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Abstract
We constructed a multi-stage, hierarchical system for the ELCardioCC task of clinical entity recognition and

subsequent entity linking within the domain of cardiology. We integrated the capabilities of multilingual

generative large language models (LLMs) and BERT encoder architectures across different phases of our Named

Entity Recognition (NER) and Entity Linking (EL) pipeline. In the initial NER phase, we designed zero-shot

prompts to instruct the LLMs in the extraction of relevant clinical mentions directly from the Greek discharge

letters. These prompts also guided the models in generating accurate English translations of the identified Greek

terms and in producing concise biomedical entity descriptions associated with these mentions. Further, to refine

the initial set of extracted entities and enhance the overall precision of our NER results, we employed a BERT

bi-encoder as a sophisticated filtering mechanism, designed to identify and remove likely false positives. Then,

for the EL phase, we utilized a BERT cross-encoder as the core linking component. This model took both the

previously extracted clinical mentions and their generated biomedical entity descriptions as input to establish

accurate mappings to standardized concepts within the ICD-10 knowledge base. Finally, the linked ICD-10 codes

obtained from the EL phase were collected for the MLC-X task. Our best system achieved an F1 score of 0.5761

on the NER task, 0.5336 on the EL task, and 0.7543 on the MLC-X task.
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1. Introduction

Medical records can be made more statistically analyzable by transforming unstructured clinical text

into standardized, searchable codes. This can support medical research, enable extensive retrospective

studies, and uncover cause-and-effect links between illnesses and symptoms, all of which contribute to

a better understanding of illnesses and their treatments. Moreover, structured data from correct coding

can help doctors find important information about a patient’s history, symptoms, and conditions more

quickly. This can help them make differential diagnoses and give more personalized care.

Early Natural Language Processing (NLP) research heavily concentrated on English text in general

contexts. However, the processing of non-English clinical data has experienced a notable increase in

development in recent years, supplied by the growing availability of varied datasets and advanced

multilingual language models. The ELCardioCC competition [1], within the BioASQ 2025 challenge

[2, 3], specifically addresses this by focusing on automatically extracting clinical entities from Greek

discharge summaries. This includes identifying the chief complaint, diagnosis, prior medical history,

medications, and cardiac echo mentions. A subsequent task involves linking these extracted mentions to

their corresponding ICD-10 codes, which provide a universal standard for classifying health conditions.

The automation of the linking process offers improved collaboration and data sharing by ensuring

consistency in the exchange of medical information across various healthcare systems, regions, and

countries.

While numerous pre-trained language models (PLMs) exist for various languages beyond English,

research in NER has frequently focused on fine-tuning these models with limited biomedical and clinical
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data to create domain-specific solutions, particularly in low-resource scenarios [4, 5, 6, 7, 8]. In contrast,

EL in the medical domain for languages other than English has received considerably less attention, may

due to the lack of corresponding language-specific knowledge base and readily available pre-trained

langauge models. With most existing work stemming from specific challenges like CLEF eHealth,

IberLEF, BioASQ/DisTEMIST, and DEFT, primarily focuses on Spanish and French. To the best of our

knowledge, the application of EL to Greek clinical text remains an unexplored area.

Multilingual language models (MLMs) are useful tools, trained on enormous datasets encompassing

a wide array of languages. This inherent capability to understand Greek text is particularly beneficial

for the NER task on Greek clinical discharge letters. However, while MLMs excel as generalists in

language comprehension and generation across diverse languages, they are not inherently medical

domain experts. This lack of specialized clinical knowledge presents significant challenges, as medical

terminology is replete with nuances, including an abundance of synonyms, context-dependent meanings,

and specialized abbreviations. A general MLM, without explicit clinical training, often struggles to

accurately disambiguate these terms. To address these complexities, we adopted an integrated approach.

We leveraged several MLMs to tackle the challenges of cross-lingual NER, aiming to identify clinical

entities in Greek. Following this initial clinical entity recognition phase, we then employed a two-

stage hybrid retrieval approach. This approach was designed to establish a connection, linking the

identified clinical entities from the Greek text to their corresponding standardized concepts within the

comprehensive ICD-10 knowledge base.

