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Abstract

This paper presents our contribution to the ImageCLEF-Medical 2025 challenge, which focused on three core tasks:
concept detection, caption prediction and Explainability task for radiological images. This paper focuses solely on
the approaches and outcomes related to the Concept Detection and Caption Prediction subtasks undertaken as
part of our participation in the ImageCLEF-Medical 2025 challenge. The concept detection task aimed to identify
relevant UMLS concepts from biomedical images, while the caption prediction task required systems to generate
clinically accurate textual descriptions. We employed a MedCLIP-based transformer model, fine-tuned in a staged
manner—first on concept detection, then adapted for caption generation using the learned weights to retain
semantic understanding. Our best model achieved an F1 score of 0.4003 for concept detection, with a secondary
F1 of 0.9082. For caption prediction, evaluation metrics yielded scores of 0.7957 (Similarity), 0.5553 (BERTScore
Recall), 0.1607 (ROUGE-1), and 0.2806 (BLEURT). These results highlight the effectiveness of our transformer
based approach in capturing clinical semantics across both tasks.
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1. Introduction

ImageCLEF Medical[1] is a prominent initiative within the ImageCLEF framework, aimed at advancing
the field of medical image retrieval and analysis. This initiative provides a platform for researchers and
practitioners to evaluate and compare various methodologies in medical image processing, including
tasks such as image captioning and concept detection. By facilitating the sharing of datasets, benchmarks,
and evaluation metrics, ImageCLEF Medical fosters collaboration and innovation among the global
research community. The initiative has evolved over the years, adapting to the rapid advancements
in technology and the increasing complexity of medical imaging data. It serves as a critical resource
for developing automated systems that can assist healthcare professionals in interpreting and utilizing
medical images effectively.

Concept detection and captioning are critical components of medical image analysis as they bridge
the gap between complex visual data and clinical decision-making by enabling automated interpretation
and contextual understanding of radiological images (Shin et al., 2016)[2]. Concept detection focuses
on identifying standardized medical terms such as, concepts of the Unified Medical Language System
(UMLS)[3], which supports structured indexing, retrieval, and integration with electronic health records,
thus enhancing diagnostic precision and interoperability. Captioning, on the other hand, generates co-
herent and clinically relevant textual descriptions that mimic radiologist reports, offering interpretability,
aiding non expert users, and serving as decision support in scenarios with limited radiology expertise.
Together, these tasks facilitate efficient, scalable, and explainable Al-driven healthcare systems.
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The domain of medical image analysis has seen advancements driven by deep learning techniques,
with particular focus on tasks such as image captioning and concept detection. One of the foundational
challenges in the deployment of machine learning models in medical environments is the phenomenon
of concept drift, which can adversely affect model performance over time. Huggard et. al.[4] addressed
this issue by proposing a calibrated drift detection method[5](CDDM) tailored for medical triage systems.
Their work emphasizes the importance of detecting changes in data distributions to ensure models
remain accurate and reliable, a consideration that is crucial for maintaining the integrity of captioning
and concept detection systems in dynamic clinical settings.

In the broader context of medical image analysis, deep learning has been extensively explored for
various pattern recognition tasks[6]. Rehman et. al.[7] conducted a comprehensive survey highlighting
the improvements achieved through deep learning approaches in multiple applications, including
lesion classification, segmentation, and disease detection. Their review underscores the versatility of
deep learning models, such as convolutional neural networks (CNNs)[8], in extracting meaningful
features from complex medical images, which is directly relevant to concept detection tasks. These
models facilitate the identification of salient features that can be mapped to clinical concepts, thereby
supporting automated annotation and captioning. The application of generative models, particularly
Generative Adversarial Networks (GANs)[9], has also been explored for medical image analysis. In
another research work, Kazeminia et. al. [10] provided a broad overview of GANs, discussing their
potential to generate realistic medical images and augment datasets, which can be beneficial for training
captioning and concept detection systems, especially in scenarios with limited annotated data. GANs’
ability to synthesize diverse and high-quality images can help improve the robustness of models tasked
with recognizing and describing medical concepts.

