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Abstract
This paper details our contribution to the BioASQ CLEF Lab 2025 [1] GutBrainIE shared task (task 6) [2]. The
mission focuses on Named Entity Recognition (NER) and Relation Extraction (RE) from biomedical abstracts
concerning the gut-brain axis, Parkinson’s disease, and mental health. We developed a system leveraging large
language models (LLMs), employing GLiNER for NER and ATLOP for RE, fine-tuned on various backbones
including GLiNER Large Bio and roberta large. Our approach involved a three-stage pipeline: data processing,
model fine-tuning, and prediction generation. We participated in four subtasks: NER (6.1), Binary Tag-Based
RE (6.2.1), Ternary Tag-Based RE (6.2.2), and Ternary Mention-Based RE (6.2.3). Our results indicate strong
performance in tag-based RE, with our roberta-large model achieving a micro-F1 score of 0.6122 in binary RE
(ranked 5th out of 11) and 0.5911 in Ternary tag-based RE (ranked 6th out of 12), outperforming the baseline
in both cases. However, our system struggled with NER (micro-F1 0.4816, ranking 15th) and particularly with
Ternary Mention-Based RE (micro-F1 0.1799, ranking 11th), highlighting challenges with fine-grained entity
detection and mention-level relation identification. We conclude that while large transformers are effective for
extraction of biomedical relationships, future work must address domain adaptation for NER and explore joint
modeling approaches to improve mention-level performance.
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1. Introduction

We present a system for extracting biomedical entities and their relations concerning the gut microbiota,
Parkinson’s disease, and mental health from PubMed abstracts. These associations, while increasingly
evidenced, remain buried within unstructured scientific texts. The challenge aims to promote the
development of NLP systems for the identification of key biomedical entities and their relations within
PubMed abstracts.

The task comprises two primary subtasks: Named Entity Recognition (NER) and Relation Extraction
(RE). Subtask 6.1 (NER) involves detecting and classifying spans into 13 biomedical categories, including
microorganisms, diseases, and chemicals. Subtask 6.2 (RE) is divided into three phases: binary relation
detection (6.2.1), ternary tag-based classification (6.2.2) and mention-level relation identification (6.2.3).
The dataset includes multiple annotation tiers (Platinum, Gold, Silver, Bronze), offering varied training
and evaluation scenarios.

To address these tasks, we developed a system based on state-of-the-art Transformer models [3],
specifically leveraging encoders [4] within a pipeline architecture. The preprocessing steps included an-
notation conversion and text normalization. For NER, we fine-tuned multiple GLiNER model variants[5],
including domain-adapted backbones. For RE, we used the ATLOP architecture[6] , experimenting
with SapBERT from PubMedBERT fulltext [7], biobert v1.1 pubmed [8] and roberta large [9]. Training
was conducted in a supervised manner using combined datasets from the higher annotation tiers:
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Platinum (externally reviewed expert annotations), Gold (in-house expert annotations), Silver (student
annotations: A – high accuracy, B – moderate accuracy).

We submitted multiple runs per subtask, each based on a different transformer model and varying
in training epochs, batch size, and filtering threshold. Notably, our best results were achieved in
the tag-based RE subtasks (6.2.1 and 6.2.2). Our system involved data preprocessing and fine-tuning
RuBERTa-Large with an ALTOP-style approach, ranked 5th and 6th and outperforming the baseline. In
contrast, our performance in the NER subtask (15th) and the mention-level RE subtask (11th) lagged
behind the top systems reveal ongoing difficulties with fine-grained biomedical NER and complex
relation extraction. However, our performance in the NER (15th) and mention-level RE (11th) subtasks
lagged, indicating that fine-grained biomedical entity and relation extraction remains a persistent
challenge.

The reminder of this paper is organized as follows. We begin with a review of related work, followed by
a description of our system architecture and data processing pipeline. We then present our experimental
setup and results, including comparisons with other participants. We conclude with a discussion of the
insights gained, limitations encountered, and directions for future research, particularly in improving
domain adaptation, joint modeling, and knowledge integration for biomedical NLP.

2. Related Work

The exponential growth of textual data, particularly in specialized domains such as biomedicine[10][11],
requires advanced Information Extraction (IE) techniques to help researchers and practitioners manage
the influx of information and uncover new insights [12]. IE encompasses a variety of tasks, with Named
Entity Recognition (NER) and Relation Extraction (RE) being fundamental for transforming unstructured
text into structured knowledge.

