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Abstract

This paper presents the GutUZH group’s participation in CLEF2025 BioASQ Task 6 "GutBrainIE Subtask 6.1 -
Named Entity Recognition". We addressed two main questions: 1) the ability of a pre-trained PubMed biomedical
NER model to adapt to the more specific subdomain of the gut-brain axis, given limited annotated data, 2) the
performance upper bound of our BiomedBERT+CRF model when combined with various training strategies.
Our team achieved the best results among 17 participating groups, not only in the official evaluation measure
(Micro-F1) but also in Macro-F1 and Micro-Precision, with 4.8% improvement over the official Micro-F1 baseline
provided by the task organizers. Our findings demonstrate that domain-specific pre-trained BiomedBERT models
remain strong competitors for medical NER tasks. Additionally, data augmentation and ensemble methods proved
effective in enhancing our model’s performance.
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1. Introduction

The exponential growth of biomedical literature necessitates advanced Natural Language Processing
(NLP) techniques to extract and structure valuable information. Named Entity Recognition (NER) serves
here as a foundational task, identifying and categorizing key entities within unstructured text. This
paper details the participation of team "GutUZH" in the GutBrainlE CLEF 2025 shared task, specifically
Subtask 6.1: Named Entity Recognition. The GutBrainlE challenge [1, 2], Task 6 of the BioASQ CLEF
Lab 2025[3], is situated within the context of the EU-supported HEREDITARY project, focusing on
extracting structured information from biomedical abstracts concerning the gut microbiota and its
relations with Parkinson’s disease and mental health.

The GutBrainlFE shared task aims to foster the development of Information Extraction (IE) systems
capable of assisting experts in understanding the complex gut-brain interplay. Subtask 6.1, Named
Entity Recognition, requires participants to identify and classify text spans (entity mentions) within
PubMed abstracts into one of 13 predefined categories. These categories include entities such as bacteria,
chemical, microbiota, disease, disorder, or finding (DDF), anatomical location, and others crucial to
the gut-brain domain. The expected output format for each identified entity is a tuple: (entityLabel;
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entityLocation (title/abstract); startOffset; endOffset).This structured output facilitates downstream
applications like relation extraction and knowledge graph construction.

NER plays a critical role in extracting information from biomedical literature. Effective BilomedNER
systems can accelerate research by highlighting key concepts and their mentions in scientific texts.
Biomedical NER (BNER) however, presents significant challenges. These include the inherent complexity
of biomedical terminology, which often involves long, multi-word expressions, specific chemical names,
and variations in nomenclature. Entity ambiguity, where terms can have different meanings depending
on context, is another hurdle. Furthermore, creating a high-quality annotated datasets for training
NER models is labor-intensive and expensive. The GutBrainlE task itself introduces this data scarcity
challenge through its dataset structure, which comprises of varying annotation quality: Gold (expert-
annotated), Platinum (expert-validated), Silver (student-annotated and weakly curated), and Bronze
(model generated and no manual revision) [1].

+ Our Contribution: An Iterative Approach to State-of-the-Art Performance
This paper describes the system developed by team "GutUZH" for Subtask 6.1 of GutBrainIE CLEF
2025. The core contribution lies in the systematic and iterative development process undertaken
to achieve optimal performance. Our journey involved several stages:

1. Fine-tuning BiomedBERT microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
[4], a language model pre-trained on biomedical literature, using the combined Gold, Plat-
inum, Silver datasets provided by the organizers.

2. Subsequent architectural enhancements with significant performance boost from dev Micro
F1 at 0.5781 to test Micro f1 at 0.8120, surpassing the official baseline. Enhancements
includes inserting title/abstract indexing as a novel feature during data pre-processing,
adding dropout layer, linear classifier and Conditional Random Field (CRF) layer to improve
sequence labeling.

3. Continuous performance improvement to reach test Micro F1 at 0.8408, through domain-
specific data augmentation, random seed ensembling, and data quality control.

« Structure of the Paper
The paper is organized as follows: Section 2 shortly reviews related work in biomedical NER,
focusing on transformer-based models, CRF layers, training techniques. Section 3 provides a
detailed description of the proposed system, including each stage of its development. Section
4 outlines the experimental setup, including dataset characteristics, evaluation metrics, and
implementation details. Section 5 presents the experimental results, including performance
comparisons. Section 6 discusses the findings and considers limitations.