Transformers[11] have emerged as a powerful architecture in medical computer vision. Parvaiz et. al.
[12] reviewed the integration of Vision Transformers (ViTs)[13] in medical imaging, emphasizing their
effectiveness in tasks such as disease classification, segmentation, and report generation. Their analysis
suggests that transformer-based models excel in capturing long-range dependencies and contextual
information, which are essential for accurate captioning and concept detection. Similarly, another
researcher Shamshad et. al. [14] provided a comprehensive survey of transformers in medical imaging,
highlighting their applications across various tasks, including detection and classification, which are
directly relevant to the development of automated captioning systems. The importance of explainability
and interpretability in medical Al has been recognized as a critical factor for clinical adoption. Bie et.
al. [15], proposed a multi-level image-concept alignment framework that enhances explainability by
semantically aligning medical images with clinical concepts at multiple levels. This approach addresses
a key challenge in concept detection and captioning: ensuring that models not only perform accurately
but also provide interpretable outputs that clinicians can trust. Their work underscores the necessity of
aligning visual features with semantic concepts to improve the transparency of Al systems.

Recent advancements also include multimodel approaches that combine visual and linguistic data to
improve understanding and explanation of medical images. Pham et. al. [16], introduced Silvar-Med, a
speech-driven visual language model that integrates speech interaction with medical image analysis.
Although primarily focused on abnormality detection, this multimodel framework exemplifies the
potential for integrating natural language processing with image analysis, which could be extended to
captioning tasks. Such models can facilitate more natural and interpretable communication between
Al systems and clinicians, enhancing the usability of automated captioning and concept detection
tools. Despite these advancements, challenges remain in the domain of medical captioning and concept
detection, particularly in the context of limited annotated datasets and the need for models to generalize
across diverse medical conditions and imaging modelities [17]. The literature indicates a trend toward
leveraging transfer learning, as demonstrated by Hassan et. al. [15], who used pre-trained ResNet50
models combined with linear discriminant analysis for medical image modelity classification. Transfer
learning can be instrumental in addressing data scarcity issues and improving model performance in
captioning and concept detection tasks.

Furthermore, the integration of attention mechanisms, as discussed by Liu et. al.[18], has shown
promise in enhancing the performance of transformer-based models. Their review highlights that



attention mechanisms enable models to focus on relevant regions within images, which is crucial for
accurate concept detection and generating meaningful captions. This aligns with the broader movement
toward more interpretable and context-aware Al systems in medical imaging. The importance of
detecting and adapting to concept drift, as well as integrating multimodel data, are emerging themes
that will likely shape future developments in medical captioning and concept detection. As the field
progresses, combining these approaches with domain-specific knowledge and clinical validation will
be essential to develop robust, accurate, and interpretable Al systems capable of supporting medical
decision-making more effective.

2. Dataset

This paper targets two tasks. They are Concept Detection and Caption Prediction for medical images.
Both tasks make use of the datasets supplied by the ImageCLEFmedical 2025 challenge.

The dataset for the caption prediction task in the ImageCLEFmedical 2025 challenge consists of
carefully selected medical images sourced from biomedical literature, each accompanied by expert-
annotated captions and manually curated UMLS terms provided as metadata [19]. For implementation
purpose, Radiology Objects in Context Version 2 (ROCOv2) [20] is used. The dataset is split into three
portions: a training set consisting of 80,091 radiology images to develop the model, a validation set
containing 17,277 radiology images used for tuning and optimization of the model, and a test set formed
by 19,267 radiology images that is mainly used for final evaluation of performance. The goal of concept
detection is to identify others that are medically relevant from a predetermined set of 2022 UMLS
concepts for each image. Performance of concept detection is judged in terms of F1, and F1 secondary
scores. The second task, caption prediction, attempts to develop systems that can generate captions
that are contextually accurate and meaningful in a medical sense for radiology images. Each image
has a caption with human annotations as a reference, and the goal is to produce ultimate text with
clinical contents underrepresented in the image. The performance of caption prediction is evaluated by
Similarity, BERTScore(Recall)[21], ROUGE-1 [22], BLEURT[23], Relevance average[24], UMLS concept
F1[25], AlignScore [26], Factuality average[27].

Most of the images in the dataset are in grayscale, with common modelities being Computed To-
mography (CT), Magnetic Resonance Imaging (MRI), and X-ray. The dataset emphasizes diagnostic
imaging and anatomical localization, often highlighting key regions such as the head, neck, thoracic
cavity, and abdomen. Many images deal with soft-tissue differentiation and structural mapping. CT
scans bring axial, coronal, and sagittal anatomical views to human anatomy using soft tissue window
settings. These window settings emphasize the difference in tissue density, vastly assisting radiologists
in spotting lesions, invasions, and pathological transformations clearly. Among the most usual cuts in
this dataset, axial forms provide coarse pictures of the supposed structure-the larynx, piriform fossae,
and thyroid cartilage-which are necessary for staging head and neck cancers and assessing anatomical
invasion.