2. Related Work

There are primarily two approaches to handing the NER and EL tasks: information retrieval system and

multitask framework systems. Information retrieval approach system retrieves similar instance data

from knowledge bases, based on lexical overlap or semantic similarity [9, 10]. Hierarchical framework

NER and EL systems that employ distinct models for each task, with the first model dedicated to

identifying and classifying entities, and a subsequent, separate model responsible for linking these

identified mentions to a knowledge base [11]. Hierarchical NER and EL systems with separate models for

NER and EL are conceptually straightforward, however, they are susceptible to error propagation. This

occurs because errors made in the initial NER stage directly impact the performance of the downstream

EL stage. If an entity is incorrectly identified, missed entirely, or has incorrect boundaries assigned

by the NER model, the followup EL model will struggle to link it to the correct knowledge base entry,

leading to a cascade of errors throughout the pipeline.

Multitask framework systems come in two main forms, joint model and end-to-end model, to reduce

the error propagation issues in the hierarchical framework. Joint models combine two models, NER and

EL tasks are performed in parallel by a single transformer model [12, 13, 14, 15]. End-to-End models

take raw text as input and directly output linked entities, without a clearly defined intermediate NER

stage. This forces the model to learn both identification and linking in a unified manner [16].

3. Methodology

3.1. Dataset

In ELCardioCC challenge, the training dataset consists of 1,000 Greek-language discharge summaries,

while the test dataset includes an additional 500 discharge letters. These clinical documents contain

complex information detailing patients’ diseases, symptoms, diagnoses, therapeutic interventions, and

clinical outcomes. The training corpus has been manually annotated to identify the exact spans of key

biomedical mentions. Each annotated entity is linked to its corresponding code in the 10th revision of the

International Classification of Diseases (ICD-10), a globally recognized medical taxonomy maintained

by the World Health Organization (WHO)
1
.
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3.2. System

The pipeline for the cardio discharge letter NER and EL is illustrated in Figure 1. For the NER task,

we prompted LLMs Gemma-3, Phi-4 and Gemini to retrieve clinical mentions and generate English

translations and their descriptions. Potential false positives were then discarded by a NER filter. Moving

to the EL task, the English-translated mentions from the NER phase were combined with their generated

clinical entity descriptions and fed into the entity linker to find their corresponding ICD-10 codes.

Finally, for the MLC-X task, we simply collected the ICD-10 codes obtained during the EL phase.

Figure 1: Overview of the cardio discharge letter NER and EL pipeline.

3.2.1. Named entity recognition phase

Multilingual large language models: Gemma-3, Phi-4 and Gemini are trained on multilingual

corpora, can be used to understand Greek discharge letters and extract clinical mentions. During the

NER phase, clinical terms in Greek, such as disease names, symptoms, and treatment references, were

directly translated to their standardized English equivalents. Our approach is prompt engineering,

where the model’s outputs were guided by constructed instructions that correspond to the clinical

domain. These prompts were designed to maximize recall without the need for supervised training.

Zero-shot prompt: We employed two separate prompts (detailed in Table 1) to extract medical

mentions from the Greek discharge letters. Prompt 1 aimed for broad coverage, seeking to identify all

medical terms and phrases present in the text. Prompt 2, however, specifically targeted mentions related

to diseases, syndrome, and their treatments. The output from the prompt 1 achieves high recall but

includes many general medical terms not directly relevant to the cardiovascular diseases or symptoms,

necessitating a subsequent filtering step. Conversely, prompt 2 was designed to yield mentions that

were more directly relevant to the entities we are seeking to extract.

Table 1
Two prompts used in zero-shot prompting.

prompt 1 Given Greek text {discharge letter}. Extract the medical terms from this text and

write English translation and concise descriptions of them in JSON format (key is

the Greek medical term, value is English translation and description pair tuple).

prompt 2 Given Greek text {discharge letter}. Extract the disease, syndrome, and treatment

terms from this text and write English translation and concise descriptions of them

in JSON format (key is the Greek medical term, value is English translation and

description pair tuple).