2. Related Work

Transformer-based Models for BNER Transformer architecture [5] revolutionized the field of
NLP. Models based on Transformers, such as BERT (Bidirectional Encoder Representations from
Transformers), have achieved state-of-the-art performance on a wide range of NLP tasks, including
NER. The key innovation of Transformers is the self-attention mechanism, which allows the model to
weigh the importance of different words in a sequence when representing a particular word, thereby
capturing long-range dependencies effectively.

For biomedical applications, domain-specific versions of BERT have been developed by pre-training
on large biomedical corpora. BioBERT [6] and BiomedBERT[4] are examples. BiomedBERT, in particular,
is pre-trained from scratch on PubMed abstracts and full-text articles from PubMed Central (PMC). It is
highly attuned to the language and terminology of biomedical literature. As of 2025, Transformer-based
encoder models, especially those derived from BERT, remain the backbone of state-of-the-art Named
Entity Recognition (NER) systems. While large language models (LLMs) like GPT-4 [7], LLaMA [8] are
being explored, they have not yet displaced transformer-based encoder models fine-tuned on specific
NER tasks as the most reliable or computationally efficient solution—especially in low-resource or



high-accuracy settings. [9, 7, 10, 11, 8]. This context informed our decision to prioritize from an
LLM-based approach to fine-tuning BERT model.

Conditional Random Fields (CRF) in NER Conditional Random Fields (CRFs) are a class of
statistical modeling methods often applied to structured prediction tasks, including sequence labeling
problems like NER. While Transformer models like BERT excel at generating powerful contextual
token representations, their standard output layer (e.g., a softmax over labels for each token) makes
independent classification decisions for each token. This can lead to label inconsistencies, such as
predicting an "I-Disease" (Inside-Disease) tag without a preceding "B-Disease" (Begin-Disease) tag,
which violates common tagging schemes like BIO (Begin, Inside, Outside) or BIOES (Begin, Inside,
Outside, End, Single). A CRF layer added on top of a neural network encoder (such as a BILSTM or
a Transformer) addresses this limitation by considering the dependencies between adjacent labels in
the sequence [12, 13]. The CRF layer learns transition scores between pairs of labels and combines
these with the emission scores (output from the encoder for each token) to find the globally optimal
sequence of tags for a given input sentence [14]. This global normalization helps ensure that the
predicted tag sequences are valid and coherent. The combination of a Transformer encoder with a CRF
layer (Transformer-CRF) has become a widely adopted and effective architecture for NER tasks [15, 16].
The rationale is clear: Transformers provide rich contextual features, while CRFs enforce sequential
constraints and improve the structural integrity of the output predictions.

Data Augmentation in BNER Data scarcity is a persistent challenge in developing robust NER
systems. BNER high-quality annotation is costly and time-consuming [17]. Traditional augmentation
methods include synonym replacement, back-translation, noising techniques, and sampling methods.
Many generic augmentation techniques can inadvertently alter the meaning of the text or, more critically,
invalidate the existing entity labels (e.g., deleting part of a named entity or replacing a word within an
entity with a non-entity word) [18]. Therefore, domain-aware or task-specific augmentation strategies
are often preferred in BNER [19, 20]. As explored in this work, related unlabeled or pseudo-labeled
texts from the same domain was incorporated.

3. Methodology

Our system for Named Entity Recognition (NER) is focused on fine-tuning a pretrained biomedical
Transformer model, microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext [4]. The input
features for the model are PubMed article titles and abstracts. In our main configuration, these segments
are concatenated with special tokens [TITLE] and [ABSTRACT], separated by a single space, and
then tokenized using the Transformer’s vocabulary. Entity spans with the text are annotated using
the standard BIO (Beginning, Inside, Outside) tagging. The tokenized input is processed through
BiomedBERT’s embedding layer and its multi-layer Transformer encoder to generate contextualized
representations for each token. These token representations are fed into a dense linear layer, which
projects them into the NER tag space. Emission scores are produced for each possible BIO (Beginning,
Inside, Outside) tag. To model dependencies between adjacent tags and ensure globally optimal tag
sequences correctly, a CRF layer is applied on top of these emission scores. During inference, the final
sequence of BIO tags for a given input is determined by the CRF layer using the Viterbi decoding.

3.1. Iterative Model Development

We adopted an error-driven iterative approach for our NER architecture.

