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Abstract

The BirdCLEF+ 2025 challenge focused on the simultaneous acoustic identification of birds, amphibians, mammals
and insects in the Middle Magdalena Valley, a biodiversity hotspot in Colombia. This edition aimed to advance
passive acoustic monitoring by tasking participants with developing reliable systems for detecting and identifying
multi-taxonomic vocalizations from extensive soundscape recordings. Using training data provided by museum
collections, citizen science projects and new unlabeled soundscapes, participants addressed the challenge of
out-of-distribution generalization under field conditions and limited training data for many species. Participants
used data augmentation, pseudo-labeling, and self-training to enhance model robustness and accuracy, often
refining pseudo-labels iteratively. For improved scores and runtime efficiency, teams commonly employed Test-
Time Augmentation, ensemble methods, and optimized inference with dominant Sound Event Detection and
CNN-based models, frequently pretraining on external datasets. The highest-scoring submission achieved an
ROC-AUC score of 0.930 on the private leaderboard (0.933 on the public leaderboard), with the top 10 systems
differing by only 0.9% in their scores.
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1. Introduction

Some of the world’s most biodiversity-rich regions are also those where socioeconomic conflicts run
deepest [1]. These areas often lack robust environmental governance, which heightens the tension
between conservation and economic exploitation. This institutional fragility exacerbates pressures on
ecosystems, undermining both ecological integrity and community well-being. One such region is the
Middle Magdalena Valley in Colombia, one of the world’s most biodiverse areas, yet it is undergoing

rapid land-use intensification [2].

The Middle Magdalena Valley is a vital habitat for numerous taxonomic groups, including mammals,
amphibians, birds, and insects [3, 4, 5, 6, 7, 8], thriving in remarkable ecosystems such as humid tropical
lowland forests and extensive wetlands. However, economic development in the region—driven by
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Figure 1: Soundscapes are multi-taxonomic. The dawn soundscape at the top is composed of insects of the
Gryllidae family above 4 kHz and primates of the Allouatta seniculus species in the lowest part. Between these
two signals, additional insect sounds reveal the presence of various individuals both within and outside the same
taxonomic group. The bottom spectrogram is a representative soundscape of the dusk composed simultaneously
by anurans (Leptodactylus fragilis), birds (Thraupis episcopus), and multiple overlapping insect signals.

cattle ranching, mineral extraction, and oil palm cultivation—is severely impacting biodiversity and
diminishing Nature’s Contributions to People (NCP) [9, 10], including water quality and regulation,
soil fertility, and carbon sequestration [11, 12, 13, 14]. Therefore, it is essential to design and deploy
practical biodiversity diagnostic tools to assess environmental dynamics. In doing so, the community
and decision-makers will be better equipped to implement informed, timely strategies that harmonize
human development with ecosystem resilience.

In this context, robust biodiversity monitoring is fundamental for rapidly and effectively assessing
ecosystem health. For instance, precisely measuring the impact of restoration activities is crucial for
identifying optimal treatments that lead to desired ecological outcomes [15, 16]. Acoustic data emerges
as a powerful ecological signal for this purpose. Specifically, passive acoustic monitoring (PAM) [17, 18],
combined with deep learning models [19] for data analysis, offers a promising approach to inform the
efficacy of interventions and track long-term ecological changes. While several studies have explored
using sound to evaluate restoration, these approaches primarily rely on the presence of one taxonomic
group, such as birds and insects [20, 21], as a proxy for overall diversity.

However, studying entanglement patterns between taxonomic groups could significantly advance our
understanding of complex ecological processes, as some studies have shown when examining patterns
of presence and absence of different taxonomic groups in the tropical forest [22]. A crucial step for
generating time series of species presence and absence required for such analysis is the construction of



highly curated datasets. These datasets are essential for training and testing deep learning models before
their broad application to PAM data. Previous works have curated datasets for birds [23], insects [24],
amphibians [25], and mammals [26]. While recent work has been merging different sources of data to
analyze multi-taxonomic approaches in bioacoustics [27, 28], none have yet considered the co-existence
of multiple taxonomic groups in the same soundscape, which are especially rich in the Neotropics (Fig-
ure 1), where co-ocurrence, overlapping, and different levels of activity are present in acoustic space [29].

