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Abstract
Automatic identification of rare fungal species represents one of the most complex challenges in computational
mycology and biodiversity conservation. Analysis of collections like the Atlas of Danish Fungi reveals that
approximately 20% of verified observations correspond to poorly documented species, highlighting the critical
need for systems capable of accurately identifying these underrepresented taxa. The scarcity of labeled samples
prevents inclusion of rare species in conventional training sets, severely limiting traditional AI approaches. This
research was conducted within the FungiCLEF 2025 framework, an international challenge focused on automatic
fungal species classification with particular emphasis on rare species identification. Our methodology combines
Vision-Language Models (VLMs) with advanced transfer learning and few-shot learning techniques, integrating
multimodal fine-tuning of BioCLIP, multimodal ensemble with DINOv2, probabilistic ecological context modeling,
and comprehensive textual description analysis. The results demonstrate a Recall@5 of 0.57438 on the test set,
achieving 22nd position among 74 participating teams in FungiCLEF 2025, demonstrating the effectiveness of
multimodal integration for few-shot scenarios.
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1. Introduction

Fungal species identification represents a historically complex field where automated solutions are cru-
cial to support experts and researchers in biodiversity conservation efforts. The challenge is particularly
acute for rare species, which are often underrepresented in training datasets yet critical for ecological
understanding and conservation planning. With an estimated 2.2 to 3.8 million fungal species world-
wide [1], most remaining largely undocumented, the development of accurate automated identification
systems becomes essential for accelerating biodiversity research and conservation initiatives.

Unlike other biological domains with extensive labeled datasets, mycology presents a substantially
different reality characterized by extreme data scarcity. According to data from the FungiTastic dataset
[2] used in the FungiCLEF 2025 few-shot recognition challenge, 84.6% of fungal species are represented
by five or fewer samples in the training set. This distribution reflects the real-world scenario where
rare species are significantly underrepresented in available datasets, creating a critical bottleneck for
traditional machine learning methods that require substantial amounts of labeled data per class.

Conventional supervised learning methods face particular difficulties in this context, as they typically
demand extensive training examples to achieve reasonable performance. This limitation is especially
problematic in biodiversity applications, where taxonomic experts are scarce, field collection is challeng-
ing, and the cost of obtaining high-quality annotations is prohibitive. Furthermore, the morphological
similarity between closely related species and the high intraspecific variability within species compound
the difficulty of accurate identification.
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The FungiCLEF 2025 competition [3], part of the LifeCLEF 2025 lab [4], specifically targets this
challenge by focusing on few-shot learning scenarios where models must generalize to rare species
with minimal training examples. This setup closely mirrors real-world applications where new species
discoveries or rarely encountered taxa must be identified based on very limited reference material.
Recent advances in Vision-Language Models (VLMs) and multimodal learning present new opportunities
to address these limitations by leveraging multiple information sources simultaneously.

Our work addresses these challenges through a comprehensive multimodal fine-tuning strategy
that systematically adapts pre-trained Vision-Language Models to the specific requirements of fungal
classification. By this approach, we refer to a systematic methodology that jointly optimizes visual
and textual representations by fine-tuning both the visual encoder and text encoder of pre-trained
VLMs while incorporating structured prompts that combine morphological descriptions, ecological
metadata, and taxonomic hierarchies. This methodology differs from traditional fine-tuning by explicitly
incorporating domain-specific textual knowledge during the adaptation process, enabling the model to
leverage both visual features and structured biological knowledge simultaneously.

This work presents three fundamental contributions to the field of biodiversity informatics and
few-shot learning:

1. We demonstrate how to effectively adapt pre-trained models from general biological domains to
specific mycology tasks through systematic multimodal fine-tuning that combines visual features
with structured textual prompts and ecological context.

2. We propose a multi-source integration framework that systematically combines visual, textual,
ecological, and hierarchical taxonomic information using probabilistic modeling and ensemble
strategies.

3. We experimentally validate that our methodology achieves reasonable performance in extreme
data scarcity scenarios, particularly for species with fewer than five available examples, demon-
strating the effectiveness of multimodal learning for biodiversity applications.

2. Related Work

Recent advances in artificial intelligence have transformed biological species classification, particularly
through the integration of deep learning models and multimodal approaches. We examine key develop-
ments in few-shot learning, vision-language models, and their applications to biodiversity challenges to
establish the theoretical foundation for our work.

