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Abstract
FungiCLEF 2025, the 4th edition of the FungiCLEF challenge, was organized as part of the LifeCLEF and the FGVC
workshops. This year’s edition targeted few-shot classification of rare fungi species. Participants were tasked with
identifying species from multimodal observations, including images, structured metadata, and environmental
data. The data was collected through citizen science and underwent expert-based labeling. Building upon the
FungiTastic dataset, FungiCLEF 2025 emphasized real-world constraints such as limited training samples, high
intra-class variability, fine-grained inter-class similarities, and distribution shift. The competition attracted 74
teams, with the leading submissions demonstrating significant gains over the provided baselines, showcasing
the potential of pretrained vision transformers, contrastive learning, and ensemble techniques. This overview
summarizes the challenge setup, dataset, baselines, participant strategies, and key findings, and outlines directions
for future work. The winning team achieved a top-5 accuracy of 78.9%, outperforming baselines by over 52%.
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1. Introduction

Accurate recognition of fungi species is important for biodiversity monitoring, ecological research,
and early detection of invasive or toxic species [1, 2, 3, 4]. Given the vast number of species and
their morphological variability [5], automated tools have become essential for both experts and citizen
scientists in the identification process. Many fungal species are known from only a few observations
[3, 6]. This makes it difficult to obtain large, well-annotated image datasets that are required for training
conventional machine learning models. Few-shot learning [7, 8] is a machine-learning paradigm that
targets learning from only a few labeled examples per class. This better fits real-world conditions of
fungi recognition, where collecting and labeling sufficient data for each species is often expensive,
time-consuming, or infeasible.

Fine-grained visual recognition of fungi presents several additional challenges, including high intra-
class variability (Figure 1), subtle inter-class differences (Figure 2), and complex backgrounds. The
inter-class visual appearance similarities are common in mycology, as many fungal species closely
resemble one another. Consider the following species from Figure 1: Psathyrella fragrans, known for its
distinctive fragrant aroma; Psathyrella citerinii, which often exhibits a unique color palette; Psathyrella
sphagnicola, typically associated with specific mossy habitats; Entoloma favrei, characterized by its
unique cap and gill structure; and Psathyrella orbiculari, recognized for its rounded fruiting body. While
their visual characteristics may blend into one another, precise identification is crucial in understanding
their ecological roles and interactions within their environments [4].

The morphological similarity often makes visual identification extremely challenging, as such subtle
differences may be difficult to spot without expert knowledge. These issues are amplified in few-
shot fungi classification due to variations in lighting, growth stages, and environmental context,
often captured by non-expert users [6, 9]. In many cases, the most reliable means of distinguishing
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Figure 1: Intra-class visual appearance changes. A Comatricha alta specimen exhibits a notable progression
in color and shape during its developmental stages. From initial pale yellow-brown through reddish hues to
deep, dark brown and black at maturity.

Figure 2: Inter-class visual appearance similarities. Some species resemble each other. In many cases, only
DNA analysis or microscopic images of spores allow correct identification. From left to right: Psathyrella fragrans,
Psathyrella citerinii, Psathyrella sphagnicola, Entoloma favrei, Psathyrella orbiculari.

these species lies in comprehensive and time-consuming techniques such as DNA sequencing or the
examination of microscopic structures like spores.

To address these challenges, FungiCLEF [10, 11, 12] has been organized annually, now in its 4th

edition, with the goal of advancing the state of the art in fine-grained recognition, fostering collaboration
between machine learning researchers and domain experts, raising public awareness about fungal
biodiversity, and promoting real-world impact through applied ML solutions. This year, the focus is on
few-shot fine-grained recognition, which is especially important in biological datasets, where species
exhibit a long-tail distribution and many classes have very limited annotated data. In the context of
species prediction, and fungi in particular, advances in few-shot recognition support tasks such as
biodiversity assessment, ecological monitoring, and the development of tools for citizen scientists,
where collecting large training datasets is often infeasible [2, 3, 4, 13].