2.1. Named Entity Recognition

Named Entity Recognition (NER), is a foundational task in Natural Language Processing (NLP) that
involves identifying and categorizing predefined entities in unstructured text, such as names of persons,
organizations, locations, dates, and monetary values [13]. Its primary objective is to locate spans of
text that correspond to specific semantic categories, thereby enabling downstream applications such as
information retrieval, question answering, and knowledge base construction.

To illustrate the application of NER in the biomedical domain, consider the following sentence
extracted from a biomedical abstract [14]:

"Probiotics are live microorganisms that confer health benefits on the host when admin-
istered in adequate amounts."

In this example, an effective NER system should correctly identify and classify “Probiotics” as a
TherapeuticAgent and “microorganisms” as a BiologicalEntity. Recognizing such fine-grained
entities is essential for downstream biomedical applications, such as knowledge base construction,
therapeutic analysis, and personalized medicine.

Historically, early NER systems were built using hand-crafted rules and domain-specific dictionaries.
While effective in constrained environments, these rule-based methods lacked generalization across do-
mains. The advent of statistical machine learning approaches—such as Hidden Markov Models (HMMs)
[15], Support Vector Machines (SVMs) [16], and Conditional Random Fields (CRFs) [17]—marked a
significant paradigm shift. These models leveraged annotated corpora and engineered features such as
word shape, orthographic patterns, part-of-speech tags, and lexical resources like gazetteers to improve
generalization and adaptability.

The advent of deep learning has significantly advanced NER capabilities[18]. Recurrent Neural
Networks (RNNs), particularly Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks, often combined with CRFs (e.g., BiLSTM-CRF architectures), became the standard for their



ability to capture contextual information effectively [19, 20]. More recently, transformer-based models,
pre-trained on vast text corpora, have set new benchmarks by learning rich contextual representations
of words, with advancements seen in models like BERT [4], RoBERTa [21], and ELECTRA [22]. Large
Language Models (LLMs) are also increasingly being explored for their capabilities in NER, often through
few-shot or zero-shot learning approaches [23].

In the biomedical domain (BioNER), the focus shifts to identifying biologically significant entities such
as genes, proteins, diseases, chemicals, cell lines, and microbial taxa [24]. The complexity and ambiguity
of biomedical terminology[25][? ], along with the constant emergence of new terms, make BioNER a
particularly challenging task [26]. Initial BioNER systems also relied on dictionary-based methods and
rule-based systems, followed by traditional machine learning models like CRFs [27]. However, deep
learning methodologies, especially transformer-based pre trained language models like BERT [4] and
its domain-specific variants such as biobert v1.1 pubmed [8], PubMedBERT [28], and ClinicalBERT [29],
have demonstrated state-of-the-art performance. These models leverage vast amounts of unlabeled
biomedical text to learn contextual representations, and are then fine-tuned on task-specific annotated
datasets to recognize specific entity types relevant to a particular study.

2.2. Relation Extraction

Relation Extraction (RE) is a key task in Information Extraction that seeks to identify and classify
semantic relationships between entities. In a general domain context, RE might identify that a person
"works for" an organization, or that a company is "headquartered in" a particular city. Traditional
RE systems often relied on hand-crafted linguistic patterns, dependency parsing, or kernel-based
methods to capture syntactic and semantic interactions between entity pairs [30, 31]. These approaches
typically involved extensive feature engineering to encode lexical, syntactic, and positional information
surrounding the target entities.

To illustrate, consider the following sentence from a biomedical abstract:

"Reduced levels of Lactobacillus have been associated with increased severity of depres-
sion symptoms in individuals diagnosed with Parkinson’s disease."

A successful RE system should detect a ternary relation of type
Microbe-Disease-MentalHealthLink,
involving the entities: “Lactobacillus” (a Bacterium), “Parkinson’s disease” (a Disease), and
“depression” (a MentalHealthCondition). This example highlights the challenge of n-ary relation
extraction, wherein more than two entities must be jointly considered within a unified relational frame.
Such n-ary structures are prevalent in biomedical texts and are central to the knowledge discovery
objectives of the GutBrainIE task [32, 33, 2].

In the biomedical domain, Relation Extraction (BioRE) is tasked with identifying clinically and biolog-
ically significant associations, such as gene-disease links, protein-protein interactions, or therapeutic
drug-disease relationships. The GutBrainIE task extends this paradigm to encompass a range of entities,
including microbial species, neurodegenerative diseases, mental health conditions, and physiological
factors. The biomedical literature’s syntactic complexity, domain-specific vocabulary, and frequent
presence of long-range dependencies demand robust, domain-adapted modeling strategies [34, 35].