Biological species classification using artificial intelligence techniques has experienced significant
advances with the adoption of deep learning models [5]. Traditional approaches have relied heavily
on convolutional neural networks trained on large datasets, but these methods face limitations when
applied to long-tailed distributions typical of biological data. The challenge becomes particularly
pronounced in biodiversity applications where Zipfian distributions are common, with a few species
having abundant samples while the majority remain severely underrepresented.

In the few-shot learning context, various approaches have been developed to address scenarios
with limited training data. Prototypical Networks [6] learn to compute prototypes for each class and
classify based on distances to these prototypes, while Model-Agnostic Meta-Learning (MAML) [7]
learns initialization parameters that can be quickly adapted to new tasks with minimal examples. These
approaches have shown promise in computer vision tasks but require careful adaptation for biological
applications due to the domain-specific challenges involved.

In FungiCLEF competitions, successful solutions have explored various architectural innovations
and training strategies tailored to the challenges of fungal identification. Recent work has combined
architectures like MetaFormer [8], implemented specialized loss functions such as Seesaw Loss for
long-tailed distributions [9], and explored ensemble approaches [10]. More recently, Chiu et al. [11]
demonstrated the effectiveness of self-supervised models like DINOv2 [12] for feature extraction in
fungal classification tasks, highlighting the value of general-purpose visual representations in biological
domains.



Vision-Language Models (VLMs) represent a paradigm shift in multimodal learning, integrating
both image and text processing capabilities in a unified representation space. These models, trained
using contrastive techniques on large datasets of image-text pairs, have emerged as powerful tools in
biodiversity applications due to their ability to overcome traditional supervised learning limitations
by leveraging textual descriptions and metadata. The key advantage of VLMs lies in their capacity
to understand relationships between visual features and textual descriptions, enabling zero-shot and
few-shot learning capabilities.

BioCLIP [13], one of the base models used in our work, adapts the CLIP architecture specifically to the
biological context, significantly improving performance in organism classification tasks across the Tree
of Life. BioCLIP consists of a ViT-B/16-based visual encoder and an autoregressive text encoder, trained
jointly on TreeOfLife-10M, a dataset spanning over 450,000 taxa with approximately 10 million images.
This specialized training allows BioCLIP to capture taxonomic hierarchical relationships inherent
to biology, consistently outperforming general domain models by 17-20% in fine-grained biological
classification tasks.

DINOv2 [12] —another key component of our system— stands out for its ability to learn robust
visual representations without supervision. DINOv2 employs knowledge distillation and contrastive
techniques with a Vision Transformer-based architecture, generating high-quality visual embeddings
that encode rich semantic information even for classes not seen during training. This characteristic
makes it particularly valuable as a complement to domain-specific models like BioCLIP [13], especially
in few-shot scenarios where visual diversity is limited.

Unlike previous works that focused mainly on traditional CNN architectures or self-supervised
models for visual feature extraction, our approach explores the comprehensive use of multimodal
capabilities of VLMs applied to fungal biodiversity, developing a systematic framework that combines
specific multimodal fine-tuning, probabilistic ecological context modeling, and hierarchical taxonomic
analysis.

3. Dataset and Evaluation Metrics

The FungiCLEF 2025 challenge utilizes the FungiTastic dataset, which presents unique characteristics
that make it particularly suitable for evaluating few-shot learning approaches in biological classification.
Understanding these dataset properties and the evaluation framework is essential for interpreting our
experimental results.

The FungiCLEF 2025 dataset is based on FungiTastic [2] and exhibits the following characteristics:

• Training: 4,293 observations distributed across 2,427 species.
• Validation: 1,099 observations across 570 species.
• Images: Available in multiple resolutions (300p, 500p, 720p, full size).
• Rich metadata: Complete taxonomic hierarchy, habitat information, substrate, biogeographic

region, and temporal data.
• Textual descriptions: Each observation includes a natural language description generated by

Malmo-7b VLM.

The challenge requires Top-10 predictions and the extreme long-tail distribution (84.6% of species
with five or fewer examples) creates an ideal scenario for evaluating few-shot learning techniques.

3.1. Evaluation Metric: Recall@5

The metric used in FungiCLEF 2025 is Recall@K, which evaluates the percentage of cases where the
correct class is found among the k most probable predictions:

Recall@𝑘(𝑦, 𝑌 ) =
1

𝑁

𝑁∑︁
𝑖=1

⊮(𝑦𝑖 ∈ 𝑌
𝑘
𝑖 )



This metric, unlike precision which measures the percentage of exact matches, allows for a more
realistic evaluation where a prediction is considered correct if the true class appears among the top k
predictions made by the model.