Despite previous works in datasets and automatic species identifiers, there are no PAM datasets that
consider the ubiquitous multi-taxonomy of the soundscapes. Furthermore, there are no multi-taxonomic
automatic models, as in the case of MegaDetector in camera trapping [30], that can be used as a backbone
for different applications in PAM. To address both challenges, we present:

« The ESMT (El Silencio Multi-Taxonomic) dataset, composed of two parts: 1) 770 strongly-labeled
soundscapes representing 15k bounding boxes of 4 taxonomic groups simultaneously singing in
the Middle Magdalena Valley and 2) 11340 unlabeled soundscapes in the same region.

+ The BirdCLEF+ 2025 (Bird Recognition Challenge), an integral part of LifeCLEF 2025 [31], tasked
participants with identifying bird, mammal, insect, and amphibian calls within soundscapes
from the Middle Magdalena Valley. The competition ended with 9,829 registrations and 2,757
participants on 2,161 teams. We had 76,381 submissions from 86 countries.

2. El Silencio Multi-Taxonomic Dataset

In this section, we describe the construction of the dataset that we release in this work: the ESMT dataset.
First, we selected a dedicated subset for strong-labelling annotation. Next, we created bounding boxes
over frequently observed sonotypes across various taxa. Finally, we assign a taxonomic identification to
the sonotypes. In addition, we also selected unlabeled soundscapes for further exploration. The dataset
is made publicly available'.

2.1. Data collection

We deployed recorders across the Middle Magdalena River Valley, around the forests of the Barbacoas
wetlands (Figure 2). We used a stratified sampling design across properties and areas with contrasting
compositions of forest and pasture. We deployed Audiomoth v1.2.0 [32] passive recorders during March
and August 2023. Recorders were located 1.5m from the ground, programmed to capture one minute of
sound every five minutes with a sampling rate of 48 kHz.

2.2. Labeled soundscapes

Selection: Seven sites were selected with different forest compositions. A random subset of recordings
within the 5-7 AM and 5-7 PM time frames was selected for annotation (110 per site). This resulted in a
total of 770 recordings, amounting to 12.8 hours

Annotation: We randomly selected 10 files of each site to hear common sonotypes. We focus on the
most frequent and stereotypical sonotypes to decrease workload. Two expert annotators were in charge
of creating strong labels over the entire soundscape. One expert checked all the files searching for birds
and mammals (PCR), and the other expert annotated insects and amphibians (MPTG).

Taxonomic identification: Birds and mammals were easily recognized through previous works,
expertise, audio repositories and a species list provided by the System of Biodiversity from Colombia
(SiB Colombia). Amphibians were identified using a similar route but with some additional confirmation

'https://github.com/redecoacustica/elsilencio-dataset/
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Figure 2: The audio data for this competition was collected from El Silencio Natural Reserve and Research
Station in Colombia’s Middle Magdalena Valley. AudioMoth ARUs were deployed across a forest regeneration
gradient within the reserve to gather the dataset. The recording corresponds to 3 sampling areas with different
forest compositions. Area S1 had the highest proportion of forest with high Structural Condition Index. Area S3
has the highest proportion of grasslands and non-forested vegetation (1-3 SCI values), and area S2 is intermediate
between the two. (Photo: Santiago Rosado)

between herpetologists. However, the hardest identification process was for insects. After an iterative
process [33] that included field work in the reserve and intensive manual verification led by an expert
entomologist (JLBL) with the Collection of Environmental Sounds (CSA) in Colombia [34], we identified
a subset of the insect sonotypes at the family level. Infrequent sonotypes were not identified.