« Model Comparison
Initially, we considered BioClinicalBERT [21], BioBERT [22], DistilBERT [23], DeBERTa-v3-large
[24], and BiomedBERT (previously named PubmedBERT) [4]. Our final choice of BiomedBERT
was guided by the hypothesis that a model deeply immersed in the target domain’s language
would yield superior performance for fine-grained entity recognition. Specifically, the rationales
are as follows.



- Domain-Specific Pretraining: BiomedBERT’s pretraining on a massive corpus of biomed-
ical literature provides it with a rich understanding of biomedical terminology, syntax, and
semantic relationships [4]. The base model is pre-trained on 14 million PubMed abstracts
with 3 billion words (21 GB), fulltext model is increased to 16.8 billion words (107 GB).
This is crucial for bio-clinical NER tasks where accurately identifying specialized entities
(e.g., diseases, genes, chemicals) is challenging. Models pretrained on general corpora, like
DistilBERT or DeBERTa-v3-large, often require more extensive fine-tuning to adapt to the
nuances of a specialized domain like biomedicine and may still not capture domain-specific
knowledge as effectively [6, 25, 26].

— Vocabulary Similarity: The vocabulary learned by BiomedBERT during pretraining is
aligned with the biomedical domain. We hypothesize that common and rare gut-brain
interaction terms are more likely to be well-represented within its embedding space. General-
domain models whose vocabularies might tokenize biomedical terms as out-of-vocabulary
instances [27].

— Advantage over other Domain-Specific Models: While BioBERT and BioClinicalBERT
are also pretrained on biomedical or clinical text, BiomedBERT (specifically the PubMedBERT
lineage) was chosen because of its reported superior performance in several benchmark
biomedical NLP tasks, including NER, as documented in existing literature [28, 29, 30]. Al-
though BioClinicalBERT excels in clinical contexts, our task focuses on biomedical research
literature rather than clinical notes directly, we hypothesized that BiomedBERT’s PubMed
pretraining potentially is more advantageous.

+ Baseline Configuration and Initial Challenges
Taking BiomedBERT as the base model, the intuitive system configuration was directly concate-
nating article titles and abstracts (separated by a single space) as input. This text was tokenized,
processed by the encoder, the token embeddings were fed into a linear classification layer followed
by a softmax function for independent BIO tag prediction, with cross-entropy loss as the loss
function. However, the dev inference output showed challenges, with dev Micro-F1 at only 0.5781,
as shown in Table 1, where Experiment is named BiomedBERT.

- Semantic Misclassifications
We observed semantic misclassifications. Terms with contextual proximity or conceptual
overlap to target entities were incorrectly labeled. Words like "potential” were wrongly
labeled "microbiome". The model had a tendency of overgeneralization, it incorrectly
assigned specific entity labels to broader conceptual terms, such as labeling "Infectious
agents" as DDF (Disease or Disorder of Function) or "genetic susceptibility” as gene. These
terms were semantically similar, but cannot meet the entity span’s criteria.

- Localization Errors
There was also localization errors. Entity spans that appeared both in the abstract and title
was confusing to locate.

— Incomplete Entity Spans
Another challenge observed in the baseline model’s output was the prediction of incom-
plete or fragmented entity spans. For instance, phrases such as "characterization of" were
sometimes incorrectly identified as entities, despite not representing complete, standalone
concepts according to the GutBrainlE annotation guidelines. This indicated that the model
had difficulties with precise boundary detection, potentially starting an entity based on
strong local signals (e.g., the word "characterization") but failing to identify the correct
endpoint.

— BIO Sequence Constraint Violations
The model produced invalid BIO tag sequences that violate the fundamental constraints
of the BIO tagging scheme during training. For example, an "[-microbiome" tag appeared
immediately after "B-food".



It could be that the base model treats each token’s label prediction as an independent
classification problem, without considering the sequential dependencies and constraints
inherent in the BIO tagging scheme. Each token is classified without awareness of the
previous token’s predicted label. The model lacks explicit mechanisms to enforce BIO
tagging rules. Although the cross-entropy loss optimizes individual token predictions, it
doesn’t enforce global sequence consistency across the entire tag sequence.

» Structural Improvements

— Structural Markers for Localization Improvement
As localization errors was observed, our first architectural refinement was to insert explicit
structural markers. We added ‘[TITLE]" to title segments and ‘[ABSTRACT]" to abstract
segments before their concatenation and tokenization. These markers were integrated
as new tokens into the tokenizer’s vocabulary. The hypothesis was that these distinct
markers would provide the model with clearer contextual cues about which section of text
it processed.
No dramatic location identification improvement was observed after adding these special
tokens, showned in Table 1 BiomedBERT + spetok.