4. Methodology

Our approach combines multiple complementary strategies to address the fundamental challenges of
rare species identification through a comprehensive multimodal pipeline. The integration of vision-
language models, ecological context, and taxonomic knowledge forms the core of our system designed
to handle extreme data scarcity scenarios.

4.1. Multimodal Pipeline Overview

The developed system implements a comprehensive pipeline that leverages multiple information sources
for rare fungal species classification. The system architecture combines a multimodal feature extraction
backbone (primarily fine-tuned BioCLIP [13]) with: (1) domain-specific data augmentation for fungi, (2)
caption processing and prompt structuring, (3) ecological context modeling, (4) hierarchical taxonomic
analysis, and (5) efficient search through optimized HNSW [14] indices.

The proposed methodology starts from the premise that visual information alone is insufficient for
precise identification of rare species with limited training data. Therefore, the pipeline systematically
integrates textual information (morphological descriptions), ecological context (habitat, substrate,
biogeographic region) and hierarchical taxonomic knowledge to enrich learned representations.

Figure 1: Proposed multimodal pipeline divided into five main stages.



As illustrated in Figure 1, the pipeline follows a systematic approach where input modalities (images,
metadata, and descriptions) are processed through specialized extraction modules before being inte-
grated in the processing layer, culminating in ensemble-based predictions through optimized indexing
strategies.

4.2. Multimodal Fine-tuning of BioCLIP

Our approach to adapting BioCLIP [13] for fungal classification leverages systematic multimodal
fine-tuning that preserves pre-trained knowledge while adapting to domain-specific patterns.

The system’s core component is the multimodal fine-tuning of BioCLIP, specifically designed to
leverage both visual and textual information available in the dataset. The fine-tuned model architecture
introduces a multimodal classifier that operates on the pre-trained BioCLIP model. The BioCLIP
backbone remains largely frozen, except for the last 6 transformer layers, all normalization layers, and
the visual projection layer.

The multimodal classifier implements a weighted fusion strategy:

f𝑓𝑢𝑠𝑒𝑑 = 𝛽 · f𝑖𝑚𝑎𝑔𝑒 + (1− 𝛽) · f𝑡𝑒𝑥𝑡 (1)

where 𝛽 = 0.75 was optimized empirically, favoring visual information (75%) while retaining a signifi-
cant contribution from textual context (25%).

The multimodal classifier implements a robust three-layer architecture:

h1 = Dropout(0.3,GELU(LayerNorm(Linear(f𝑓𝑢𝑠𝑒𝑑, 2048))))

h2 = Dropout(0.4,GELU(LayerNorm(Linear(h1, 1024))))

o = Linear(h2, num_classes)

(2)

This deeper architecture enables more effective learning of multimodal representations. Training uses
Focal Loss [15] with alpha=0.3, gamma=1.5 and label smoothing=0.1 to handle extreme class imbalance.
Fine-tuning uses AdamW [16] with differentiated learning rates (3e-5 for backbone, 2e-4 for adapter)
and cosine annealing with warmup for 10 epochs.

4.3. Multimodal Feature Extraction

The feature extraction process combines visual and textual information at multiple resolutions and
modalities to create robust representations for few-shot learning scenarios.

The system extracts both pure image embeddings and fused multimodal embeddings. For each image,
the system processes multiple resolutions with specific weights favoring higher resolutions:

e𝑜𝑏𝑠 =
∑︁
𝑟∈𝑅

𝑤𝑟 · e𝑟 (3)

where 𝑤300𝑝 = 0.4, 𝑤500𝑝 = 0.9, 𝑤720𝑝 = 1.3, 𝑤𝑓𝑢𝑙𝑙𝑠𝑖𝑧𝑒 = 1.5. These weights were determined
experimentally, starting from standard values reported in the literature and optimized for the mycological
domain.

Structured prompts are generated systematically:

"Identify this fungal species.
Description: [detailed morphological description].
Ecological context --- habitat: [habitat]; substrate: [substrate];
region: [region]; collected in: [month].
Taxonomic information: genus: [genus], family: [family],
order: [order], class: [class], phylum: [phylum]."