To illustrate this, one such example from the dataset is an axial contrast-enhanced CT image of
the neck. The Figure 1 shows a soft tissue window and demonstrates the heterogeneously enhancing
lesion involving the two sides of the supraglottis, extending into the right piriform sinus, and invading
the thyroid cartilage. This anatomical clarity in the image facilitates precise concept annotation and
clinically meaningful captioning.

Table 1 represents the UMLS concepts associated with the Figure 1. This example highlights the
dataset’s rich multimodel structure—combining diagnostic imagery, anatomical precision, and textual
descriptions to reflect typical clinical documentation. The annotations enable systems to understand
not just object presence, but their clinical relevance, spatial relationships, and contextual importance.



Figure 1: An example image from the dataset. CC BY [Muacevic et al. (2023)]. Caption - Radiological image
(axial cuts) Axial cut, soft tissue window contrast computed tomography of the neck showing a heterogeneously
enhancing lesion of both sides of the supraglottis extending to the right pyriform sinus (lower arrow) invading
the thyroid cartilage (upper arrow).

Table 1
UMLS Concepts and Descriptions

UMLS Code Concept Description

C0040405 CT

C0225317 Soft Tissues, NOS
C0027530 Neck Structure

C2239273  Supraglottic Part of Larynx
C0227170 Piriform Fossa

C0040126 ~ Thyroid Cartilage

3. Approach

Our methodology, developed and implemented by team sakthiii, was centered around the MedCLIP
model [28], a multimodel transformer architecture specifically designed to align medical images with
their corresponding textual descriptions. This model, pre-trained on medical image-caption pairs,
provided a strong foundation for both concept detection and caption generation tasks. The workflow of
the proposed concept detection and caption prediction is shown in Figure 2.

In the first stage, fine-tuning the MedCLIP model for the concept detection task has performed.
The training process spanned 11 epochs using a batch size of 32. The optimizer selected was Adam
algorithm [29], with a learning rate of 1e-5, which provided effective convergence while maintaining
generalization. The dataset consisted of radiology images paired with UMLS concepts, allowing the
model to learn mappings between visual features and structured medical vocabulary. After training,
the model was validated on a separate validation dataset and then evaluated on the test set released by
the organizers. Several iterations were performed to optimize hyperparameters and ensure stability in
detection accuracy across multiple runs.

Following the completion of concept detection training, we transitioned to the caption prediction task
by reusing the same model weights. The goal was to utilize the semantic representations already learned
during concept identification to aid in generating context-aware textual descriptions. Each image was
pre-processed and converted to RGB format, then paired with the corresponding concepts from the
dataset. Using the MedCLIP processor and tokenization pipeline based on the Transformers library, we
prepared both models for their respective tasks (Caption prediction and Concept detection). During
model training, the model utilized Cross-Entropy Loss for the caption prediction module, enabling
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Figure 2: Workflow of the proposed Concept detection and Caption prediction.

it to learn accurate word sequences from the given image features. For the concept detection task,
Binary Cross-Entropy Loss[30] is employed to handle the multi-label nature of the medical concepts
(CUIs), allowing the model to independently assess the presence of each concept in a given input. This
seamless transition between tasks helped us to retain shared knowledge and reduce redundant training
overhead. This approach demonstrated efficient reuse of learned embeddings and resulted in consistent
performance on both tasks. Before finalizing this approach, we did a lot of trail and error with multiple
other pre-trained models, which then did not perform well. The codes and models that have used to
train the dataset for the tasks, including the models that yielded poor training results, are given in the
repository link

 GitHub

. The model’s training and evaluation for both the concept detection and caption prediction tasks were
performed on a local machine equipped with an NVIDIA RTX 4050 GPU. This setup was sufficient to
handle the computational requirements of the training within a reasonable timeframe.

4. Result and Analysis

The results and analysis are discussed in this section. Tables 2 and 3 present the top-performing
results achieved by each participating team for the concept detection and caption prediction subtasks,
respectively.