2.3. Unlabeled soundscapes

From the final 534,420 audio files collected, we randomly selected 11,340 unlabeled soundscapes. We
chose that specific quantity to keep the total size of the dataset below 50GB. These files correspond
to 63 sites (180 files per site) during all possible hours and days of the collection. We open unlabeled
soundscapes to explore potential algorithmic approaches that use unlabeled data to improve species
identification models.

3. BirdCLEF+ 2025 Competition Overview

Mobile and habitat-diverse species serve as valuable indicators of biodiversity change, as shifts in their
assemblages and population dynamics can signal the success or failure of ecological restoration efforts.
These species often respond rapidly to environmental changes, making them particularly useful for
detecting early signs of ecological improvement or degradation. However, traditional observer-based
biodiversity surveys across large areas are both costly and logistically demanding, often requiring
extensive fieldwork, expertise, and repeated visits to remote locations, challenges that limit the frequency
and scale of monitoring. In contrast, passive acoustic monitoring (PAM), combined with Al offers a
scalable and non-invasive solution that enables conservationists to collect and analyze vast amounts of
ecological data with minimal human presence. PAM systems can operate continuously over extended
periods and in challenging environments, capturing the vocal activity of a wide range of taxa, including
birds, amphibians, and insects. When paired with automated species identification, it enables researchers
to monitor biodiversity across broad spatial and temporal scales, allowing more timely and data-driven
reviews of restoration outcomes.

3.1. Goal/Task

This competition aimed to advance automated species identification in soundscape data from the
Middle Magdalena Valley of Colombia, including the El Silencio Natural Reserve. Key objectives include
detecting species across diverse taxonomic groups, developing machine learning models capable of



recognizing rare and endangered species from limited training data, and leveraging unlabeled data to
improve detection and classification performance.

3.2. Evaluation protocol

The challenge was hosted on Kaggle, following a similar evaluation setup as in previous years [35],
with hidden test data and a code competition format. We used a variant of macro-averaged ROC-AUC
as the evaluation metric, excluding classes with no true positive labels, allowing us to assess model
performance without relying on confidence threshold tuning and emphasizing species-level rather than
segment-level accuracy [36]. Participants were asked to identify species in short, 5-second audio clips
extracted from labeled soundscape recordings, a length chosen to balance signal clarity with adequate
context. The dataset was kept under 50 GB to ensure accessibility and ease of use. To further support
participants, we provided starter code and documentation to help newcomers get started quickly.

3.3. Time limits

Competitors were limited to 90 minutes of inference time on a CPU. This ensures that models are
cost-effective for real-world usage. A side effect is reducing the impact of ensembling, a common Kaggle
tactic obscuring underlying model quality.

3.4. Dataset for the competition

Building on lessons from previous editions, we refined the task to encourage participants to design
models tailored to the unique challenges of the competition. Training and test data were carefully
selected to reflect a range of bird and non-bird taxa?, supporting this goal. As in past years, Xeno-canto
[37] remained the main source of training data, complemented by expertly annotated soundscape
recordings for testing. This year, we expanded the dataset to include contributions from iNaturalist
[38] and the Collection of Environmental Sounds (CSA) of the Humboldt Institute [34, 39], with a
focus on underrepresented species, those ecologically important but difficult to detect due to rarity or
elusive behavior. The training dataset included commonly occurring species identified via eBird and
iNaturalist observation data, supporting the development of robust models in cases where the target
species composition is unknown. As a result, some species were present in the training data but absent
from the test data, while still being representative of the target region.

Test data sources were selected to capture a broad range of acoustic environments, incorporating
differences in call density, background noise, and recording formats (mono and stereo). Species labels
were excluded when fewer than five training recordings were available or when species identification
could not be confirmed with certainty. Unlabeled training data, designed to resemble the test set, were
also included to encourage exploration of semi-supervised and self-supervised learning techniques. In
total, the dataset consisted of more than 38,000 labeled training recordings covering 206 species, along
with 705 one-minute soundscape recordings for testing and evaluation.