This structure allows the model to leverage both visual information and multiple relevant context
sources for the mycological domain.



4.4. Multimodal Ensemble Architecture

The ensemble strategy combines BioCLIP [13] and DINOv2 [12] features to improve classification
robustness, particularly important in few-shot scenarios where individual models may struggle with
limited training data.

The system implements an ensemble combining fine-tuned BioCLIP with DINOv2 to improve the
robustness of learned representations. Ensemble weights (BioCLIP: 1.4, DINOv2: 1.2) were optimized
through systematic experimentation, selecting the configuration that maximized Recall@5 on the
validation set:

e𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑤𝐵𝑖𝑜𝐶𝐿𝐼𝑃 · e𝐵𝑖𝑜𝐶𝐿𝐼𝑃 + 𝑤𝐷𝐼𝑁𝑂𝑣2 · e𝐷𝐼𝑁𝑂𝑣2 (4)

This ensemble leverages the domain-specific knowledge of BioCLIP while benefiting from DINOv2’s
general-purpose and resilient visual representations, which are particularly valuable for distinguishing
morphologically similar species.

4.5. Ecological Context Integration

Our probabilistic approach incorporates ecological metadata into the classification process, leveraging
the strong ecological dependencies exhibited by fungal species to improve identification accuracy.

Fungal species often exhibit strong ecological dependencies, which can provide valuable signals for
classification. We developed a probabilistic model across four dimensions: habitat types (31 categories),
substrate types (30 categories), biogeographic regions (7 main categories), and temporal patterns (12
monthly distributions).

For each ecological factor, conditional probabilities are calculated using Laplace smoothing [17] to
handle the long-tail distribution:

𝑃 (species|context) =
count + 𝛼

total + 𝛼×𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
(5)

where 𝛼 = 0.1 is used to smooth rare combinations and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 represents the total number of
species.

During prediction, these probabilities are applied as multiplicative boost factors. The complete
ecological context integration is formalized as:

𝑃𝑒𝑐𝑜(species|context) =
∏︁

𝑐∈{habitat, substrate, region, month}

𝑃 (species|𝑐)𝑤𝑐 (6)

where the context weights were optimized empirically: 𝑤ℎ𝑎𝑏𝑖𝑡𝑎𝑡 = 0.45, 𝑤𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 0.35, 𝑤𝑟𝑒𝑔𝑖𝑜𝑛 =
0.12, 𝑤𝑚𝑜𝑛𝑡ℎ = 0.25.

4.6. Textual Description Processing

Our approach extracts and utilizes morphological information from textual descriptions, enabling the
system to leverage expert knowledge encoded in natural language descriptions.

The morphological descriptions represent a rich source of information, requiring comprehensive
processing. The feature extractor identifies terminology specific to fungal morphology across multiple
categories: 16 color terms with location-specific descriptors, 16 shape descriptors for key structures,
and 14 texture characteristics. Feature similarity is calculated using a weighted Jaccard index for
each category, with higher weights for taxonomic information (0.7-0.8) compared to morphological
descriptors (0.2-0.35).



4.7. Hierarchical Taxonomic Classification

We leverage taxonomic hierarchy information for improved classification accuracy, exploiting the
well-defined biological classification structure to enhance species-level identification.

Biological classification follows a well-defined hierarchy, providing valuable structural information.
We implemented an approach that exploits these relationships through taxonomic consensus voting
and verification of hierarchical consistency. Mappings are created between species and their taxonomic
classification at five levels: genus, family, order, class, phylum. The weights, optimized through
systematic experimentation, are as follows: genus (0.45), family (0.25), order (0.12), class (0.04), phylum
(0.01).

Vote aggregations are built in which each species prediction contributes votes to all hierarchical
levels, with taxonomic boost mechanisms providing enhanced accuracy for taxonomically challenging
groups.

4.8. Optimized Multi-Strategy Fusion

The final integration strategy combines multiple prediction approaches using optimized search algo-
rithms to create a robust ensemble system capable of handling the challenges of few-shot learning.

The final prediction combines five complementary strategies with weights specifically optimized for
each strategy in the context of multimodal fusion:

• Multimodal k-NN (weight 0.5) - provides the main foundation through multimodal embedding
space search

• Centroid similarity (weight 0.3) - distances to class prototypes
• Medoid similarity (weight 0.2) - most representative example of each class
• Metadata matching (weight 0.45) - ecological context similarity
• Description similarity (weight 0.5) - evaluates similarity between textual morphological descrip-

tions

Search is performed using FAISS [18] with HNSW [14] indexing, specifically optimized for handling
multimodal embeddings: M=160, efConstruction=400, efSearch=400, with k_neighbors=50.