The competition attracted 74 teams, of which 6 submitted working notes detailing their solutions.
The remainder of this overview outlines the challenge, including its organization, data, and evaluation
protocol. This is followed by the overall results and a summary of the submitted working notes. The
conclusions highlight key findings from the competition and they suggest directions for future work.

2. Challenge Description

The FungiCLEF 2025 competition, hosted on Kaggle as part of the LifeCLEF [14, 15] and FGVC workshops,
focused on few-shot classification of rare fungi species with multimodal data. Participants were asked
to build models to recognize species from very limited training examples (<5) taken from expert-
verified records in the Atlas of Danish Fungi and reflecting real-world biodiversity monitoring scenarios.
Submissions were CSV files matching observation IDs to predicted labels, and evaluation was based on
top-5 accuracy to account for the difficulty of distinguishing visually similar species.

The challenging nature of the task is demonstrated by the results of the few-shot baselines presented
in Table 1, clearly showing the impact of the number of training samples: while for species with 4
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Table 1
Few-shot classification accuracy (%) of BioCLIP-based methods (from [6]) as a function of the number of training
observations per class. A consistent increase in performance with increased training samples can be observed for
both baselines. Note: each training example may include multiple photographs, so the single observation results
for the NN and centroid methods can be different.

training observations per class

classifier 1 2 3 4

Centroid 12.69 23.48 32.86 40.26
Nearest Neighbour 12.84 21.33 30.02 29.39

training observations, the baselines achieve top-1 accuracies of 40% and 29%, respectively. For species
with one training observation, the performance drops dramatically to only 13% for both of the methods.

2.1. Evaluation Protocol

To account for the difficulty of distinguishing visually similar fungi species, we used top-5 accuracy as
the primary evaluation metric for the FungiCLEF 2025 challenge. It measures the percentage of test
samples where the correct label is among the model’s top-5 predicted labels. Top-5 accuracy allows to
account for reasonable alternatives, reflecting real-world scenarios where multiple plausible predictions
can be useful, e.g. as a shortlist for experts. More generally, the standard top-𝑘 accuracy metric is
defined as:

top-𝑘 =
1

𝑁

𝑁∑︁
𝑖=1

1(𝑦𝑖 ∈ 𝑌
𝑘
𝑖 ),

where 𝑁 is the total number of test samples, 𝑦𝑖 is the true label for the 𝑖-th sample, 𝑌
𝑘
𝑖 is the set of top

𝑘 predicted labels for the 𝑖-th sample, and 1(·) is the indicator function, returning 1 if the condition is
true and 0 otherwise.

While the top-5 accuracy determines the official leaderboard rankings, we also report top-𝑘 accuracies
for a range of different cutoff thresholds (𝑘 = 1, 2, . . . , 10) to provide a more detailed evaluation of
models’ performance.

2.2. Baselines

We provided a Kaggle starter notebook that implements two few-shot classification baselines from [6]
with the objective to support participants and reduce entry barriers. The baselines rely on BioCLIP
[16] embeddings and FAISS [17] for efficient nearest-neighbor search. The notebook includes all core
components: data loading, pre-processing, feature extraction and storage, classification on top of
precomputed features and evaluation. It enables participants to run reproducible experiments and
extend the code with minimal computational and coding overhead. It encourages broad participation
across both machine learning and biodiversity research communities and beyond by offering a functional
and modular starting point.

The first baseline is a centroid-based classifier, which computes a prototype (mean embedding) for
each class using the BioCLIP representations of the training data. In inference, each query image is
embedded and then classified by assigning it to the nearest class centroid using cosine similarity.

The second baseline is a nearest neighbors (NN) classifier using FAISS [17], an efficient similarity
search library optimized for high-dimensional vector spaces. Test samples are embedded and compared
against all training embeddings, and the label is assigned based on the label of the nearest neighbor.
FAISS accelerates the nearest neighbor search and thus supports scalable evaluation on larger datasets.

https://www.kaggle.com/code/picekl/fungiclef25-starter-notebook


2.3. Timeline

The FungiCLEF 2025 competition launched on March 7, 2025, around one week earlier than last year. It
was open to submissions for about 10 weeks until May 19. The competition was hosted on Kaggle and
promoted through LifeCLEF [14, 15] and FGVC, as well as on social media.