4. Results of BirdCLEF+ 2025

A total of 2,025 teams with nearly 2,569 competitors participated in the BIdCLEF+ 2025 competition,
submitting a total of 70,674 runs. As in recent years, two-thirds of the test data was allocated to
the private leaderboard and one-third to the public leaderboard. Based on the ROC-AUC metric,
the baseline score was 0.5, with random confidence scores for all birds across all segments. The
highest-scoring submission achieved 0.930 (0.933 on the public leaderboard), with the top 10 systems
differing by only 0.9% in their scores. The top 25 participant scores were above 0.905 (Figure 3).

*We therefore renamed the competition from Bird CLEF to Bird CLEF+
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Figure 3: Top 25 private leaderboard scores achieved by the best systems evaluated within the multi-taxonomic
identification task of LifeCLEF 2025. Public and private test data were split randomly. The private scores remained
hidden until the submission deadline.

The Insecta class presented the most significant challenge in the competition, registering a mean
ROC-AUC of 0.667 & 0.113 across its three considered classes (Figure 4a), which consistently appeared
at the lower end of the per-species ranking (Figure 4b). Following this, the Amphibia class achieved a
ROC-AUC of 0.840 =+ 0.145, notably exhibiting the highest standard deviation, which is also evident in
its broad distribution across the per-species ranking. For the dominant Aves class, the mean ROC-AUC
was 0.936 & 0.0809; while some avian species showed minimal performance differences among top
participants, others were found lower in the ranking with considerable variation between competitors
(Figure 4b). In contrast, the Mammalia class, represented by Alouatta seniculus, demonstrated high
performance with a ROC-AUC of 0.983 + 0.020 and a low standard deviation, occupying the upper
part of the ranking.

4.1. Online write-up

Across submissions, several common strategies emerged in participants’ online write-ups®. Data
augmentation played a central role, with techniques such as Mixup, Cutmix, Sumix, Frequency and
Time Masking, Gain adjustments, Resampling, and FilterAugment widely used. Some teams also
introduced external noise, including human speech, to improve model robustness. Undersampled
species were typically addressed through upsampling, while pseudo-labeling and self-training
on the unlabeled soundscape data proved key for boosting accuracy. These strategies often
involved generating pseudo-labels from preliminary models, applying transformations (e.g., power
scaling, filtering low-confidence predictions), and iteratively refining the labels. Weighting more
confident pseudo-labeled examples more heavily during training also contributed to improved outcomes.

For inference, teams commonly employed Test-Time Augmentation (TTA) by processing overlapping
audio segments and smoothing predictions over time, sometimes with delta shifts. Post-processing
steps - such as adjusting prediction confidence, applying power-based scaling, or calibrating outputs -
were used to further refine model predictions. Ensemble methods, including blending models from
different training folds or checkpoints, were instrumental in boosting final scores. To meet runtime
constraints, many participants optimized inference speed using tools like ONNX, OpenVINO, and
multiprocessing.

The dominant modeling approach was Sound Event Detection (SED), often enhanced with
dedicated SED heads. CNN-based models were also widely used, sometimes in hybrid combinations
with SED components. EfficientNet backbones were especially popular, though alternatives like
RegNet and NFNet also saw successful implementations. Some teams trained separate models for

*Individual write-ups can be accessed via the "Solution" icon on the leaderboard: https://www.kaggle.com/c/birdclef-2025/
leaderboard
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Figure 4: Results per taxonomic group and species for the Top 25 scores. Overall, the hardest group to identify
was insects, followed by amphibians, which shows high variability per species. The next group was the Aves
group with different results across species. The best class is the Mammalia, with one class in the upper part of
the ranking showing high performance and low variability.

taxonomic subgroups (e.g., Amphibia, Insecta), incorporating additional external datasets to improve
representation. Input features were typically log-transformed Mel spectrograms, with variation in
the number of mel bins, hop sizes, and frequency ranges. A variety of loss functions were explored,
including Cross Entropy, BCE With Logits Loss, and Focal Loss variants, with some evidence suggesting
Focal or Cross Entropy loss could offer marginal improvements with appropriate tuning. Pretraining
model backbones on large external datasets such as Xeno-Canto prior to fine-tuning on the competition
data significantly boosted early performance.