The advent of deep learning has significantly transformed RE by enabling models to learn discrimina-
tive features automatically from raw text. Convolutional Neural Networks (CNNs) have been employed
to extract local contextual features [36], while Recurrent Neural Networks (RNNs), have been utilized
to capture sequential dependencies [37]. More recently, attention mechanisms and transformer-based
encoder architectures have achieved state-of-the-art performance by enabling models to dynamically
attend to the most informative parts of the sentence [38].

Transformer-based encoder models, including those fine-tuned on biomedical corpora such as Pub-
MedBERT or BioLinkBERT, have shown considerable efficacy in handling the intricacies of BioRE.
These models can be adapted to treat relation extraction as a classification task over entity tuples, or
through more sophisticated formulations using structured prediction or graph-based reasoning [35, 33].



2.3. Encoder-based Approaches for NER and RE

The landscape of Natural Language Processing has seen rapid advancements. These models, pre-trained
on exceptionally large and diverse datasets, exhibit remarkable few-shot or even zero-shot learning
capabilities for various tasks, including NER and RE. For instance, language models can be prompted
for direct entity identification or fine-tuned with relative efficiency on smaller annotated datasets [39],
and they are being explored in specialized areas like the biomedical domain for rapid adaptation and
broader text applicability [40, 41]. Similarly, for RE, language models offer potential for open-ended
relation extraction and inferential capabilities [42, 43].

However, alongside these developments, Transformer-based encoder architectures, such as BERT
[44] and its numerous variants, remain highly effective and widely utilized for NER and RE tasks. These
models excel at learning rich contextual representations from text and can be fine-tuned to achieve
state-of-the-art performance on specific datasets and domains. For NER, architectures focusing on
robust entity span detection and classification, exemplified by models like GLINER, leverage powerful
encoder backbones. In the realm of RE, techniques often involve identifying entity pairs and classifying
their relationships, with models such as ATLOP demonstrating sophisticated approaches to this task.
Furthermore, specialized pre-training objectives, as seen in models like SuMeBERTs , can enhance
performance on downstream tasks by tailoring the encoder’s understanding to particular nuances of
language or information structure.

While LLMs present exciting avenues, particularly for generative tasks and broad-domain applications,
dedicated encoder-based models offer advantages in terms of computational efficiency for fine-tuning
and inference, focused performance on specific predictive tasks, and often more direct interpretability of
task-specific layers. Challenges in LLMs related to factual accuracy, hallucination mitigation (especially
for specific biomedical entities), and structured prediction for complex relations [42] also underscore
the continued relevance of developing and employing well-established and robust encoder-centric
approaches. This work focuses on leveraging the strengths of such encoder-based models for NER and
RE.

2.4. Biomedical Shared Tasks and Benchmark Challenges

Shared tasks have been instrumental in catalyzing progress within biomedical natural language pro-
cessing by delivering high-quality benchmark datasets, well-defined evaluation metrics, and platforms
for community engagement. Notable initiatives—including the BioCreative series for assessment of
Information Extraction Systems in Biology [45], the BioNLP Shared Task for structural information
extraction from biomedical literature [46], and the BioASQ challenge (focusing on biomedical semantic
indexing and question answering) [47]. These shared tasks have each contributed to advances in entity
recognition, relation extraction, and broader information-extraction tasks through the provision of
domain-specific corpora and rigorous, competitive evaluation frameworks. These challenges foster
methodological innovation by encouraging participants to devise models that can handle complex
nomenclature, ambiguous terminology, and varied syntactic constructions inherent to biomedical text.

Building on this lineage, the Gut-BrainIE Task1 concentrates specifically on the gut–brain axis, a
domain characterized by intricate, multi-scale interactions between microbial, molecular, and phys-
iological entities. By curating a corpus annotated with specialized entity types (e.g., microbial taxa,
neuroactive compounds) and their interrelations (e.g., modulatory effects, transport mechanisms), Gut-
BrainIE extends the shared-task paradigm to a highly interdisciplinary context. Moreover, its evaluation
schema emphasizes not only exact-match accuracy but also the correct identification of nested and
overlapping spans, as well as fine-grained relation categories that reflect causal or correlational links.

Our work leverages state-of-the-art NER architectures—such as GLiNER [5], which employs span
classification—and sophisticated document-level RE models—like ATLOP [6], which integrates adaptive
thresholding with localized context pooling—to address the specific challenges posed by the gut–brain
literature. In doing so, we aim to demonstrate how modern transformer-based encoders [4], when

1https://hereditary.dei.unipd.it/challenges/gutbrainie/2025/#
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Figure 1: GLiNER Architecture (Figure taken from [5])

coupled with task-tailored pre and post-processing strategies, can achieve robust performance on a
domain that demands both linguistic precision and biological insight.