2.4. Working Notes

Participants were strongly encouraged to submit both their code and a detailed technical report (Working
Notes) to ensure their results be fully reproducible. The working notes provide an in-depth analysis of the
techniques employed, including hyperparameter tuning, model ensembling, and loss function selection,
offering valuable insights into the development of the method for fungal image classification. The
Working Notes underwent a thorough review; two experts with strong publication records in Computer
Vision and Machine Learning provided detailed feedback. The review process was primarily designed
to guarantee reproducibility and maintain quality standards. The review was single-blind, allowing
participants to respond with up to two rebuttals to address any concerns raised by the reviewers.

New in 2025: AI–Assisted Reviewing. To explore whether large language models can improve
review consistency and coverage, we introduced a third, automatic reviewer based on ChatGPT. Each
Working Note therefore received an additional LLM-generated review alongside the two expert reviews.
The ChatGPT review was produced with the prompt shown below, constraining the model to the
workshop’s emphasis on reproducibility and clarity.

Prompt used for the ChatGPT reviewer:

You are acting as a peer reviewer for a scientific workshop in computer science:
LifeCLEF 2025,part of CLEF. The workshop focuses on biodiversity informatics challenges
involving machine learning, computer vision, and related techniques. The emphasis of the
submissions is on reproducibility, careful experimental evaluation, and thoughtful
analysis, rather than purely on novelty.
Please carefully read the following paper submission and write a professional, constructive
review. Your review should include the following sections:

1. Summary:
* Briefly summarize the task, methods, datasets, and key findings.
* State clearly what problem the authors are addressing, which LifeCLEF challenge it
pertains to, and what their main contributions are.

2. Strengths: List the strong aspects of the paper, such as:
* Reproducibility (e.g., availability of code, data, clear methodology)
* Careful experimental design
* Well-performed ablation studies or error analyses
* Insightful discussions of results
* Clarity of writing and presentation

3. Weaknesses / Areas for Improvement: Identify any weaknesses or limitations, such as:
* Missing details that would prevent reproduction
* Lack of ablations or sensitivity analyses
* Incomplete or unclear description of the method
* Insufficient discussion or interpretation of the results
* Missing comparison to appropriate baselines

4. Detailed Comments:
* Provide actionable, constructive feedback that the authors can use to improve their paper.
* You may point out specific sections, figures, or tables that need clarification, expansion,
or correction.
* Comment on both scientific and presentational aspects.

5. Overall Evaluation: Please provide your overall recommendation, choosing one of:
* Strong Accept | Accept | Weak Accept | Borderline | Weak Reject | Reject | Strong Reject

Important Reviewing Guidelines:
* Focus on scientific rigor, reproducibility, and clarity rather than novelty alone.
* Do not hallucinate or infer information not present in the submission.
* Be neutral, unbiased, and professional.
* If some required information is missing, state it explicitly.

https://www.kaggle.com/competitions/fungi-clef-2025/overview
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Figure 3: FungiTastic-FS. Photos in the dataset are of very rare species. Some do not look like typical mushrooms.

2.5. Dataset

The FungiCLEF 2025 competition is based on the FungiTastic-FS dataset, a curated few-shot subset
of the FungiTastic benchmark [6]. It consists of selected, expert-verified observations of fungi species
submitted to the Atlas of Danish Fungi. Each observation includes one or more photographs of the same
specimen. It is enriched with structured metadata, including location, timestamp, substrate, habitat,
toxicity status, GPS coordinates, elevation, land cover classification, biogeographical zone, and other
relevant details. In addition to photographs, labels and metadata, the dataset includes automatically
generated captions describing the specimen’s visual characteristics, created using the Malmo-7B VL
model [18]. See Figure 4 for an example observation. For more info, please see the data source paper [6].