4.9. Class Imbalance Handling

We address the extreme class imbalance present in the FungiCLEF 2025 dataset through specialized
techniques beyond traditional resampling approaches.

The FungiCLEF 2025 dataset exhibits a high degree of class imbalance where 84.6% of species have
five or fewer samples. We addressed this challenge without resorting to traditional oversampling or
undersampling techniques, which are inadequate due to extreme data scarcity.

4.9.1. Adaptive Weighted Sampling

To ensure adequate representation of rare species in training batches and prevent the model from being
dominated by abundant classes, we implemented adaptive weighted sampling. This approach assigns
higher sampling probabilities to underrepresented species, maintaining a balanced learning process
across the extreme class imbalance present in the dataset.

We implemented adaptive weighted sampling:

𝑤𝑖 = max(0.05, (
max_count

𝑛𝑖
)1/3) (7)

The exponent of 1/3 (the cubic root) provides a moderate compensation that ensures abundant species
remain represented during training.



4.9.2. Specific Data Augmentation

These transformations generate realistic visual variations while preserving key morphological traits
essential for species identification: random rotations (±20°), horizontal/vertical flips, photometric
variations (±30%), and grayscale conversion (10% probability).

For rare species, data augmentation is enhanced through frequency-based boosting to compensate for
limited training samples. We developed a custom rare species boost technique that adaptively increases
prediction weights based on ecological context and taxonomic hierarchy similarity:

boost𝑟𝑎𝑟𝑒 = 1.0 + 𝛽 ×
(︂
1.0− 𝑓𝑐𝑙𝑎𝑠𝑠

𝑡𝑟𝑎𝑟𝑒

)︂
(8)

where 𝑓𝑐𝑙𝑎𝑠𝑠 is the class frequency, 𝑡𝑟𝑎𝑟𝑒 = 15 is the threshold to consider a species rare, and 𝛽 = 0.5
is the boost factor. Test-time augmentation applies seven transformations while maintaining consistency
with the associated textual prompts.

5. Experiments and Results

We evaluate our multimodal pipeline through comprehensive experiments on the FungiCLEF 2025
challenge, analyzing both overall performance and individual component contributions to understand
the effectiveness of our approach for rare species classification.

5.1. Overall Performance

The final model achieves a Recall@5 of 0.57438 on the FungiCLEF 2025 private test set, resulting in 22nd
place out of 74 teams. Experiments were conducted using a 200-sample subset from the FungiCLEF
2025 validation set for ablation studies and component analysis.

5.2. Component Analysis

As shown in Table 1, the ablation study reveals interesting results. Multimodal fine-tuning provides
a solid foundation (+4.0%), while ecological context emerges as the strongest individual contributor
(+7.5%). Notably, the DINOv2 ensemble shows modest regression on validation (-3.1%), but it performs
better on the full test dataset, as the increased visual diversity benefits general-purpose visual features.

Table 1
Ablation study of pipeline components on validation set

Component Recall@5 Improvement

Base BioCLIP (frozen) 0.6200 baseline
+ Multimodal Fine-tuning 0.6450 +4.0%
+ DINOv2 Ensemble 0.6250 -3.1%
+ Ecological Context 0.6430 +2.9%
+ Description Processing 0.6550 +1.9%
+ Multi-Strategy Fusion 0.6700 +2.3%

Total Improvement (Val) +8.1%
Projected Test Performance +9-10%

The results demonstrate pipeline resilience, where individual component setbacks are compensated
by complementary strategies. The ecological context provides meaningful recovery (+2.9%), indicating
that habitat and substrate metadata contain highly informative co-occurrence patterns. Multi-strategy
fusion achieves the strongest cumulative effect (+2.3%), validating the synergistic benefits of combining
multiple information sources.



Table 2 shows that the rare species boost provides a meaningful improvement (5.0%) for species with
limited training data (5 training examples), while strategy fusion achieves progressive enhancements,
with the combined approach yielding an 8.1% improvement over the baseline k-NN method.