3. Background and Model Foundations

3.1. GLiNER for Named Entity Recognition

GLiNER (Generalist Language model for NER) [5] is a span classification framework built upon a
bidirectional language model (BiLM), such as BERT or DeBERTa. At inference time, GLiNER constructs
a unified input sequence by prepending special marker tokens for each target entity type to the input
sentence, forming a structure such as:

[ENT] PERSON [ENT] LOCATION [ENT] ORGANIZATION ... [SEP] The input
sentence.

This augmented sequence is processed by the BiLM, which generates contextualized embeddings
for all tokens, including both the entity-type and the sentence words. GLiNER consists of three
main components. First, the pretrained BiLM encodes the full sequence, capturing the contextual
relationships across tokens. Second, a span representation module computes embeddings for each
candidate span—defined as any contiguous sequence of words—by concatenating the embeddings of
the span’s start and end tokens and passing them through a two-layer feedforward network. Third, an
entity representation module constructs embeddings for each entity type by refining the BiLM output
for the corresponding [ENT] token using another feedforward network.

Both span and entity-type embeddings are projected into a shared latent space, where GLiNER
calculates a similarity score for each span–type pair using a dot product. This score is passed through a
sigmoid activation to estimate the probability that the span belongs to the given entity type. During
training, the model is optimized using binary cross-entropy loss over all such span–type combinations.
Positive pairs are those that appear in the annotated training data, while negative pairs are generated by
sampling mismatched entity types from other training examples within the same batch. This negative
sampling strategy helps the model learn to differentiate between correct and incorrect associations.
It helps recognize that real-world data often lacks certain entity types. The model’s performance is
evaluated using different negative sampling ratios. Training with only positive entities leads to more



false positives (lower precision), while a high negative sampling ratio makes the model overly cautious,
resulting in missed entities (lower recall).

For decoding, GLiNER uses a greedy span selection algorithm that identifies the most probable spans
while enforcing task-specific constraints. In flat NER mode, only non-overlapping spans are selected.
In nested NER mode, the algorithm allows for nested spans—those that are entirely contained within
other spans—while avoiding partial overlaps. This approach allows GLiNER to efficiently extract both
flat and hierarchical named entities in a single forward pass.

3.2. ATLOP for Document-Level Relation Extraction

Zhou et al. [6] introduce the ATLOP (Adaptive Thresholding and Localized Context Pooling) model for
document-level multi-label relation extraction. ATLOP is built on a pretrained transformer encoder and
avoids the use of intermediate graph structures by leveraging two key mechanisms:

• Localized Context Pooling. ATLOP repurposes the self-attention heads of the pretrained
encoder to derive entity-level attention distributions. For each entity in a candidate pair, the
model averages the self-attention scores over all mentions of that entity to obtain an attention
distribution. These two distributions are then combined (via elementwise multiplication) to
highlight tokens jointly relevant to both entities. The resulting fused weights are used to pool the
encoder’s token representations into a localized context embedding, which serves as a pair-specific
representation for relation classification.

• Adaptive Thresholding. To address the multi-label nature of document-level RE, ATLOP
replaces the conventional fixed decision threshold with a learnable threshold class. During
training, a rank-based loss encourages true relation logits to exceed the threshold logit and non-
relation logits to fall below it. At inference, any relation whose score surpasses the threshold class
is predicted, thereby removing the need for heuristic threshold tuning and allowing flexibility
across different entity pairs.

Extensive experiments on RE datasets such as DocRED, CDR, and GDA [6] demonstrate that ATLOP
achieves state-of-the-art performance, validating the effectiveness of localized context pooling and
adaptive thresholding in document-level relation extraction.

4. The GutBrainIE Task

4.1. Overview of the GutBrainIE Task

We participated in Task #6 [2] of the BioASQ [1] CLEF Lab 2025 (GutBrainIE1), which focuses on
extracting entities and relations relevant to the gut–brain axis from PubMed abstracts. This task is
divided into two main subtasks. The first subtask, Named Entity Recognition (NER, Subtask 6.1), involves
identifying and classifying text spans into one of 13 predefined biomedical categories, such as bacteria,
chemical, or microbiota. The expected output format includes the entity label, its location within the title
or abstract, and the start and end character offsets. The second subtask, Relation Extraction (RE, Subtask
6.2), consists of three progressive phases. In Subtask 6.2.1, Binary RE, the goal is to detect whether a
relation exists between any pair of entities within a PubMed abstract, without the need to specify the
relation type. Subtask 6.2.2, Ternary tag-based RE, requires not only identifying related entities but also
predicting the type of relation between them. Finally, Subtask 6.2.3, Ternary mention-based RE, focuses
on pinpointing the specific entity mentions involved in a relation and classifying the type of relation
they share.