- Enhancing Span and Semantic Coherence with a CRF Layer
We hypothesized that incomplete/unreasonable span errors and semantic problems stemmed
from the token-level predictions being made independently by the softmax classifier, without
considering the global coherence of the tag sequence across the entire input.
Our next key architectural enhancement was to integrate a CRF layer. This layer was
positioned on top of the linear classification layer, which was modified to produce emission
scores (logits) for each BIO tag per token, rather than direct probabilities via softmax. The
CREF layer is then trained to learn valid transition probabilities between adjacent tags (e.g.,
enforcing that a ‘B-DDF" tag is likely followed by an ‘I-DDF‘ or an ‘O tag, but not directly
by a ‘B-human’ tag if they represent distinct entity types). It finds the most likely sequence
of tags for the entire input, not just the most likely tag for each isolated token.
During inference, the Viterbi algorithm (VD) is employed by the CRF to decode the globally
optimal sequence of BIO tags for the entire input, considering both the emission scores
from the linear layer and the learned tag transition probabilities.

« Performance of the Refined System Configuration
This iteratively developed model, with BiomedBERT as the base model, the ‘[TITLE]® and ‘[AB-
STRACT]" as special markers, a linear classification head, and the CRF layer with Viterbi decoding
(VD), achieved a Micro-F1 score of 0.8117 on our development set, shown in Table 1 BiomedBERT
+ spetok + CRF + VD. This performance surpassed the official baseline for the first time. Together
with the training configurations, our model underwent subsequent different training strategies.
Our model architecture is illustrated in Figure 1.

3.2. Training Strategy
Our training incorporated several key strategies:

+ Fine tuning BiomedBERT model pretrained on medical corpus: By fine tuning on a BERT model
already familiar with medical text [4], we saved the efforts of injecting medical knowledge into
the model by ourselves.

« Differential Learning Rates: We implemented different learning rates for different components of
the model:

— BiomedBERT: 2e-5 (smaller learning rate to prevent catastrophic forgetting)
— Linear classification layer: 2e-4
— CREF layer: 2e-3 (higher learning rate to overcome cold start challenges)
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Figure 1: Model Architecture of our refined NER system

This differential approach acknowledges the varying learning dynamics of each component and
optimizes their convergence rates accordingly.
« Data Quality Control Experiments: We carefully experiment with Data Quality by

Initially training on high-quality labeled data (Platinum, Gold, Silver)

Later incorporate Bronze-level data to expand the training corpus

Implementing pseudo-labeling for data augmentation

Updating Bronze data labels with higher-quality predictions from our improved models

« Model Ensemble of Different Seeds: To enhance robustness and generalization, we implemented
an ensemble approach:

— Training multiple models with different random seeds (11, 17, 42)
— Averaging the emission and transition matrices across these models
— Combining their predictions to make more reliable sequence labeling decisions

This ensemble method consistently improved both macro and micro F1 scores across our experi-
ments.
+ Data Augmentation: We experimented enhance of training data through following setups:

— Pseudo-labeling: We scraped 500 additional PubMed articles on gut-brain axis topics and
generated labels using our best-performing ensemble model. These pseudo-labeled examples
were then incorporated into the training set.

— Bronze Data Label Improvement: We updated the labels of Bronze-quality data using
predictions from our improved models, effectively upgrading their quality.

— Continual Training: After initial training on the full dataset, we performed additional
training focused exclusively on high-quality data (Platinum, Gold, Silver) to reinforce the
patterns learned from the most reliable examples.

Inference Optimization During inference: For abstracts whose tokens exceeds max sequence length,
we split it by last period token before length limit and then conduct inference separately to avoid
truncation-related performance degradation.

Development Workflow Our development workflow followed an iterative experimental approach:



1. Compare and choose an optimal base model
2. Inference error analysis

©

Structurally improve the base model, by adding dropout layer, linear classifier, CRF layer, while
continuously comparing inference errors

Exploring different loss functions

Systematically vary individual components and parameters

Evaluate changes on validation data

Integrate successful modifications into the main pipeline

NS

Repeat the process with new hypotheses

This methodical approach allowed us to progressively improve our system’s performance while
maintaining a clear understanding of how each modification contributed to overall results.

