was on Cross-Language Image Retrieval (CLIR), aiming to retrieve
images in multilingual databases using descriptions in languages like English [9]. As image recognition
and semantic understanding technologies advanced, the tasks of ImageCLEF gradually expanded to
more challenging domains, including medical image analysis, assistive technologies (e.g., support for
disabilities), geo-tagging, and visual question answering (VQA). This shift reflects a transformation in
research focus from “image matching” to more complex “semantic reasoning.”

In 2025, ImageCLEF introduced a new task called Multimodal Reasoning, designed to assess models’
abilities in cross-modal understanding and logical reasoning within multilingual VQA scenarios[1].
The task involves selecting the single correct answer from 3 to 5 options given an image and a related
question. This setting requires not only image-text alignment capabilities, but also fine-grained image
recognition, linguistic reasoning, and semantic exclusion.

With the emergence of vision-language pre-trained models such as CLIP [10], ALBEF [11], and BLIP-2
[12], the pretrain-then-finetune paradigm has become the mainstream approach. For example, BLIP-2
connects a frozen vision encoder and a large language model (e.g., OPT or LLaMA) via a Q-Former
module for improved image-text alignment, resulting in enhanced inference efficiency and multi-task
adaptability. However, in the ImageCLEF2025 task requiring fine-grained semantic contrast and complex
reasoning, general pretrained models still struggle with limited reasoning capacity, semantic ambiguity,
and task overfitting.

Recent advances in parameter-efficient fine-tuning (PEFT) have revolutionized multimodal model
adaptation. Low-Rank Adaptation (LoRA) [13] decomposes weight updates into trainable low-rank
matrices, achieving comparable performance to full fine-tuning while reducing trainable parameters
by 90-98%. This approach proves particularly effective for multilingual tasks where data scarcity per
language exacerbates overfitting risks. Building on this, Adapter [14] introduces task-specific bottleneck
layers between transformer blocks, enabling efficient multi-task learning. These techniques address the
core challenge of adapting billion-parameter models to specialized reasoning tasks without catastrophic
forgetting.

Meta-learning has emerged as a powerful paradigm for few-shot multimodal learning. Model-
Agnostic Meta-Learning (MAML) [15] enables rapid adaptation to new languages through gradient-based
optimization of initialization parameters. Recent extensions like MetaPrompt [16] learn generalizable
prompt templates across tasks, while ProtoMAML [17] combines prototype networks with meta-
learning for cross-lingual representation learning. These methods demonstrate particular promise for
the ImageCLEF2025 challenge where test languages may differ from training data.

Visual Question Answering systems have evolved through three key innovations:

• Attention Mechanisms: Co-attention layers [18] enable dynamic visual-text feature alignment
• Compositional Reasoning: Models like NS-VQA [19] integrate neural networks with symbolic

program executors
• Knowledge Integration: Frameworks such as KRISP [20] incorporate external knowledge bases

for complex queries



The ImageCLEF2025 task inherits these advances while introducing new challenges in multilingual
answer grounding.

To tackle these challenges, researchers have proposed more targeted training mechanisms, including:

• Cross-modal attention and joint embedding learning: to capture high-level semantic align-
ment between image and text;

• Parameter-efficient fine-tuning (PEFT) methods such as LoRA [13] and Adapter [14], which
adapt large models with fewer trainable parameters;

• Contrastive learning and multi-task loss fusion: to enhance the model’s ability to distinguish
between similar options;

• Meta-learning and domain adaptation: to improve generalization across languages and image
styles.

In this work, we propose a method named Meta-LoRA, integrating multiple training strategies to
improve model performance in multimodal reasoning tasks.

Our method draws inspiration from contrastive approaches in visual-text detection [21], and leverages
lightweight and generalization-enhancing strategies to achieve robust reasoning performance in the
ImageCLEF2025 Multimodal Reasoning task.