The quantity of text provided to a language model influences the identification of medical terms

within Greek discharge letters. To ensure comprehensive retrieval of all relevant mentions, we em-

ployed a dual strategy: First, we processed the entire discharge letter as a single unit, which en-



ables the language model to grasp the broader connections and interdependencies among various

medical mentions throughout the document. Second, we processed the letters section by section

(e.g., ΙΣΤΟΡΙΚΟ – ΑΝΤΙΚΕΙΜΕΝΙΚΗ ΕΞΕΤΑΣΗ (HISTORY – OBJECTIVE EXAMINATION), ΑΙΤΙΑ

ΕΙΣΟ∆ΟΥ-ΑΝΤΙΚΕΙΜΕΝΙΚΗ ΕΞΕΤΕΤΑΣΗ-ΙΣΤΟΡΙΚΟ (REASON FOR ADMISSION – OBJECTIVE EX-

AMINATION - HISTORY), ΠΟΡΕΙΑ ΝΟΣΟΥ (COURSE OF DISEASE), ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

(LABORATORY TESTS) etc.), afterward collected the extracted terms from each individual section. This

segmented processing allows the model to concentrate on the immediate context and pick out specific

mentions within each part.

Beyond identifying clinical mentions in the Greek text, our prompts also directed the LLMs to produce

both English translations and brief descriptions for each extracted entity. These generated English

translations and descriptions were specifically created to support the subsequent entity linking process.

Table 2 provides an illustrative example of the LLM’s output for a segment of a Greek discharge letter,

displaying the extracted Greek mentions along with their corresponding English translations and

generated descriptions.

Table 2
Example of entity extraction, translation, and description generation by multilingual large language models

Text: ΙΣΤΟΡΙΚΟ – ΑΝΤΙΚΕΙΜΕΝΙΚΗ ΕΞΕΤΑΣΗ Η ασθενής προσεκοµίσθη λόγω προκάρδιου άλγους

από 2 ώρου και αιµωδίες άνω άκρων και συνοδό εϕίδρωση και έµετο. ΗΚΓ εισόδου : SR, LBBB, οριακή

ανάσπαση ST II, III, AVF, V3- V5. Κλινική Εξέταση: ΑΠ: 180/100 mmHg, SaO2: 93 %, S1S2 : ρυθµικοί –

ευκρινείς ακρόαση πνευµόνων: ϕυσιολογικό ΑΨ Α/α θώρακα: ∆ιάσπαρτα επασβεστωµένα κοκκιώµατα

στον αριστερό πνεύµονα.Χωρίς εικόνα ενεργού πνευµονικής διήθησης. Ατοµικό Αναµνηστικό: , πνευµο-

θώρακα, αναιµία

Mentions English Translations Generated Descriptions

προκάρδιο άλγος precordial pain Pain in the chest, specifically around the heart.

αιµωδίες άνω άκρων cyanosis of upper extremities Bluish discoloration of the skin in the upper

limbs due to poor oxygenation.

εϕίδρωση sweating The excretion of fluid and electrolytes from

sweat glands.

έµετο vomiting The forceful expulsion of contents of the stom-

ach through the mouth.

LBBB Left Bundle Branch Block A conduction defect in the heart where the

electrical impulse is delayed or blocked along

the left bundle branch.

ανάσπαση ST ST segment depression A downward deflection of the ST segment

on an electrocardiogram, often indicating my-

ocardial ischemia.

επασβεστωµένα

κοκκιώµατα

calcified granulomas Small nodules composed of immune cells and

calcium deposits, often indicating past infec-

tion or inflammation.

αναιµία anemia A condition characterized by a deficiency of

red blood cells or hemoglobin, resulting in re-

duced oxygen-carrying capacity of the blood.