4. Experimental Setup

Our NER system is implemented using PyTorch, with pre-trained BiomedBERT weights from the
Hugging Face Transformers library. The complete code implementation, including data preparation,
training, and inference scripts, is available in our public repository at https://github.com/yyLeaves/
gutbrainie25.

Hardware Configuration

All experiments were conducted on the following hardware:

« GPU: NVIDIA GeForce RTX4090 (16GB)
« CPU: Intel Core i7-13900H
« RAM: 32GB DDR4

Training Data Composition

As described in the CLEF 2025 task overview website [1], we used the dataset provided from the
biomedical literature focused on research on the gut-brain axis. The data for this task is a set of titles
and abstracts of biomedical articles retrieved from PubMed, focusing on the gut-brain interplay and its
implications in neurological and mental health. The dataset was organized into different quality tiers:

Platinum: Expert-annotated and external-reviewed with highest quality annotations
+ Gold: Expert-curated high-quality annotations

« Silver: Trained-student-annotated Mid-quality annotations under expert supervision
« Bronze: Automatically labeled with fine-tuned GLiNER as base models

Evaluation Metrics

The task used micro-average F1-score as primary metric for ranking metrics on the final leaderboard,
chosen for its ability to handle class imbalances effectively [1]. Other measures such as Macro-P,
Macro-R, Macro-F1, Micro-P, Micro-R, Micro-F1 are also provided.

Data Preprocessing
We designed our preprocessing pipeline to handle titles and abstracts separately, as our experiments
indicated that this would be beneficial. Here are the key steps:

1. Title/Abstract Tokenization with Special Tokens: We precess the title and abstract part of an
article separately as two independent entries, appending the [TITLE] / [ABSTRACT] token to
indicate the location of the text.

2. Entity Label Alignment: Character-based entity spans are mapped to BIO labels, handling subword
tokenization effects.

3. Input Formatting:
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« Initial Format: [CLS]{title tokens} {abstract tokens}[PAD]
« Improved Format 1: [CLS][TITLEJ{title tokens} [ABSTRACT]{abstract tokens}[PAD]
« Improved format 2: [CLS][TITLE]{title tokens} [CLS][ABSTRACT J{abstract tokens}[PAD]

Padding and Truncation: Sequences are padded/truncated to a fixed length (MAX_SEQ_LEN),
initially set as 512, with -100 masking ignored tokens.

5. Label Encoding: Converting BIO tag sequences into numeric labels for model training

6. Multi-Tier Data Integration: Platinum/Gold/Silver/Bronze datasets are concatenated for controlled

quality experiments.

Hyperparameter Configuration
We employed the following hyperparameters across our experiments:

Batch size: 8 during training, 16 during evaluation

Maximum sequence length: 512 tokens

Epochs:

for model development, 20 with early stopping, patience = 3

for continuous improvement via training stategies, 40 with early stopping, patience = 5
Optimizer: AdamW

Learning rates:

BiomedBERT: 2e-5

Classification layer: 2e-4

CRF layer: 2e-3

Weight decay: 0.01

Warm-up steps: 500, 0.01

Loss function:

For the BERT base model, we employed cross-entropy loss, defined as:

1 N C
Low ==~ D3 vielog(ii,) (1)

i=1 c=1
where N is the number of samples, C'is the number of classes, y; . is the true label (1 if sample ¢
belongs to class c, 0 otherwise), and §; .. is the predicted probability for sample i belonging to
class c.
For our optimized models, we utilized CRF negative log-likelihood loss:

exp(score(z,y))
, €xp(score(z, y'))

Lerp = —log P(ylz) = —log (2)
2

where P(y|z) is the conditional probability of the true label sequence y given input x, score(x, y)

represents the compatibility score between input = and label sequence y, and the denominator

sums over all possible label sequences ¢’ to ensure normalization.