The FungiCLEF 2025 dataset specifically targets rare and under-recorded species, each with between 1
and 4 training observations. These species represent approximately 20% of all labeled instances in the
broader FungiTastic dataset. The challenge emphasizes fine-grained classification in a realistic low-data
regime. Importantly, many fungi in this dataset deviate from typical mushroom morphology, as shown
in Figure 3. The dataset is divided into the following subsets:

• Training set with 7,819 images across 4,293 observations, covering 2,427 species.
• Validation set with 2,285 images across 1,099 observations, covering 570 species.
• Test set with 1,911 images across 999 observations, covering 567 species.

Photographs Caption
The image shows a cluster of yellowish-orange fungi growing on the 
fallen tree trunk. These fungi have a distinctive appearance with 
several notable features: Shape: The fungi have a rounded, cap-like 
shape typical of many bracket fungi or polypores ... Texture: The 
surface of the fungi appears smooth and slightly glossy, indicating a 
moist environment. This texture is common in many species of 
fungi that thrive in damp conditions. Size: While it's difficult to 
determine exact sizes without a reference scale, the fungi seem to be 
relatively small compared to the tree trunk. They cover a significant 
portion of the visible area on the fallen log, suggesting they are 
mature but not overly large. Colour: The fungi display a vibrant 
yellowish-orange hue, ...

 Metadata
Toxic: No

Elevation: 87 m

Substrate: Dead wood

Date: 1. 1. 2022

Location: [55.59,12.35]

Land cover: Evergreen

needleleaf forests

Bio region: Atlantic

Habitat: Thorny scrublandd





Labels
Kingdom: Protozoa


Phylum: Mycetozoa


Class: Myxomycetes


Order:   Physarales


Family: Physaraceae


Genus:  Fuligo


Species: F. luteonitens 


Figure 4: FungiCLEF observations. Each includes one or more photos of a single specimen, a Malmo-7B
generated [18] caption for each photo, expert-verified taxon labels, and observation metadata.

3. Challenge Results

This section provides an analysis of the overall results. We compare teams based on their submission
with the best top-5 accuracy on the private test set. The winning submission achieved an impressive
top-5 accuracy of 78.9%. The runner-up achieved 78.1%, followed closely by the 3rd submission at 76.6%.

Figure 5 plots the top-𝑘 accuracies, 𝑘 ∈ {1, 2, 3, 4, 5, 10}, of the 10 highest-ranked submissions on the
private leaderboard. The winning submission consistently outperforms all others across all the metrics
(values of 𝑘). Notably, it leads by a significant margin in top-1 and top-6-top-10 (with 𝑘 ∈ {6, 7, 8, 9}
not displayed in the plot) accuracy, with much narrower gaps observed for intermediate k values. It can
be further observed that the leaderboard rankings would change if a different metric (i. e. top-1) was



Figure 5: Private Leaderboard results of the top 10 submissions. (left) Performance of the teams across
different top-k accuracy metrics. Teams ranking 1st, 2ndand 3rd for each metric are highlighted. (right) Evolution
of the top-k accuracy metric as 𝑘 increases for each team.

chosen. The second and third place submissions, for example, would shift under top-1 or top-10 metrics.
This suggests that the choice of metric has a strong influence on leaderboard outcomes. Some teams
may have specifically optimized for top-5, while others aimed for more general performance across
different 𝑘 values.

Baseline Performance. We implemented two baselines, described in Subsection 2.2: a Centroid
prototype-based method and a Nearest Neighbor (NN) classifier, both based on image-level features only.
The Centroid baseline achieved an accuracy of 33.2% on the public test set and 26.7% on the private test
set. The NN baseline performed slightly worse, with 28.3% and 24.7% on the public and private test sets,
respectively. In comparison, the winning team’s approach outperformed the stronger Centroid baseline
by more than 52 percentage points.