Entity filter This step focuses on refining the initial set of extracted medical terms from the multi-

lingual language models by removing likely false positives. To enhance the accuracy of these initial

extractions, we filter out less relevant mentions by assessing their semantic similarity to ICD-10 English

disease and symptom category definitions. This filtering employs a BERT bi-encoder to identify and

eliminate irrelevant extracted mentions. Specifically, a MedEmbed BERT bi-encoder
2

[17] generates

vector embeddings for each English-translated biomedical term previously identified in the Greek

discharge letter. This bi-encoder independently processes each English-translated biomedical term,

creating a dense, context-aware representation of its meaning. Similarly, the ICD-10 English category

2
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definitions are also embedded using the same BERT bi-encoder. For each extracted English-translated

term, we calculate the cosine similarity between its embedding and the embeddings of the ICD-10

descriptions. A predefined similarity score threshold of 0.37 is then applied. This specific threshold of

0.37 was established through testing on the training dataset, primarily to enhance NER F1 scores within

that dataset. Consequently, any extracted terms with a maximum cosine similarity score falling below

this threshold are deemed less relevant and are subsequently discarded. Note that this similarity score

threshold was determined prior to our ensemble process, meaning it might not represent the globally

optimal threshold for the entire pipeline. Achieving such an optimal threshold would necessitate an

end-to-end tuning approach, where the influence of the subsequent ensemble process is explicitly

factored into the optimization.

Ensemble By combining the medical terms identified from the full discharge letter and its segmented

sections, using our two distinct prompting strategies, we increase the likelihood of achieving a more

comprehensive collection of relevant mentions as some terms that might be missed when the document

is processed solely as a whole or in isolated sections.

The recognition of long-tail entities (highly specific or multi-word terms exceeding four words)

and nested entity mentions (where shorter, valid entities exist within longer ones) varies across

different language models. For instance, in the long-tail entity "Προκάρδιο άλγος από 3ηµέρου συσ-

ϕικτικό µε αντανάκλαση στον ΑΡ αγκώνα" (Precordial pain from 3 days constrictive with reflection to

the left elbow), some models, like Gemma-3, only extract "Προκάρδιο άλγος" (Precordial pain), com-

pletely missing the extended description. Nested entities like "Συνδροµο Ταχυκαρδιας-Βραδυκαρδιας"

(Tachycardia-Bradycardia Syndrome), which contains the individual medical terms "Ταχυκαρδιας"

(Tachycardia) and "Βραδυκαρδιας" (Bradycardia), often results in different identifications across models.

To mitigate the inconsistencies in identifying potential long-tail and nested entities across different

language models, we aggregated the terms identified by these models and applied selection criteria

based on either term length or majority voting. (1) Term length prioritization approach: for both

long-tail and nested entities, the longest term length method selected the most extensive span among

the extractions from different models. This ensured that more complete or encompassing phrases were

preferred. (2) Majority voting approach: selected an entity span only if it was extracted by more than

half of the models. This method utilizes consensus to enhance the reliability of the identified entities.

Table 3
Ensemble configurations applied for the 5 submissions

runs Ensemble methods

1nm
Gemma-3’s Prompt 2 output with section-wise processing

(incorporating long-tail and nested entities from other LLMs’ extractions)

2nm union Run 1nm’s output with Gemini’s Prompt 2 output with entire letter processing

3nm
Gemma-3’s Prompt 1 output with section-wise processing

(incorporating long-tail and nested entities from other LLMs’ extractions)

4nm union Run 3nm’s output with Gemini’s Prompt 2 output with entire letter processing

5nm
Fused the outputs of Run 1nm, Run 3nm, and Gemini

(Use majority voting method)

3.2.2. Entity linking phase

We implemented search engine style algorithm for the entity linking task, the widely used efficient

two-phase hybrid retrieval system, to speed up the entity linking process. The first step is using the

high-recall bag-of-words retrieval function BM25 to efficiently narrow down the vast ICD-10 knowledge

base to a relatively small set of candidate codes for a given English translated mention extracted in NER

phase. The correct ICD-10 code is highly likely to be within this candidate set. The second step is to take

the ICD-10 candidates generated by BM25 and link to the ICD-10 code with the highest score by BERT



cross-encoder that can understand the semantic context of the mention and the entity descriptions with

higher precision.