4.2. Working notes

We accepted four working notes for the proceedings, which document the approaches and methodologies
used by individual teams:

Tan & Wang [40]: The authors developed an end-to-end classification model that uses two parallel
input branches (Dual Branch Network) to process Mel-spectrogram and MFCC features, respectively.
MEFCCs are fed into a ResNet50 pretrained on ImageNet, while Mel features are passed through a
randomly initialized ConvNeXt-v2. The feature representations from both branches are fused late
in the pipeline to produce final species predictions. The study evaluates different combinations of
pretrained and randomly initialized backbones, with a focus on understanding how complementary
audio representations and model initialization strategies affect classification performance.

Gokulnath et al. [41]: Adopting a modular approach, this team frames bird species identification as a
set of binary classification tasks—one per species. Rather than using a multi-label model, the authors
treat the task as 206 independent detection problems, enabling species-specific data augmentation,
threshold tuning, and diagnostics. Extensive cross-validation and performance visualizations help
analyze which species benefit most from augmentation. The authors argue that this modular design
simplifies model interpretation, allows fine-grained tuning, and reduces the complexity of the output
layer.

Sydorskyi & Gongalves [42]: This team employs an ensemble strategy using lightweight CNN archi-
tectures—specifically EfficientNetV2-S and NFNet-LO—trained independently on log-Mel spectrograms
which were generated from 5-second audio segments. Augmentations such as MixUp and SpecAugment
were applied during training. The final predictions are computed by averaging the softmax outputs
of 15 different models, leveraging complementary strengths of the individual learners. Ensembling
improved prediction accuracy without introducing substantial computational complexity, making it
suitable for the competition despite the runtime constraint.



Miyaguchi et al. [43]: This submission presents a token-based classification pipeline that transforms
MFCC features into discrete tokens. MFCCs are clustered into 256 discrete tokens using k-means,
forming sequences analogous to text. A Word2Vec model is trained on these sequences to learn
embeddings, which are then fed into a compact transformer model (the “student”) trained to match the
outputs of a CNN-based classifier (the “teacher”) using KL divergence. This approach results in a model
that retains competitive classification performance but is fast enough to process the entire test set in
under 5 minutes on CPU.

5. Conclusions and Lessons Learned

The BidCLEF+ 2025 competition showcased remarkable progress in acoustic species identification,
drawing 2,025 teams who submitted an impressive 70,674 runs. The top systems achieved exceptional
results, with the leading entry hitting a ROC-AUC of 0.930 (0.933 on the public leaderboard) and the top
25 participants consistently scoring above 0.905. This widespread participation and strong performance
underscore the significant advancements in bioacoustics species identification.

Participants used several strategies to achieve these results. Key techniques included extensive
data augmentation (e.g., Mixup, masking, external noise), upsampling for undersampled species, and
crucial pseudo-labeling and self-training on unlabeled data to enhance performance. During inference,
Test-Time Augmentation (TTA) and post-processing refined predictions, while ensemble methods
further boosted scores. Runtime optimization was also a focus, often through tools like ONNX. The
predominant modeling approach was Sound Event Detection (SED), frequently integrated with CNNs
(e.g., EfficientNet backbones), with pretraining on large external datasets proving especially effective.

Despite these impressive overall results, a deeper taxonomic analysis revealed persistent challenges.
Groups like Insects and Amphibians remain difficult to identify, primarily due to the limited availability
of data for these species and taxonomic uncertainty. Furthermore, not all bird species were equally easy
to classify, with some showing considerable performance variation among top competitors. Future work
should focus on new datasets for these groups and investigate which acoustic characteristics are the
strongest determinants of these performance disparities to inform more robust identification models.
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