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Abstract
Accurate interpretation of medical images is essential for intelligent diagnostic systems. This project presents
a unified deep learning framework that tackles two key challenges in medical image analysis: skin lesion
segmentation and closed-ended visual question answering (VQA). For lesion segmentation, we introduce a model
based on the Multi-Scale Feature Fusion Network (MSFNet), enhanced with boundary and reverse attention
modules. This design improves the detection of irregular and low-contrast lesions. Tested on 314 dermatology
images, the model achieved a mean Dice coefficient of 0.7021, a mean Jaccard index of 0.5410, and a maximum Dice
score of 0.7512, supporting its effectiveness in aiding early melanoma detection. In parallel, our closed-ended VQA
system combines visual feature extraction with language embeddings to answer structured questions—such as
"yes/no," object types, and numeric values. On a set of 56 question-image pairs, it achieved 56.98% overall accuracy,
with high scores in categories CQID012 (74.80%) and CQID035 (74.00%). Together, these results showcase the
promise of deep learning in multi-modal medical image understanding. The integration of segmentation and
VQA in a single pipeline highlights its potential for real-world applications, including clinical decision support,
assistive tools, and automated medical interpretation.
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1. Introduction

Skin lesion segmentation is crucial for the early detection of melanoma and other dermatological
conditions [1]. Traditional methods using hand-crafted features often fail due to low contrast and
irregular lesion boundaries. Deep learning models like U-Net [2], DeepLabV3+ [3], and Attention
U-Net[4] have significantly improved performance but struggle with fine boundary refinement and
semantic ambiguity.

To address these challenges, we adopt the Multi-Scale Feature Fusion Network (MSFNet), which offers
an effective balance between precision and computational efficiency through its integration of attention
modules and hierarchical feature fusion[5]. Our work evaluates this architecture on a challenging
real-world dataset as part of the MEDIQA-MAGIC 2025 segmentation task [6].

The remainder of this paper is organized as follows: Section 2 reviews related work on skin lesion
segmentation. Section 3 describes the proposed MSFNet architecture and methodology. Section ?? details
the training strategy used, while Section ?? presents the evaluation metrics employed for performance
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assessment. Section ?? discusses the experimental results. Finally, Sections 6 provide the conclusion
and future scope.

Closed Visual Question Answering (Closed-VQA) is a vision-language task where systems answer
image-based queries using a fixed set of responses [7], crucial for applications like medical diagnostics
[8], autonomous systems [9], and HCI [10]. Unlike open-ended VQA, it ensures interpretability and
control, vital for high-stakes domains [8]. Despite progress using CNNs and Transformers challenges
remain in compositional reasoning and domain-specific contexts . To address this, we propose a model
with cross-modal attention and fine-grained alignment for reliable, interpretable predictions in clinical
and industrial applications.

2. Background Study

U-Net [2] established encoder-decoder networks with skip connections for biomedical segmentation.
Subsequent works like DeepLabV3+ [3] introduced atrous convolution for multi-scale context, while
Attention U-Net[4] incorporated attention gates to improve focus on lesion areas. MSFNet [5] combines
parallel partial decoders (PPD), boundary attention (BA), and reverse attention (RA) modules to enhance
edge sensitivity and semantic integration.

Other alternatives like Vision Transformers[11], MedT [12], and GAN-based methods[13] show
promising results but with higher computational demands. Lightweight approaches such as SL-HarDNet
[14] and hybrid optimization frameworks have emerged to address efficiency and generalization,
especially in mobile or clinical settings.
Visual Question Answering (VQA) is a complex task requiring joint understanding of images and
language, with Closed VQA framing it as a multi-class classification problem for consistent evaluation
[7]. Early models used CNNs and LSTMs, but attention mechanisms like Bottom-Up and Top-Down
Attention improved performance [15]. Transformer-based models such as ViLBERT [15], MCAN [16],
BAN [10], and ViLT [17] enabled better cross-modal reasoning, building on Vaswani et al.’s architecture
[8]. Despite progress, challenges remain in dense scenes and low-resource settings, addressed by models
like LXMERT and Oscar.

3. Methodology

3.1. Segmentation

We employ the original MSFNet architecture[5], which integrates multi-scale feature extraction, bound-
ary refinement, and attention-driven fusion. The network utilizes a deep CNN backbone with five
convolutional blocks (Conv1–Conv5), capturing progressively abstract features from input images.

Boundary Attention (BA) modules operate on intermediate layers (Conv2, Conv3) to emphasize
lesion edges. Parallel Partial Decoder (PPD) processes deep features from Conv4 and Conv5 to produce
a coarse semantic prediction. Reverse Attention (RA) modules then iteratively refine this prediction by
re-focusing on uncertain boundary regions.