First-stage candidate generation: To generate a set of potential ICD-10 codes relevant to the

extracted Greek medical mentions, we employed a BM25 searcher. Our method involved preparing the

English ICD-10 knowledge base for efficient searching. We treated each ICD-10 code English category

definition as a distinct document. To strengthen the content of these "documents" and improve the

probable success of a match, we concatenated the textual description associated with each ICD-10 code

with the descriptions of all its more specific subcategories within the ICD-10 hierarchy of categories.

This effectively creates a more comprehensive textual representation for each ICD-10 concept. Following

this, for each English translation of a medical mention extracted from the Greek discharge letter, we

used it as a query to search across these constructed ICD-10 definition "documents" using the BM25

algorithm, which is defined as:

Relevance Score (D, Q) =
∑︁
𝑞𝑖∈𝑄

IDF(𝑞𝑖) ·
𝑡𝑓(𝑞𝑖, 𝐷) · (𝑘1 + 1)

𝑡𝑓(𝑞𝑖, 𝐷) + 𝑘1 · (1− 𝑏+ 𝑏 · |𝐷|
avgdl

)
(1)

where Q is an English medical term, IDF(𝑞𝑖) represents the inverse document frequency weight of the

medical mention 𝑞𝑖, and 𝑡𝑓(𝑞𝑖, 𝐷) denotes the frequency of a medical mention 𝑞𝑖 within the description

document 𝐷. |𝐷| is the length of the description document, avgdl is the average document length in

the collection. 𝑘1 = 0.5 and 𝑏 = 0.3 are assigned.

Second-stage linking In the second-stage of EL, to refine the candidate ICD-10 codes retrieved

by BM25, we formulated new queries. These queries were constructed by combining the English

translation of the extracted Greek medical mention with the concise descriptions of these mentions

generated by the multilingual LLMs. Using the set of ICD-10 codes identified as potential candidates in

the BM25 retrieval stage, we then employed a MedCPT cross-encoder
3

[18] to calculate a relevance

score between our augmented query (English translated mention + LLM-generated English description)

and constructed ICD-10 English definition documents. We established the link by selecting the ICD-10

code that received the highest relevance score from the MedCPT cross-encoder.

To clarify the roles of our BERT models, the cross-encoder in this EL stage is designed for precise

identification of the definitive ICD-10 descriptions. This differs from the BERT bi-encoder, which served

as a filtering mechanism in the previous NER phase, merely removing potential false positives without

directly linking to ICD-10 codes. We must also note an oversight: we initially missed the ICD-10

candidate list provided in labelset.txt. This led us to implement a BM25 searcher for acceleration, though

its necessity is unlikely given that the list contains only 324 candidate codes.

3.2.3. Multi-label classification phase

Our submissions for the MLC-X task were simply direct aggregations of all the ICD-10 codes mapped

during the EL phases.

4. Results and Discussion

Tables 4, 5, and 6 present the results of our five runs for the NER, EL, and MLC-X tasks, respectively.

4.1. Results

Our system demonstrated generally poor precision across the NER, EL, and MLC-X tasks, which

significantly hindered our overall F1 scores. The primary reason for this lies in our prompt design,

3
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particularly Prompt 1, which was optimized for maximizing recall. This led to the extraction of an

excessive number of medical terms that fell outside the cardiology domain (i.e., not in the code list in

labelset.txt file).

Since we utilized a hierarchical framework system for the NER, EL and MLC-X tasks, the evaluations

of the EL results are directly influenced by the outputs of the NER phase. The correlations between

these two tasks are clearly visible in table 4 and 5. Among our five submissions, Run 1nm achieved the

highest precision for both the NER and EL tasks. Conversely, Run 4nm demonstrated the highest recall,

though its lowest precision resulted in the lowest F1 score. Run 5nm secured the highest F1 score overall,

despite not having the top recall or precision in either the NER or EL tasks. This outcome suggests that

our majority voting method, used to fuse the outputs from different LLMs, was particularly effective in

improving both precision and F1 scores by balancing these metrics.