3. Method

We propose the following method

• Apply LoRA fine-tuning to improve parameter efficiency;
• Introduce meta-learning frameworks (e.g., Reptile) to enhance generalization across multilingual

and multi-style QA settings;
• Use gradient clipping and cosine annealing learning rates to ensure training stability and robust-

ness;
• Incorporate contrastive learning modules to reinforce discriminative capability between image-

text pairs and reduce overfitting.

Mainly,Our Meta-LoRA framework enhances Qwen2.5-VL-7B multimodal reasoning through three
novel components:

3.1. Dynamic Parameter Adaptation

Let 𝜃0 denote pretrained model parameters. For each task 𝒯𝑖, we generate task-specific LoRA parameters
via meta-learning:

∆𝜃𝑖 = 𝑔𝜑(𝒯 𝑖) = MLP(AvgPool(𝑓𝜓(𝑉𝑖, 𝑄𝑖))) (1)

where 𝑔𝜑 is the meta-learner with parameters 𝜑, and 𝑓𝜓 extracts task embeddings from visual-
language inputs. The adapted parameters become:

𝜃𝑖 = 𝜃0 +𝑊down𝜎(𝑊up∆𝜃𝑖) (2)

with 𝑊down ∈ R𝑑×𝑟 , 𝑊up ∈ R𝑟×𝑑 (rank 𝑟 ≪ 𝑑).



3.2. Multimodal Feature Fusion

Given visual features 𝐹𝑣 ∈ R𝐻×𝑊×𝐶 and text embeddings 𝐹𝑡 ∈ R𝐿×𝑑, we compute cross-modal
attention:

𝐴𝑣2𝑡 = softmax
(︂
𝐹𝑣𝑊𝑞(𝐹𝑡𝑊𝑘)

𝑇

√
𝑑

)︂
𝐹𝑡𝑊𝑣 (3)
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The fused representation combines both modalities:

𝐹fused = LayerNorm([𝐴𝑣2𝑡;𝐴𝑡2𝑣]𝑊𝑓 + 𝑏𝑓 ) (5)

3.3. Stable Optimization Strategy

The training combines:

• Cosine Annealing: 𝑙𝑟𝑡 = 𝑙𝑟min +
1
2(𝑙𝑟max − 𝑙𝑟min)(1 + cos( 𝑡𝑇 𝜋))

• Gradient Clipping: 𝑔′𝑡 =
𝜏𝑔𝑡

max(|𝑔𝑡|2,𝜏)

The final loss integrates cross-entropy with Kullback-Leibler regularization:

ℒ = −
𝐾∑︁
𝑘=1

𝑦𝑘 log 𝑝𝑘⏟  ⏞  CE + 𝜆𝐷𝐾𝐿(𝑝(𝜃𝑖)|𝑝(𝜃0))⏟  ⏞  
Regularizer

(6)

3.4. Meta-Training Algorithm

The proposed meta-learning strategy addresses two challenges: (1) rapid adaptation to new tasks via
dynamic LoRA parameters, and (2) maintaining stability during cross-task optimization. As shown in
Algorithm 1:

Algorithm 1 Meta-LoRA Training
Require: Dataset 𝒟, base model 𝑓𝜃0 , meta-learner 𝑔𝜑
Ensure: Optimized parameters 𝜃*, 𝜑*

1: Initialize 𝜃0, 𝜑 randomly
2: for epoch = 1 to 𝐸 do
3: Sample batch {𝒯𝑖}𝐵𝑖=1 ∼ 𝒟
4: for each task 𝒯𝑖 do
5: Compute ∆𝜃𝑖 = 𝑔𝜑(𝒯𝑖)
6: Adapt parameters: 𝜃𝑖 ← 𝜃0 +∆𝜃𝑖
7: Evaluate∇𝜃𝑖ℒ𝒯𝑖
8: end for
9: Update 𝜑← 𝜑− 𝜂∇𝜑

∑︀
𝑖 ℒ𝒯𝑖(𝜃𝑖)

10: Apply gradient clipping to∇𝜑
11: Update learning rate via cosine annealing
12: end for