Finally, the outputs of BA, RA, and PPD modules are fused using element-wise addition and convolu-
tion layers to generate the final lesion mask. A sigmoid activation produces a binary probability map
for segmentation.

As this architecture is reused without structural modification, detailed formulations are omitted here
and can be found in[5].

3.2. Closed VQA

The proposed VQA framework for the ImageCLEF 2025 challenge [18] employs a multimodal architecture
that integrates clinical text queries and medical images. Clinical questions are encoded using a BERT-
based model, while images from the DermaVQA-DAS dataset [6] undergo dual-path feature extraction
via Vision Transformer (ViT) and Local Binary Patterns (LBP). The resulting visual and textual features



are fused through outer product-like matching to capture fine-grained cross-modal associations. This
interaction enables accurate answer retrieval through similarity-based matching

Figure 1: MSFNet architecture overview [5], illustrating feature flow through BA, RA, and PPD modules.

Figure 2: Schematic overview of the proposed multimodal VQA framework leveraging text and image encoders
with cosine similarity-based response matching.

4. Training and Evaluation Summary

For segmentation, all training was conducted using the gold-standard masks provided in the MEDIQA-
MAGIC 2025 dataset [19], comprising 314 pixel-annotated dermatology images. To maintain consistency
and reduce computational load, both input images and corresponding ground truth masks were resized
to 352× 352 pixels. The model was trained using a hybrid loss function designed to balance pixel-level
accuracy and region-level overlap:



ℒtotal = 𝛼 · ℒWBCE + 𝛽 · ℒIoU (1)

Here, ℒWBCE denotes the Weighted Binary Cross-Entropy Loss, which mitigates class imbalance by
assigning greater importance to underrepresented lesion pixels, while ℒIoU is the Intersection-over-
Union Loss that directly promotes region overlap between prediction and ground truth. The coefficients
were empirically set as 𝛼 = 1 and 𝛽 = 1 in all experiments.

To enhance generalization and prevent overfitting, standard data augmentation techniques such as
flipping, rotation, and contrast adjustment were applied during training. The Adam optimizer was
employed with an initial learning rate of 1× 10−4. A learning rate decay strategy was incorporated,
reducing the learning rate by a factor of 0.1 if the validation loss did not improve for 10 consecutive
epochs. Training was conducted over a maximum of 100 epochs using a batch size of 8, with early
stopping enabled based on validation loss. During inference, predicted masks were upsampled to the
original image resolution using bilinear interpolation.

For evaluation, segmentation performance was quantified using the Dice coefficient and mean
Intersection over Union (mIoU). The Dice score is computed as:

Dice(𝑃,𝐺) =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2)

where 𝑇𝑃 , 𝐹𝑃 , and 𝐹𝑁 represent the true positives, false positives, and false negatives, respectively.
The mIoU metric averages IoU across all instances:

mIoU =
1

𝑁

𝑁∑︁
𝑖=1

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
(3)

For Visual Question Answering (VQA), the model was trained in a supervised manner to classify inputs
into one of 12 answer categories. The input comprises a fused feature vector of dimension 1024, created
by concatenating a 512-dimensional text embedding (extracted using CLIP) and a 512-dimensional
visual embedding (obtained from a Vision Transformer and Local Binary Patterns).

The classifier outputs logits over the answer space, which are converted into class probabilities using
the softmax function:

𝑃 (𝑦 = 𝑐|x) = 𝑒𝑦𝑐∑︀𝐶
𝑗=1 𝑒

𝑦𝑗
, 𝑐 ∈ {1, 2, . . . , 𝐶} (4)

The model was trained to minimize the categorical cross-entropy loss:

ℒ(𝜃) = − 1

𝑁

𝑁∑︁
𝑖=1

log𝑃 (𝑦𝑖|x𝑖) (5)

where 𝑁 is the number of training samples, 𝑦𝑖 is the ground truth label, and 𝑃 (𝑦𝑖|x𝑖) is the predicted
probability for the true class. Optimization was performed using the AdamW optimizer with a fixed
learning rate of 1× 10−4, and training was run for 1000 epochs with a batch size of 32. Mixed precision
training on CUDA-enabled GPUs was used to accelerate computation and reduce memory usage.