Table 4
The NER task evaluations for each of our five submissions

runs Recall Precision F1

1nm 0.4914 0.5331 0.5114

2nm 0.6338 0.4 0.4905

3nm 0.546 0.4387 0.4865

4nm 0.6575 0.3601 0.4653

5nm* 0.6448 0.5205 0.5761

Table 5
The EL task evaluations for each of our five submissions

runs Recall Precision F1

1nm 0.448 0.5 0.4726

2nm 0.5734 0.3677 0.448

3nm 0.4963 0.4211 0.4556

4nm 0.5945 0.3374 0.4305

5nm* 0.5927 0.4852 0.5336

Table 6 reveals a particularly high recall for the MLC-X task, which contributed to moderate F1 scores

for these runs, despite the persistently miserable precision. As the MLC-X outputs are downstream

from our NER and EL phases, a similar trend in submission results is observable. Run 4nm, for instance,

achieved the highest recall among the five submissions but simultaneously suffered from the lowest

precision. Run 5nm demonstrated the highest precision, which also correlated with its highest F1 score

among our five submissions.

Table 6
The MLC-X task evaluations for each of our five submissions

runs Recall Precision F1

1nm 0.7676 0.6205 0.6863

2nm 0.8355 0.5131 0.6358

3nm 0.8237 0.5227 0.6395

4nm 0.8576 0.4572 0.5965

5nm* 0.825 0.6947 0.7543

4.2. Discussion

Upon analyzing the performance of our system, we identified several key factors that significantly

influenced the outcomes of the 3 tasks.

Translation accuracy: The accuracy of the initial translation of Greek entity names is paramount,

as it directly influences the success of subsequent steps. An incorrect English translation will result



in a mismatched entity description, inevitably leading to erroneous entity linking, regardless of the

linking model’s inherent capabilities. Language models tend to be more accurate when processing full

entity names compared to their abbreviated forms. Table 7 illustrates instances where Greek medical

abbreviations can have multiple English translations and consequently generate divergent descriptions,

ultimately causing the entity linking process to point to incorrect ICD-10 codes

Table 7
Ambiguity of translation examples

Mentions English Translation Generated Description Entity Linking

ΣΝ

annotation : I25 - Chronic ischemic heart disease

Coronary Artery Disease A condition in which plaque builds up inside the

coronary arteries.

I25

Heart Failure A condition in which the heart is unable to pump

enough blood to meet the body’s needs.

I50

∆Λ∆

annotation : E78 - Disorders of lipoprotein metabolism and other lipidemias

Dyslipidemia An abnormal amount of lipids (e.g., cholesterol,

triglycerides) in the blood.

E78

Deep Vein Thrombosis A blood clot that forms in a deep vein, usually in

the leg.

I81

Peripheral Artery Disease Condition where narrowed arteries reduce blood

flow to the limbs.

I79

Prompt design and section-wise processing: The higher recall but higher false positive rate

observed using Prompt 1 with section-wise processing can be attributed to several factors. Language

models can exhibit positional biases, leading to missed entities in lengthy documents. Furthermore, in

the lengthy text, the signal for specific entities can be weakened by the presence of substantial irrelevant

information, making identification more challenging. Processing the document section by section

allows the model to focus on smaller chunks of text. This approach helps to overcome positional biases

and reduces the amount of noise within a given processing window, thereby improving the chances of

retrieving most of the desired entities. However, this segmentation can also lead to the extraction of

unwanted noise mentions that might not have been identified if the model had the broader context of

the entire document.

Nested entity mention and long tail entity challenges: Further complicating the NER task are

the inherent challenges of nested entity mentions and long tail entities. Our NER system significantly

struggled with both long-tail entities and nested entity mentions; even medical mentions extracted

by the LLMs that successfully passed the NER filter were ultimately considered incorrect in the NER

evaluations, despite being the terms we aimed to extract.