4. Experiment

4.1. Dataset analysis

The dataset is provided by ImageCLEF-2025-MultimodalReasoning, and Exams-V dataset[22] This
includes only training and dev/validation data split into 16,724 training and 4,208 dev/validation
instances and test is new data for the task. The detailed distribution of the training set, validation set,
and test set data by language and subject is shown in Figures1 and 2:

Figure 1: Detailed language distribution of the dataset

We observe that the average sequence length across languages in the training set is 1,195 tokens.
Several languages exhibit significantly shorter samples than this average, notably:

• Russian: 9 samples
• Romanian: 5 samples

This data scarcity is compounded by a subject distribution bias toward physics, chemistry, and specialized
courses.

To standardize the evaluation, we established mapping rules for answer normalization. Since:

• Model outputs are constrained to options A–E
• Original answers contain variants (e.g., 0, 1, a, b, c and Russian alphabet)

we convert all answer_key values to canonical A–E options. This ensures consistent learning of correct
knowledge representations.

4.2. Experimental setup

In this study, we selected Qwen2.5-VL-7B as our base model, primarily due to the proprietary restrictions
of the Qwen-VL-Max version and practical computational resource constraints. For the experiments,
we adopted prompt2 - the top-performing text input template on the validation set - and performed
parameter-efficient fine-tuning using LoRA (Low-Rank Adaptation). The detailed training configuration
was as follows: a batch size of 16, learning rate ranging from 1×10−4 to 1×10−5 with cosine annealing



Figure 2: Detailed information on the subject distribution of the dataset

scheduling, trained for 3 epochs using the AdamW optimizer with weight decay (𝜆 = 0.01). The loss
function combined alignment contrastive loss and generation cross-entropy loss for multi-task joint
optimization. All experiments were conducted on an NVIDIA A800 GPU cluster, with single-GPU
batch_size=16 achieving approximately 68% GPU memory utilization. During the training phase, we
used the official training dataset from EXAMS to train the model. To evaluate the model’s performance
across different languages, we employed the official EXAMS validation set during the validation phase.
Our model achieved an accuracy of 0.52258 on the validation set.

4.3. Result

The multimodal accuracy is shown in the ImageCLEF-2025-MultimodalReasoning task. The accuracy
on the test set is reported in the overview. Table 1 shows the relevant results.

We observe that our proposed Meta-LoRA framework significantly enhances the multimodal reason-
ing capabilities of Qwen2.5-VL-7B through three key innovations:

LoRA-based efficient fine-tuning, which trains only 0.1% of parameters yet outperforms baseline
models by an average of 34.2% across 12 languages (current limitations exist in semantically dependent
languages like Arabic [0.3514], which can be addressed via MoE-based language-specific modeling);

Multimodal synergy, achieving a 138% improvement over text-only baselines (0.2480) in Chinese
VQA tasks (0.5921);

Low-resource adaptation, surpassing 50% of competitors in Croatian (0.5616) and Polish (0.5251)
based on ranking.This approach ranks third in the Chinese domain, demonstrating its effectiveness. In
multilingual and multimodal question-answering reasoning tasks using Qwen2.5-VL-7B, the framework
exhibits strong cross-lingual generalization, particularly in German, Croatian, Polish, and Italian.
Compared to the validation set accuracy in Table 3, the official test set accuracy shows only a 6
percentage point decline.

Although it does not lead in Chinese and English tasks, it remains highly competitive. Performance
in mainstream languages could be further enhanced—and full-language coverage strengthened—by
integrating more sophisticated language adaptation mechanisms (e.g., LoRA + language adaptation
modules) or employing multilingual prompt tuning strategies.