4. Participants and Methods

Out of 74 participating teams, 53 outperformed both baselines, and six teams submitted working notes
detailing their approach, including the winning team and the runner-up. Each team’s method and its
performance on both public and private leaderboards are listed in Table 2. All working note submissions
utilize embeddings from strong pre-trained vision transformers, including DINOv2 [19], BEIT [20],
BioCLIP [16], SigLIP [21], and SAM [22]. While all teams use similar building blocks, their approaches
differ in the choice of the backbone, the way embeddings are used (e.g., projection heads, contrastive
losses), and whether or how additional modalities are incorporated.

Notably, the top two teams, Jack Etheredge and hard_work, rely solely on the image modality,
outperforming the next-best working-note method by more than 20%. This highlights that there is
still significant headroom in optimizing image-based pipelines, particularly when using strong data
augmentations and ensemble strategies.

Several teams show that when integrated effectively, multimodal information can bring substantial
improvements. For example, Yang Tuan Anh improved performance from 30% to 46.2% by incorporating
textual captions and metadata. I2C–UHU–Pegasus achieved a 7.5% gain from modeling ecological
context. In contrast, DS@GT LifeCLEF saw no improvement from metadata, indicating that the
effectiveness of multimodal integration depends heavily on implementation details.



Specialized domain encoders such as BioCLIP consistently outperform general-purpose alternatives
like SigLIP. Class-balanced sampling, Mixup, and careful prototype construction also contribute to
performance, each providing gains of 4–7%. Finally, generative and large language models (e.g., Gemini,
GPT-4.1 Mini, Mistral) performed poorly compared to vision-only approaches, suggesting that they
currently lack the fine-grained visual grounding needed for this task.

Several submissions also point to a domain shift between validation and hidden test sets. In one case,
an ensemble hurt validation performance but improved test performance, highlighting the limitations
of current validation splits and the need for better modeling of real-world distributional shifts.

Figure 6 shows the top-𝑘 accuracies on the private leaderboard for all the teams that submitted a
working note. Up to 𝑘 = 5, rankings remain stable. For 𝑘 > 5, team Embia’s performance plateaus,
resulting in a lower rank at 𝑘 = 10. This is because their submission only included predictions up to
top-5, preventing any gains beyond that point. In contrast, all the other teams see improved performance
as 𝑘 increases.

Table 2
Performance of provided baselines and methods described in the submitted working notes. All methods
consistently outperformed baselines by a considerable margin, with a noticeable performance gap between
higher- and lower-ranked submissions.

Rank Team Method core Top-5 (%) [public] Top-5 (%) [private]

1 Jack Etheredge Aug+Proj+Ensemble 81.0 78.9
2 hard_work Contrastive Transformer 78.3 78.1

17 Embia Context Fusion 63.3 60.3
22 I2C-UHU-Pegasus Multimodal Proto 58.0 57.4
26 Yang Tuan Anh BioCLIP ProtoNet 57.1 55.5
35 DS@GT LifeCLEF Transfer + Mixup 50.9 46.4

- baseline centroid-based classifier 33.2 26.7
- baseline nearest neighbors 28.3 24.7

Figure 6: Private Leaderboard results of all teams that submitted a working note. (left) Performance of
the teams across different top-k accuracy metrics. Teams ranking 1st, 2ndand 3rd for each metric are highlighted.
(right) Evolution of the top-k accuracy metric as 𝑘 increases for each team.



4.1. Working Notes

Team Jack Etheredge [23] (Top1) developed an ensemble of prototypical networks that integrates
embeddings from several pretrained models (e.g., SAM [22], BEIT [20], DINOv2 [19]). For each
image, multiple geometric augmentations are applied to increase variability, both during training
and testing. The embeddings from these models are concatenated and passed through a two-layer
projection network to enhance class separation. Predictions are made using cosine similarity between
observation-level and class-level prototype embeddings. An ensemble of multiple independently trained
pipelines ensures stable and robust performance. Test-time data augmentation (specifically five-crop,
horizontal flip, and 90° rotations) is a key component; removing it leads to a performance drop from 63%
to 37.3%. The two-layer projection network is also critical: without it, accuracy drops from 63% to 54.6%.
Optimal results require the use of both cross-entropy and InfoNCE losses [24], which together improve
the quality of the projected embeddings. Individually, BEIT and DINOv2 achieve top-1 accuracies in
the range of 58–60%, while SAM performs poorly at 11.7%; however, including SAM embeddings still
boosts ensemble performance, suggesting they provide valuable complementary information.