Evaluation was conducted according to the ImageCLEF VQA-Med 2024 protocol. The performance
was measured using macro-averaged accuracy across grouped question types. Let ℰ represent the set of
encounter IDs and 𝒬 the set of grouped question IDs. For each encounter-question pair (𝑒, 𝑞), with
gold-standard answers 𝐺𝑒,𝑞 and predictions 𝑃𝑒,𝑞 , instance-level accuracy is defined as:

Accuracy(𝑒, 𝑞) =
|𝐺𝑒,𝑞 ∩ 𝑃𝑒,𝑞|

max(|𝐺𝑒,𝑞|, |𝑃𝑒,𝑞|)
(6)

Group-level accuracy is computed as:



Accuracy𝑞 =
1

|ℰ|
∑︁
𝑒∈ℰ

Accuracy(𝑒, 𝑞) (7)

And the final macro-averaged accuracy across all question types is given by:

Accuracyoverall =
1

|𝒬|
∑︁
𝑞∈𝒬

Accuracy𝑞 (8)

The evaluation process involved parsing both gold and predicted JSON files, grouping responses
by question and encounter ID, and computing the aforementioned accuracy metrics. Predictions with
missing instances were assigned an accuracy of zero to ensure consistency and fairness across all model
submissions.

5. Results

We evaluated the segmentation model on the MEDIQA-MAGIC 2025 DermaVQA-DAS dataset [6, 19],
comprising 314 annotated dermatology images. Performance was measured using Dice and Jaccard
indices, including both mean-of-mean and mean-of-maximum variants. The model achieved a mean Dice
coefficient of 0.7021 and a mean Jaccard index of 0.5410, indicating strong lesion overlap accuracy. Best-
case alignment was reflected by Dice (mean of max) at 0.7512 and Jaccard (mean of max) at 0.6377, while
Dice (mean of mean) and Jaccard (mean of mean) were 0.6711 and 0.5538, respectively, demonstrating
stable performance across the dataset. A visual example of segmentation outputs, including original
images, ground truth, and model predictions, is shown in Figure 3.

Table 1
Skin lesion segmentation performance metrics.

Metric Score

Dice coefficient (mean) 0.7021
Jaccard index (mean) 0.5410
Dice (mean of max) 0.7512
Dice (mean of mean) 0.6711
Jaccard (mean of max) 0.6377
Jaccard (mean of mean) 0.5538
Segmentation instances 314

We also evaluated our closed-ended Visual Question Answering (VQA) model on a test dataset
containing 56 image-question pairs as part of the ImageCLEF VQA-Med 2024 task. Submitted under
the team name KLE1 (Rank 12), the model was assessed based on per-question-type accuracy and
overall performance. As shown in Table 2, the model achieved an overall accuracy of 56.98%. It
performed particularly well in CQID012 (74.80%) and CQID035 (74.00%), indicating strength in those
question categories. However, it showed lower performance in CQID034 (39.00%) and CQID036 (35.00%),
suggesting scope for improvement in those areas. These results confirm the model’s effectiveness in
handling diverse closed-form visual questions while identifying areas for future refinement.

6. Conclusion and Future Work

Our MSFNet-based segmentation framework demonstrated strong performance on the MEDIQA-MAGIC
2025 dataset, achieving a mean Dice coefficient of 0.7021 and Jaccard index of 0.5410 across 314 skin
lesion instances. The hybrid loss formulation, combining Weighted Binary Cross-Entropy and IoU
losses, was effective in handling class imbalance and enhancing boundary delineation. These results
highlight the model’s robustness and generalization capability in binary lesion segmentation. For



Figure 3: Visualization of the model’s segmentation output. Each row shows the original image, the ground
truth mask, and the corresponding prediction generated by the model.

Table 2
Closed VQA performance across different question categories.

Question ID Accuracy (%)
CQID010 51.00
CQID011 63.10
CQID012 74.80
CQID015 57.00
CQID020 62.90
CQID025 56.00
CQID034 39.00
CQID035 74.00
CQID036 35.00

Overall Accuracy 56.98

future enhancements, we aim to extend the framework to multi-class segmentation, integrate advanced
attention modules, explore alternative loss strategies, and optimize the model for real-time clinical or
mobile deployment.

In parallel, our closed-ended Visual Question Answering (VQA) model attained an overall accuracy of
56.98% on a 56-pair test set, performing notably well in specific categories such as CQID012 and CQID035.



This reflects the model’s potential in accurately interpreting visual inputs and providing consistent
answers to domain-specific questions. However, lower performance in certain categories also reveals
areas for improvement. Future work will focus on expanding training data diversity, incorporating
larger-scale multimodal datasets, and experimenting with transformer-based and attention-driven
fusion architectures. These efforts aim to boost model generalization and accuracy across broader
medical VQA tasks.

Declaration on Generative AI

During the preparation of this work, we have used generative AI tool (ChatGPT) for tasks such as
grammar checking and paraphrasing. All AI-generated content was reviewed and edited by the authors,
who take full responsibility for the final version of the manuscript.
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A. Online Resources

The sources for the ceur-art style are available via

• GitHub,
• Overleaf template.

https://github.com/yamadharma/ceurart
https://www.overleaf.com/latex/templates/template-for-submissions-to-ceur-workshop-proceedings-ceur-ws-dot-org/pkfscdkgkhcq
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