Experimental Variations
We conducted a series of systematic experiments to optimize our approach:

Base model BiomedBERT: Training on high-quality data only (Platinum, Gold, Silver), by directly
concatenating title and abstract (separated by a single space)

Unified text format: [CLS][title]...[abstract]

Structural model improvements on the output: dropout, linear classification, and CRF

Random seeds (17, 42, 123, 777) and learning rate (2e-5, 3e-5, 1e-5) adjustments to find the optimal
model performance

Uniform learning rate (2e-5) for all model components

Learning Rate Optimization: Differentiated learning rates for model components



« Multiple random seeds (11, 17, 42) to evaluate stability: Evaluation across multiple seeds to ensure
consistent improvement
« Incorporation of Bronze-quality data

« Update Input Format: Separate processing of title and abstract, reduction of information loss due
to truncation

« Model Ensemble: Combination of models trained with different random seeds by Averaging of
emission and transition matrices

« Addition of 500 PubMed articles with pseudo-labels generated by our best-performing ensemble
model

+ Bronze Data Quality Improvement: Relabeling Bronze data with our best models: Integration of
updated labels into training

+ Continual Training: Additional training on high-quality data after initial convergence

5. Results

Our team (GutUZH) achieved the first place on the leaderboard, demonstrating the effectiveness of our
systematic approach to biomedical named entity recognition. Our best-performing model achieved a
Micro-F1 score of 0.8408 on the official test set, establishing a new benchmark for this task.

The performance metrics of our final system are:

« Macro-P: 0.7950
« Macro-R: 0.7736
« Macro-F1: 0.7613
« Micro-P: 0.8384
« Micro-R: 0.8432

+ Micro-F1: 0.8408 (primary evaluation metric)

These results represent a substantial improvement over our base model, which was initially with a
Micro-F1 of 0.5781, and eventually at 0.8408, demonstrating an absolute improvement of 26.27%, 4.81%
above the official baseline. An overview of all the experimental results is shown in table 1.

Table 1
Experimental F1 Results Summary

Experiment Seed 42 Seed 11 Seed 17 Ensemble Test Result

BiomedBERT Macro: 0.4869  Macro: 0.4868  Macro: 0.4963 - -
Micro: 0.5781  Micro: 0.566  Micro: 0.5719

BiomedBERT + spetok Macro: 0.473  Macro: 0.4258  Macro: 0.4852 - -
Micro: 0.5502  Micro: 0.5097  Micro: 0.5714

BiomedBERT + CRF + VD Macro: 0.7136  Macro: 0.7143  Macro: 0.7337 - -
Micro: 0.8042  Micro: 0.8108  Micro: 0.8028

BiomedBERT + spetok + CRF + VD Macro: 0.7246  Macro: 0.7648  Macro: 0.7286 - Macro: 0.7100
Micro: 0.8074  Micro: 0.8096  Micro: 0.8117 - Micro: 0.8120

BiomedBERT + spetok + CRF + VD + LR Macro: 0.7136  Macro: 0.7365 Macro: 0.7589 - -
Micro: 0.8087  Micro: 0.8156  Micro: 0.8316

BiomedBERT + spetok + CRF + VD + Bronze Macro: 0.7139  Macro: 0.7513  Macro: 0.7522 - -
Micro: 0.8169  Micro: 0.8347  Micro: 0.8321

BiomedBERT + spetok + CRF + VD + Training Format Macro: 0.7595  Macro: 0.7705  Macro: 0.7671  Macro: 0.7773  Macro: 0.7634
Micro: 0.8288 Micro: 0.8373  Micro: 0.8334  Micro: 0.8394  Micro: 0.8328

BiomedBERT + spetok + CRF + VD + Augmentation Macro: 0.7569  Macro: 0.7498  Macro: 0.7724  Macro: 0.7662  Macro: 0.7613
Micro: 0.8379  Micro: 0.8400  Micro: 0.8408  Micro: 0.8457  Micro: 0.8408

BiomedBERT + spetok + CRF + VD + Update Label Macro: 0.7405  Macro: 0.7610  Macro: 0.7469  Macro: 0.7613 -

Micro: 0.8374  Micro: 0.8310  Micro: 0.8279  Micro: 0.8414
BiomedBERT + spetok + CRF + VD + Continual Learning  Macro: 0.7598  Macro: 0.7367  Macro: 0.7495  Macro: 0.7667  Macro: 0.7686
Micro: 0.8372  Micro: 0.8319  Micro: 0.8305 Micro: 0.8417  Micro: 0.8361

Our systematic experimental approach yielded the following key improvements:
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Figure 2: Iterative model development improvements. BiomedBERT serves as the base model, with sequential
additions of special tokens (spetok), CRF layer, Viterbi decoding (VD), learning rate optimization (LR), ensemble
methods, and training strategies. Final configuration achieves +0.0454 improvement over baseline. Best score
(the bar on the left) represents the highest observed micro F1 among all seeds and settings. Mean score (the bar
on the right) averages all available micro F1 values, reflecting method stability.
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Figure 3: Methods ranking by the percentage of improvement.