Table 1
Multilingual Benchmark Results

Multilingual English Bulgarian Chinese

1. MSA (0.8140) 1. stormhunter44 (0.8965) 1. heavyhelium (0.9050) 1. MSA (0.8305)
2. ymgclef (0.5994) 2. MSA (0.8652) 1. stormhunter44 (0.9050) 2. ayeshaamjad (0.6560)
3. lekshmiscopevit (0.5770) 3. ayeshaamjad (0.8125) 2. ymgclef (0.7750) 3. plutohbj (0.5921)
4. bingezzzleep (0.5619) 4. heavyhelium (0.8086) 3. bingezzzleep (0.7500) 4. bingezzzleep (0.5799)
5. plutohbj (0.5226) 5. ymgclef (0.5938) 3. MSA (0.7500) 5. mhl2001 (0.5553)
6. deng113abc (0.5195) 6. deng113abc (0.5371) 4. plutohbj (0.7300) 6. ymgclef (0.5283)
7. mhl2001 (0.4418) 7. bingezzzleep (0.5312) 5. baseline* (0.2450) 7. yaozihang (0.4791)
8. yaozihang (0.4376) 8. plutohbj (0.4922) 6. elenat (0.2350) 8. baseline* (0.2678)
9. baseline* (0.2701) 9. mhl2001 (0.4629)
10. elenat (0.2188) 10. yaozihang (0.4570)

11. elenat (0.2520)
12. baseline* (0.2480)

German Arabic Italian Spanish

1. MSA (0.8915) 1. MSA (0.6757) 1. MSA (0.9212) 1. MSA (0.7198)
2. ymgclef (0.7403) 2. ayeshaamjad (0.4775) 2. bingezzzleep (0.6059) 2. ymgclef (0.6696)
3. bingezzzleep (0.6860) 3. mhl2001 (0.4730) 2. plutohbj (0.6059) 3. bingezzzleep (0.6608)
4. plutohbj (0.6783) 4. ymgclef (0.4324) 3. ymgclef (0.6010) 4. plutohbj (0.5723)
5. yaozihang (0.4961) 5. plutohbj (0.3514) 4. baseline* (0.2414) 5. baseline* (0.3156)
6. mhl2001 (0.4922) 6. bingezzzleep (0.3243)
7. baseline* (0.3101) 7. baseline* (0.2703)

Serbian Hungarian Croatian Polish

1. MSA (0.7143) 1. ymgclef (0.6518) 1. MSA (0.9507) 1. MSA (0.8224)
2. bingezzzleep (0.6059) 2. bingezzzleep (0.5425) 2. bingezzzleep (0.6207) 2. ymgclef (0.7181)
3. ymgclef (0.5468) 3. plutohbj (0.4696) 3. ymgclef (0.5764) 3. bingezzzleep (0.5792)
4. plutohbj (0.5320) 4. mhl2001 (0.3563) 4. plutohbj (0.5616) 4. plutohbj (0.5251)
5. baseline* (0.2365) 5. baseline* (0.2348) 5. baseline* (0.2709) 5. baseline* (0.2934)

5. Ablation study

This study first We evaluated two official testing prompts[23]:
Prompt 1: Analyze the image of a multiple-choice question. Identify the question, all answer options

(even if there are more than four), and any relevant visuals like graphs or tables. Choose the correct
answer based only on the image. Reply with just the letter of the correct option, no explanation.

Prompt 2: You are a sophisticated Vision-Language Model (VLM) capable of analyzing images
containing multiple-choice questions, regardless of language. To guide your analysis, you may adopt
the following process:

1.Examine the image carefully for all textual and visual information.
2.Identify the question text, even if it’s in a different language.
3.Extract all answer options (note: there may be more than four).
4.Look for additional visual elements such as tables, diagrams, charts, or graphs.
5.Ensure to consider any multilingual content present in the image.
6.Analyze the complete context and data provided.
7.Select the correct answer(s) based solely on your analysis.
8.Respond by outputting only the corresponding letter(s) without any extra explanation.
The achieved accuracies of 29.63% and 60.97% for Prompts 1 and 2, respectively, led us to select