4.1. Results for the Concept Detection Sub-task

The Concept Detection Model used exhibits strong performance in accurately identifying relevant
concepts within radiological images. Evaluation metrics such as F1-score and F1 secondary score
highlight the model’s effectiveness. F1 Secondary Score is a variant of the F1 score that measures
model performance using an expanded or relaxed version of the ground truth labels, allowing for
partial matches, synonyms, or semantically related concepts. It helps capture a model’s ability to
generalize concept detection beyond exact matches. Among the teams that are participated in the
ImageCLEFmedical 2025 Concept detection challenge, our team sakthiii achieved eighth rank in the
concept detection task. Table 2 summarizes the best-performing submission from each team.


https://github.com/SakthiMukesh7905/ImageCLEF2025-medical-sakthiii.git

Table 2

Top Rankings of ImageCLEFmedical 2025 Concept Detection Task

Team Name F1 Score  F1 Secondary Score
auebnlpgroup 0.588788 0.948442
bahareh0281 0.576579 0.929936
thesalimi 0.576579 0.929936
mapan 0.565985 0.929801
oggyds312 0.561317 0.910382
ds4dh 0.522459 0.867173
oggysashimi 0.454259 0.719997
sakthiii 0.4002738 0.908151
jaimage 0.398163 0.832920
ronghaopan 0.239768 0.537660
lekshmiscopevit  0.149379 0.229757

Table 3

ImageCLEFmedical 2025 Captioning - Core Metrics
Owner Overall  Similarity ~BERTScore (Recall) ROUGE-1 BLEURT
UMUTeam 0.3432 0.9271 0.5977 0.2594 0.3230
DS4DH 0.3362 0.9016 0.6067 0.2516 0.3096
Al Stat Lab 0.3229 0.8919 0.5823 0.2440 0.3173
UIT-Oggy 03211 0.8798 0.5951 0.2535 0.3020
AUEB NLP Group  0.3068 0.7947 0.5884 0.2176 0.3030
JJ-VMed 0.3043 0.8251 0.5953 0.2389 0.3094
sakthiii 0.2746 0.7957 0.5553 0.1607 0.2806
csmorgan 0.2315 0.5704 0.5180 0.1598 0.2385

Table 4

ImageCLEFmedical 2025 Captioning - Conceptual and Factual Metrics
Owner Relevance Avg  UMLS Concept F1  AlignScore  Factuality Avg
UMUTeam 0.5268 0.1816 0.1375 0.1596
DS4DH 0.5174 0.1682 0.1417 0.1549
Al Stat Lab 0.5089 0.1524 0.1213 0.1369
UIT-Oggy 0.5076 0.1672 0.1021 0.1346
AUEB NLP Group 0.4759 0.1429 0.1325 0.1377
JJ-VMed 0.4922 0.1366 0.0964 0.1165
sakthiii 0.4481 0.1094 0.0928 0.1011
csmorgan 0.3717 0.0741 0.1087 0.0914

4.2. Results for the Caption Prediction Subtask

The Caption Prediction Model shows powerful results in building coherent and context-aware captions
for medical images. Evaluation metrics such as Similarity, BERTScore (Recall), ROUGE-1, BLEURT,
Relevance Average, UMLS Concept F1, AlignScore, Factuality Average were applied to check linguistic
quality and semantic alignment between generated caption and reference annotations. The results
showed that the model mostly generated relevant and rich captions, comparable to human-written
descriptions. The Caption Prediction subtask attracted several participants submitting number of
runs that were graded in the ImageCLEF-medical 2025 challenge. Among them, our team sakthiii has
achieved the eighth rank in the caption prediction task. Table 3 and Table 4 present the results of the

submission.



5. Conclusion

This paper presents a solution for the ImageCLEFmedical 2025 challenge, addressing both caption
prediction and concept detection using a two-phase training approach built on the MedCLIP model. In
the first phase, MedCLIP was fine-tuned for concept detection by optimizing contrastive and concept-
specific losses like Binary-Cross-Entropy to ensure accurate output. In the second phase, the weights of
the concept detection MedClip model is used to extract clinical entities from concepts, allowing a BERT-
based classifier to predict medical captions directly from visual features. Our system showed strong
results across metrics like BLEURT, ROUGE-1, BERTScore and overall, highlighting the effectiveness of
combining multimodel embeddings with domain-specific knowledge. While the approach had limita-
tions, such as dependence on static thresholds and occasional generic captions, future improvements
will explore dynamic thresholding, prompt-based generation, and more advanced encoders. In general,
our work demonstrates the potential of Al-driven frameworks in clinical decision support and medical
image understanding.

6. Declaration on Generative Al

During the preparation of this work, the authors used ChatGPT and Grammarly to: Grammar and
spelling check. After using these services, the authors reviewed and edited the content as needed and
assume full responsibility for the content of the publication.
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