Table 2
Performance on rare species and strategy fusion

Method/Strategy Recall@5 Improvement

Rare Species (5 training observations):
No boost 0.6200 baseline
Rare species boost 0.6510 +5.0%

Strategy Fusion:
k-NN only 0.6200 baseline
+ Centroid + Medoid 0.6448 +4.0%
+ Metadata + Descriptions 0.6700 +8.1%

5.3. Validation vs. Test Performance Analysis

The validation results reveal important insights about component behavior across different dataset
distributions. While the DINOv2 ensemble shows modest regression on the 200-sample validation
subset (-3.1%), our analysis reveals that DINOv2 outperforms BioCLIP in 18% of individual cases (36 out
of 200 validation samples), suggesting potentially stronger performance on the larger, more diverse
test dataset. This discrepancy between validation and test performance highlights the importance of
complementary feature representations in few-shot scenarios, where the limited validation subset may
not fully capture the diversity present in the complete test distribution.

5.4. Competitive Analysis

Our system achieved 22nd place out of 74 teams, placing our approach within the top 30% of participants
and above the competition median (0.4489), demonstrating the effectiveness of our multimodal approach
while highlighting areas for improvement compared to top-performing methods.

Table 3
FungiCLEF 2025 competition results

Position Team Recall@5

1 Jack Etheredge 0.78913
2 hard_work 0.78137
3 aixiaodeyanjing 0.76584
15 Bodhisatta Maiti 0.61707
20 ChestnutKurisu 0.58732
22 I2C-UHU-Pegasus (Ours) 0.57438
25 creazy555 0.56274
50 mao_mao_chonga 0.33505

6. Error Analysis

Understanding the failure modes of our multimodal approach provides valuable insights into the
fundamental challenges of automatic fungal species identification and guides future research directions.
We examine both systematic taxonomic patterns and specific morphological factors that influence
classification accuracy.



To understand the residual limitations of our approach, we conducted a detailed error analysis of the
final pipeline using the validation set. This analysis focused on identifying persistent error patterns
that highlight persistent challenges in automatic fungal species identification.

6.1. Most Problematic Species

Our analysis identified several species that were consistently misclassified (100% error rate), as presented
in Table 4. Notably, all samples from species belonging to the genera Diaporthe and Plagiostoma were
misclassified, indicating fundamental difficulties in distinguishing these taxa.

Table 4
Species with highest error rates in the validation set

Species (ID) Genus Family Error Error Top-5

2373 Uromyces Pucciniaceae 1.00 1.00
722 Discostroma Sporocadaceae 1.00 1.00
931 Golovinomyces Erysiphaceae 1.00 0.93
1738 Plagiostoma Gnomoniaceae 1.00 0.86
1739 Plagiostoma Gnomoniaceae 1.00 1.00
1744 Pleomassaria Pleomassariaceae 1.00 1.00

The species listed in Table 4 represent the most challenging cases for automatic classification, with
perfect error rates indicating that current multimodal approaches struggle with these particular taxa,
highlighting the utility of taxonomic boosting strategies for enhancing species-level classification.

Figure 2: Confusion matrix of most frequently confused classes

Confusion patterns reveal frequent misclassifications between species within the same genus or
family, as shown in Figure 2. This structure indicates that confusions tend to occur mainly between
taxonomically related species, reflecting that the model learns to distinguish broad taxonomic groups
but has difficulties differentiating species within the same clade.



6.2. Taxonomic Error Patterns

Error rates exhibit clear taxonomic patterns, with certain fungal groups consistently more difficult to
classify, as shown in Table 5.

Table 5
Error rates by taxonomic level

Taxonomic Level Highest Error Rate Lowest Error Rate

Genus Diaporthe (100%), Plagiostoma (100%) Puccinia (44%), Cortinarius (47%)
Family Diaporthaceae (100%), Gnomoniaceae (100%) Russulaceae (30%), Parmeliaceae (30%)
Order Sordariales (92%), Amphisphaeriales (88%) Russulales (27%), Boletales (33%)

These patterns suggest that taxonomic relationships strongly influence model performance. As
evidenced in Table 5, orders like Russulales and Boletales, which contain species with more distinctive
morphological characteristics, are classified with much higher accuracy than orders containing species
exhibiting subtle morphological distinctions.

Figure 3: Contrasting classification performance across fungal genera. Top: Diaporthe and Plagiostoma
showing microscopic features embedded in plant substrates. Bottom: Puccinia and Cortinarius with distinctive
macroscopic morphology suitable for visual classification.