Prompt 2 for our text input. Next, tested the pre-trained models Qwen2.5-VL-7B, Qwen-VL-Max[24],
and Qwen-VL-Plus[25], which have high accuracy in multimodal reasoning. We evaluated all models
using identical prompt2 under zero-shot settings without fine-tuning. Table 2 presents:

The results reveal Qwen-VL-Max superior accuracy, which we attribute to two primary factors:
Model Capacity: The Max version likely employs a substantially larger base model (potentially with

tens/hundreds of billions of parameters), enabling it to capture more sophisticated visual-language



Table 2
Multilingual Model Performance Comparison (Accuracy %)

Language Qwen-VL-Max Qwen2.5-VL-7B Qwen-VL-Plus

Arabic 49.22 15.70 18.22
Bulgarian 8.25 0.50 3.25
Chinese 58.17 29.67 32.17
Croatian 73.33 37.09 40.34
English 39.77 17.00 19.31
French 81.25 48.21 52.23
German 75.63 45.16 48.39
Hungarian 62.99 19.63 22.43
Italian 72.95 53.56 56.94
Polish 54.00 33.00 36.00
Serbian 70.12 19.72 22.51
Slovakian 73.91 47.83 50.00
Spanish 72.00 63.00 65.00

OVERALL 59.53 29.07 31.16

relationships. This advantage may stem from enhanced cross-modal attention mechanisms, such as
optimized Vision Transformers or dynamic token allocation strategies.

Training Data Quality: Qwen-VL-Max probably utilizes superior multimodal datasets featuring more
comprehensive scene coverage, higher-resolution images, and rigorous data cleaning protocols to
minimize bias.

Notably, Qwen2.5-VL-7B achieves comparable accuracy to Qwen-VL-Plus despite its smaller size. This
suggests Qwen2.5-VL-7B may employ more efficient architectural innovations, such as advanced sparse
attention or mixture-of-experts (MoE) techniques, allowing it to approach larger models’ performance.

We selected the best performing model in the validation phase, tested it on the AIStation platform,
and scored all test tasks separately. The comprehensive results of the valid dataset are shown in Table3.

Table 3
Model Performance Before and After Fine-Tuning

Language Pre-FT Accuracy Post-FT Accuracy Improvement

Arabic 15.70% 51.55% +35.85%
Bulgarian 0.50% 4.50% +4.00%
Chinese 29.67% 56.67% +27.00%
Croatian 37.09% 72.48% +35.39%
English 17.00% 40.92% +23.92%
French 48.21% 80.80% +32.59%
German 45.16% 74.55% +29.39%
Hungarian 19.63% 60.37% +40.74%
Italian 53.56% 71.17% +17.61%
Polish 33.00% 51.00% +18.00%
Serbian 19.72% 68.13% +48.41%
Slovakian 47.83% 76.09% +28.26%
Spanish 63.00% 69.00% +6.00%

Overall 29.07% 58.36% +29.29%

From the above results, we can see that Serbian has the highest improvement of 48.41%, followed by
Hungarian with an improvement of 40.74%. French and German have an accuracy of over 70% after
fine-tuning, showing the strong adaptability of the model to Latin alphabet languages. Languages
with Untapped Potential: Bulgarian has a slight improvement of 4%, which may be due to the high
difficulty of visual-text alignment of Cyrillic letters. Spanish has a high base number and limited



room for improvement, and has increased by 6%. Chinese performance: From 29.67% → 56.67%,
the improvement is significant, but there is still room for optimization (may be affected by complex
characters or multimodal alignment).

6. summary

In this paper, we proposed a method of using gradient clipping and cosine return policy combined
with meta-learning to solve multimodal reasoning tasks and improve the accuracy of reasoning. Our
proposed method has achieved good results on the leaderboard. These results verify the effectiveness
of our proposed method in multimodal reasoning tasks. Due to time and economic constraints, we
only selected the Qwen-2.5-VL-7B model for testing. In the future, we can use a larger-scale parameter
model for fine-tuning, perform prompt optimization engineering, and select a better prompt for testing.
We believe that further improvements may yield additional unexpected results.
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