Team hard_work [25] (Top2) designed a supervised contrastive learning approach that combines
DINOv2 features with a customized Transformer model. The approach helped to create a rich feature
space that better captures subtle visual differences between species, even with limited data. A specially
designed supervised contrastive loss helps the model learn more distinct class representations by
efficiently organizing positive and negative training samples. Experiments revealed that contrastive
learning benefits significantly from larger batch sizes, with a minimum of 256 needed for good
performance. While increasing the batch size beyond this point provides some improvement, the gains
are marginal.

Team Embia [26] (Top17) focused on enhancing prototype quality for few-shot classification. They used
BioCLIP embeddings and prototypical networks, carefully constructing class prototypes by averaging
embeddings from both the training and validation datasets. This approach makes the prototypes
more representative, especially for species with few samples, resulting in over 30 percentage points
improvement in top-5 accuracy compared to the baseline. A comparison between domain-specific
BioCLIP and the general-purpose SigLIP embeddings shows a clear advantage for BioCLIP, with
accuracies of 61.1% and 53.5%, respectively. Further, extending the training set with validation images
increases performance from 61.1% to 64.2%.

Team I2C-UHU-Pegasus [27] (Top22) developed a multimodal pipeline that integrates visual features
from fine-tuned BioCLIP and DINOv2 with structured textual descriptions, ecological metadata, and
hierarchical taxonomic information. They fine-tuned the BioCLIP model while keeping most of its
layers frozen, adding a specialized multimodal classifier that weighs visual and textual information.
Ecological context modeling significantly improved performance, and the ensemble combines multiple
sources of information for better rare species recognition. Ablation studies show that ecological context
delivers the largest single gain, adding 7.5% to top-1 accuracy. Addressing class imbalance contributes
a further 5.0%, while fine-tuning the visual backbone yields an additional 4.0%. A failure analysis
reveals a small set of species that are always misclassified (100% error), with most errors occurring
between taxa of the same genus or family. Finally, DINOv2-based ensemble experiments highlight a
domain shift: the ensemble lowers accuracy on the validation set but improves it on the hidden test set,
underscoring the challenges posed by evolving ecological data.

Team Yang Tuan Anh [28] (Top26) introduced a multimodal few-shot learning system that merges
image embeddings from BioCLIP, SigLIP, and DINOv2 with metadata and automatically extracted
textual features. The training involves two stages: first, supervised pretraining of the multimodal
encoder; second, few-shot fine-tuning using a prototypical network under episodic training. They also
use an observation-level re-ranking method to consolidate predictions across multiple images of the



same observation. Compared to the image-only performance of 30%, adding textual captions improves
accuracy to 44.2% while including metadata boosts it to 45.8%. Using all three modalities together results
in 46.2% demonstrating their complementarity. The single-stage supervised pretrained model achieves
46.2% the two-stage fine-tuned model reaches 50.7% and combining both with observation-level
re-ranking leads to 55.5%.

Team DS@GT LifeCLEF [29] (Top35) combine transformer-based embeddings (e.g., DINOv2, PlantCLEF
[30]), class-balanced sampling, Mixup, and a linear classifier. While generative AI and multi-objective
loss were explored, the best results were achieved with vision-only, domain-pretrained embeddings and
class-balanced training strategies. Interestingly, experiments with advanced models, such as Gemini,
Mistral, and ChatGPT, led to negative results. Their results show the dominance of tailored, domain-
specific solutions, where the proposed method with Mixup and class weighting scores 45.4% while the
best-performing generative model, Gemini 2.5 Flash, reaches a significantly lower accuracy of 13.6%.
OpenAI GPT-4.1 Mini and MistralAI Mistral Medium 3 lagged behind even further with 6.2% and 3.1%,
respectively.