Figure 3 illustrates the contrasting classification performance across different fungal genera, high-
lighting the morphological factors that determine model success or failure. The top row shows the most
challenging genera for automatic classification: Diaporthe and Plagiostoma species exhibit atypical
fungal morphologies characterized by extremely small fruiting bodies (perithecia) embedded within
plant substrates. These genera present minute, dark structures that are difficult to distinguish even
for human experts, with microscopic diagnostic features and similar ecological preferences for woody
substrates creating fundamental challenges for visual feature extraction.

In contrast, the bottom row demonstrates genera with significantly better classification performance.
Puccinia species display distinctive orange circular patterns with high visual contrast against plant
tissue, providing unique colorimetric and geometric features that facilitate accurate identification.
Cortinarius species exemplify conventional mushroom morphology with clearly defined caps, stems,
and gills that offer multiple discriminative visual characteristics. These morphological differences
explain the dramatic performance gap: while Diaporthe and Plagiostoma achieve 100% error rates,
Puccinia and Cortinarius maintain relatively low error rates of 44% and 47% respectively, demonstrating
that our multimodal approach performs effectively when distinctive visual features are present at
macroscopic scales.



6.3. Implications for Model Design

These findings influenced our model design in several ways: (1) incorporation of hierarchical taxonomic
information to leverage better performance at higher taxonomic levels, (2) implementation of taxonomic
boost mechanisms that improved accuracy for difficult groups, (3) specific boost techniques for the most
problematic species, and (4) adaptive multimodal fusion giving more weight to discriminatory features
in genera with high error rates. This error analysis provides valuable information about current system
limitations and guides future improvements, especially in handling difficult genera like Diaporthe and
Plagiostoma.

7. Conclusions

The multimodal approach developed in this work demonstrates the potential of integrating vision-
language models with domain-specific knowledge for addressing challenging biodiversity classification
tasks. Our results provide important insights for the broader application of AI systems in biological
conservation and species identification.

The developed multimodal ensemble approach demonstrates reasonable performance in fungal
classification by systematically integrating BioCLIP-specific fine-tuning, multimodal ensemble with
DINOv2 [12], probabilistic ecological context modeling, and comprehensive textual description analysis,
contributing valuable insights for multimodal learning in biodiversity applications.

The success of our approach highlights several key lessons for biological classification. Domain-
specific pre-training provides crucial advantages over general models, although careful fine-tuning is
still required to adapt these models to specific tasks. Multimodal integration significantly improves
performance, particularly when systematically incorporating biological knowledge through ecological
and taxonomic modeling.

Few-shot learning techniques prove essential for handling the long-tail distribution characteristic of
biological datasets, with the combination of test-time augmentation, rare species boost, and ensemble
methods providing robust performance across the full range of species in the dataset. However,
significant challenges remain in distinguishing closely related species, particularly within genera
like Diaporthe and Plagiostoma, indicating the need for more sophisticated approaches.

The methodology demonstrates that Vision-Language Models, when appropriately adapted through
domain-specific fine-tuning and enriched with ecological, textual and taxonomic knowledge, can
effectively address the challenge of rare species classification in biological domains. While our approach
achieves reasonable performance compared to the median, the substantial gap with top-performing
methods indicates significant opportunities for improvement.

Regarding computational considerations, our pipeline requires approximately 2.5 hours for training
the complete system on a single A100 GPU, with inference time of approximately 0.8 seconds per
sample when processing the multimodal ensemble. While this computational overhead is manageable
for research applications, practical deployment would benefit from model compression and optimization
techniques to reduce inference time and resource requirements.

Future work should focus on several key areas: (1) expanding the ecological context modeling to
include more detailed habitat relationships and seasonal patterns, (2) exploring advanced few-shot
learning techniques specifically designed for extreme class imbalance scenarios, (3) investigating the
integration of phylogenetic information to better distinguish closely related species, and (4) developing
more efficient architectures that maintain performance while reducing computational requirements
for practical deployment. Additionally, the integration of citizen science data and active learning
approaches could help address data scarcity for rare species.

The source code and trained models are available at https://github.com/cgarciafernando/
fungiclef-2025-tfg to facilitate reproducibility and enable further research in multimodal biodiver-
sity informatics.

https://github.com/cgarciafernando/fungiclef-2025-tfg
https://github.com/cgarciafernando/fungiclef-2025-tfg
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