1. CRF: Adding a CRF layer significantly boosted the result, from Micro F1 at 0.5781 to 0.8028, a
total of 22.47% improvement. Learned transition probabilities between adjacent tags efficiently
fixed unreasonable span errors and semantic problems stemmed from the token-level predictions
of the BiomedBERT model.

2. Seed Variation Impact: The choice of random seed significantly affected performance, with
seed 17 consistently outperforming compared to seeds 42 and 11. This observation highlights
the importance of proper initialization and the need for ensemble approaches to mitigate seed-
dependent variance.

3. Data Format Optimization: From direct concatenation of abstract and title, to adapting unified
text processing [CLS][title]. .. [abstract], thento separate processing [CLS][title]. ..
[CLS][abstract]. .. resulted in substantial improvements across all metrics. This modifica-
tion increased macro-F1 scores by approximately 2%.

4. Bronze Data Integration: Including Bronze-quality data in training generally improved perfor-
mance, with consistent gains observed across different seeds (average macro-F1 improvement of
~1%).

5. Ensemble Effectiveness: The ensemble approach combining models from three different seeds
achieved the highest overall performance, demonstrating the value of model averaging for
sequence labeling tasks.

6. Data Augmentation: Leveraging additional PubMed abstracts on related topics, pseudo-labeled
by our previous best ensemble model, produced our best-performing model as evaluated by
Micro-F1, while also achieving the highest Micro-F1, Macro-F1 and Micro-Precision on the
leaderboard.
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Figure 4: Comparison of Random Seeds

Figure 2 and Figure 3 depicts the progressive improvement of our experimental methods over the
official baseline, with the bar charts illustrating the gains in Micro-F1 scores. Figure 4 further shows the
performance across different random seeds (42, 11, 17), plotting both Macro F1 and Micro F1 scores
for each experimental configuration, and highlighting how seed selection can influence outcomes.
Figure 5 provides a comparative view of the ensemble performance, combining models trained with
different seeds leads to more robust and superior F1 scores compared to individual models. Our iterative
refinements, from strategies like CRF integration, data format optimization, to ensembling has significant
impact on the final performance.
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Figure 5: Ensemble Performance

6. Conclusion

The GutUZH team secured the top position among 17 groups, with our best model achieving a Micro-F1
score of 0.8408 on the official test set. This result represents a significant 4.8% improvement over the
official Micro-F1 baseline provided by the organizers and a 26.27% absolute improvement over our initial
baseline model.

The main achievements and findings of our work include:

Strong Baseline with Domain-Specific Pre-training

Our results reaffirm that domain-specific pre-trained models like BiomedBERT serve as powerful
foundations for specialized medical NER tasks.

Impact of Architectural Enhancements

The integration of a Conditional Random Field (CRF) layer was pivotal, dramatically improving
sequence labeling consistency and boosting the Micro-F1 score from 0.5781 to 0.8028. This
addition effectively addressed issues of incomplete spans and semantic misclassifications arising
from independent token-level predictions.

Iterative Refinement and Error Analysis

An error-driven iterative development approach was crucial for optimizing performance. This
included meticulous analysis of localization errors, semantic misclassifications, and BIO sequence
violations.

Effective Training Strategies

The differential learning rates for various model components optimized their convergence. Fur-
thermore, strategic data quality control, including the initial use of high-quality data (Platinum,
Gold, Silver) and the later incorporation and iterative improvement of Bronze-level data, proved
beneficial.

Value of Data Augmentation and Ensembling



Data augmentation through pseudo-labeling on additional PubMed articles and ensemble methods,
specifically averaging emission and transition matrices from models trained with different random
seeds, enhanced robustness and F1 scores.

« Input Representation and Inference Optimization
Modifying the input format to distinctly mark and process title and abstract segments, along
with splitting oversized inputs during inference, contributed to performance gains by providing
clearer contextual cues and mitigating information loss from truncation.

For the experiments in the future, while BiomedBERT+CRF proved highly effective, exploring more
recent and larger Transformer architectures or even fine-tuning Large Language Models (LLMs) for
this biomedical subdomain, despite their current computational costs in high-accuracy settings, could
yield further improvements. Experimenting with more diverse ensemble strategies, such as stacking
or blending different model architectures or incorporating models trained on different subsets of data,
might lead to more robust predictions.
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