5. Conclusions

The paper presented an overview and results evaluation of the 4th edition of the FungiCLEF 2025
challenge, organized in conjunction with the CLEF LifeCLEF lab [14] and CVPR-FGVC11 — The 11th
Workshop on Fine-Grained Visual Categorization, held within the CVPR conference. FungiCLEF 2025
built upon previous editions [10, 11, 12], with a continued focus on the challenging task of few-shot
fungi species recognition. In this year’s edition, Participants were tasked with classifying observations
of species with a limited number of training samples from the FungiTastic dataset using multimodal
inputs such as images, machine-generated captions, and environmental metadata.

In contrast to previous years, the 2025 edition removed constraints on the model size and it reverted
to an open competition format. This change led to increased participation of more than 70 teams. It
sparked a diverse range of methodological innovations across vision-only, multimodal, and metric-based
approaches. Several top-performing teams demonstrated that well-optimized image-only pipelines can
still achieve state-of-the-art performance, while others explored the potential of structured multimodal
fusion strategies. The main outcomes from this year’s evaluation are:

• A highly-optimized vision-only method wins. The top-performing solutions in the challenge
demonstrate that carefully tuned strong vision-only pipelines, built on pretrained transformers
and enhanced with effective data augmentation and ensemble strategies, can outperform more
complex multimodal systems. For example, the winning solution combined embeddings from
several pretrained models with strong augmentations and a simple projection network.

• Multimodality is promising but tricky to get right. Teams that integrated metadata and text
saw modest to strong improvements, but only with carefully designed pipelines. Straightforward
fusion, even with strong general-purpose models, lagged far behind structured text prompts,
learned weighting between modalities, or explicit taxonomic hierarchies. Simply adding more
modalities is not enough.

• Prototypes over neighbours. Prototypical networks remained a popular choice, with teams
refining the basic prototype idea using multiple embeddings, reranking, or ensemble voting. Even
without gradient-based fine-tuning, class averaging plus a smart similarity function can go a long
way in these settings, and nearest prototypes were preferred over nearest-neighbor approaches.

• Contrastive learning is finally pulling its weight. Supervised contrastive loss showed clear
gains this year. Especially when using transformer heads or class-specific projection layers, this
training objective encouraged better separation in embedding space, crucial when fine-grained
differences are subtle and data is sparse.



• Ensembles help, but at what cost? Top teams improved their performance by combining
predictions from multiple embedding models, data augmentation variants, or even entirely
separate pipelines. Ensembling helps to smooth noise and improve generalization, proving once
again to be a good strategy for a competition. However, these gains come with a steep price in
computational overhead, which, in practice, is often not worth it.

• Generative models? Not yet. Some teams tried large vision-language models for zero-shot
inference via prompting. While creative, the results fell far short of specialized models and more
handcrafted approaches. For now, it seems generative multimodal models still lack the resolution
and structure to handle fine-grained multimodal biological classification.

• Data imbalance. As in previous editions, rare species dominated the dataset. The teams reported
that performance dropped sharply for species with fewer observations. Mixup, class-aware
sampling, focal loss, and contrastive training all helped.

Directions for future work. An important direction is to investigate whether the strong performance
of vision-only systems can be further enhanced through principled multimodal integration. This
includes exploring unified multimodal pretraining that jointly leverages visual, ecological, taxonomic,
and textual inputs. Robustness to domain shift remains a challenge. Promising future exploration
strategies include test-time adaptation, distribution-aware ensembling, and synthetic data augmentation
to better generalize across ecological and seasonal variation. Additionally, prototype refinement during
inference and uncertainty-guided active learning may support more reliable recognition of rare or
ambiguous species.

6. Declaration on Generative AI

During the preparation of this work, the authors used Grammarly for grammar and spelling checks
and ChatGPT for improving clarity and rewording sentences. After using this tool/service, the authors
reviewed and edited the content as needed and take full responsibility for the publication’s content.
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