Different LLMs often analyze and handle nested entity mentions in varying ways, leading to discrep-

ancies in their output. As seen in table 8, consider the nested entity "ΣΝ (PCI)". While "ΣΝ" represents

a type of disease, "PCI" denotes a specific heart treatment. The mention of "PCI" within "ΣΝ" indicates a

patient with the disease who has undergone PCI. Another example is "ΟΣΣ-PCI LAD," which includes

both "ΟΣΣ" (acute myocardial infarction) and "PCI LAD" (PCI specifically targeting the Left Anterior

Descending artery), describing a patient who received that targeted treatment. These deviations can also

affect the downstream EL results. Consider the long-tail entity "Υπόχρωµη µικροκυτταρική αναιµία"

(Hypochromic microcytic anemia), which is a specific type of "αναιµία" (anemia), and each of these

terms could potentially link to distinct ICD-10 codes.

Despite our selection process prioritizing either the largest encompassing span or the entity span that

received the most votes from different model outputs, these methods often failed to correctly capture

such diverse long-tail and nested entities.



Table 8
Examples of long-tail and nested entity mentions.

Mentions English Translation Generated Description Entity

Linking

αναιµία
annotation : D64 - Other anemias

anemia A condition in which you lack enough healthy

red blood cells to carry adequate oxygen to

your body’s tissues.

D64

Υπόχρωµη

µικροκυτ-

ταρική αναιµία

Not annotated

Hypochromic microcytic

anemia

A type of anemia characterized by red blood

cells that are smaller than normal and have a

reduced amount of hemoglobin, resulting in a

pale color.

D50

ΣΝ
annotation : I25 - Chronic ischemic heart disease

Coronary Artery Disease A condition in which plaque builds up inside

the coronary arteries.

I25

PCI
annotation : Z95 - Presence of cardiac and vascular implants and grafts

Percutaneous Coronary

Intervention

A non-surgical procedure used to treat narrow-

ing of the coronary arteries, typically involving

angioplasty and stenting.

I95

ΣΝ (PCI)
annotation : I25 - Chronic ischemic heart disease

CAD (PCI) Coronary Artery Disease with a history of per-

cutaneous coronary intervention (angioplasty

and/or stenting) of the Left Circumflex coro-

nary artery in the specified year.

I25

ΟΣΣ
annotation : I21 - Acute myocardial infarction

ACS (Acute Coronary Syn-

drome)

A range of conditions associated with sudden,

reduced blood flow to the heart.

I21

PCI LAD
annotation : Z95 - Presence of cardiac and vascular implants and grafts

Percutaneous Coronary

Intervention (Left Ante-

rior Descending artery)

A procedure to open blocked coronary arteries,

specifically the left anterior descending artery.

I21

ΟΣΣ-PCI LAD
annotation : I24 - Acute coronary thrombosis not resulting in myocardial infarction

NOT retrieved

5. Conclusion

We developed a multi-stage, hierarchical system for the ELCardioCC task, focusing on medical entity

recognition and entity linking. While our system demonstrated moderate recall, its precision was

noticeably low. A clear trend of error propagation was observable across the multi-stage pipeline, directly

impacting results from the NER phase down to the EL and MLC-X tasks. A significant contributing factor

to this limitation is our system’s reliance on English-translated text for processing. The crucial bridge

between the Greek clinical corpus and its English translation is entirely dependent on the multilingual

LLMs, and the quality control of these translations remains beyond our current capabilities.

To further improve precision and f1, we need to design more precise prompts that maintain moderate

recall, and implement more robust filtering mechanisms to effectively discard false positive mentions.

This is a key area for future development to refine the accuracy of our extracted and linked clinical

entities. A significant oversight on our part was neglecting the ICD-10 code list provided in the

labelset.txt file. This list would have dramatically reduced the search space for ICD-10 codes from over

10,000 to just 324 candidates. Using this candidate list could have substantially improved both the

precision and F1 scores in our ELCardioCC challenge submissions.
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