4.2. Overview of the GutBrainIE Data

The annotated GutBrainIE corpus comprises titles and abstracts of biomedical articles retrieved from
PubMed, focusing on the gut–brain interplay and its implications for neurological and mental health.



Table 1
Corpus Statistics by Annotation Tier and Split

Collection # Docs Total Entities Avg Entities/Doc Total Relations Avg Relations/Doc

Train Platinum 111 3,638 32.77 1,455 13.11
Train Gold 208 5,192 24.96 1,994 9.59
Train Silver 499 15,275 30.61 10,616 21.27
Train Bronze 749 21,357 28.51 8,165 11.90
Development Set 40 1,117 27.93 623 15.58

Each entry in the dataset corresponds to a PubMed article identified by its PubMed ID (PMID) and is
stored in JSON format for ease of integration with NLP pipelines. Entries include rich metadata—such
as title, authorship, journal, publication year, and abstract—alongside the identifier of the annotator.
Annotators are categorized as expert annotators, student annotators, and automated distant annotations.

The dataset contains two main types of annotations: entities and relations. Entity annotations consist
of individual mentions, each defined by character offsets (start and end), location (title or abstract), the
text span itself, and a semantic label (e.g., bacteria, microbiome). Relation annotations represent links
between two entity mentions and include detailed information for both the subject and object: their
character offsets, location, text span, and semantic label, as well as the predicate describing the type of
relationship.

For ease of use in downstream tasks, relations are also provided in three derived formats: (1) binary tag-
based relations, capturing label pairs of subject and object; (2) ternary tag-based relations, representing
triplets of subject label, predicate, and object label; and (3) ternary mention-based relations, which
include mention-level tuples comprising the subject and object text spans, their respective labels, and
the predicate.

Annotations are organized into four hierarchical tiers, reflecting varying levels of quality and prove-
nance. The overall distribution of annotations across these tiers is summarized in Table 1. Specifically,
the tiers are defined as follows:

• Platinum-Standard Annotations: Highest-quality annotations, curated and externally re-
viewed by biomedical specialists to ensure maximal precision.

• Gold-Standard Annotations: High-quality annotations produced in-house by domain experts.
• Silver-Standard Annotations: Mid-quality annotations created by trained students under expert

supervision, subdivided into two clusters:

– Student A: Annotators demonstrating consistently high accuracy.
– Student B: Annotators with less consistent performance.

• Bronze-Standard Annotations: Automatically generated annotations using fine-tuned GLiNER
for NER and ATLOP for relation extraction.

These hierarchical tiers enable a nuanced understanding of annotation quality and provenance, which
is critical for downstream evaluation and model training. By distinguishing between levels of human
expertise and automation, the dataset supports flexible experimentation across a spectrum of reliability,
allowing researchers to benchmark their systems under varying degrees of annotation fidelity.

5. Experimental Setup

5.1. System Architecture and Workflow

Our pipeline comprises three main stages: data processing, model fine-tuning, and prediction. During
data processing, we standardize and aggregate annotated data to prepare it for training, structuring
named entity recognition (NER) data in the GLiNER format, which includes entity spans and types



Table 2
Hyperparameters for GLiNER (NER task)

Hyperparameter Value

Epochs 30
Batch size 8
Max sequence length 384
Warmup 10%
Optimizer AdamW
Learning rate 5×10−5

Inference threshold 0.9

in a structured JSON representation, and transforming relation extraction (RE) data into the ATLOP
format, which captures entity pairs and their associated relations within the context of a document.
In the model fine-tuning stage, we adapt the GLiNER model for NER using five variants—GLiNER
multipii-v1, Medium, Large, Large Bio v0.1, and Large Bio v0.2—each offering different balances between
general language capabilities, biomedical specialization, and model size to evaluate performance across
diverse settings. For RE, we fine-tune the ATLOP model on four pretrained language models: SapBERT
from PubMedBERT fulltext, bert-base-cased, biobert v1.1 pubmed v1.1, and roberta large, leveraging their
distinct strengths in general and biomedical language representation to enhance relation extraction.
Finally, in the prediction stage, we generate entity and relation outputs, merge the results from NER
and RE, and convert them into the appropriate evaluation format.

5.2. Key Pre-processing Steps

Consistent pre-processing was applied to optimize model performance:

1. Lowercase: All input text was converted to lowercase to reduce vocabulary size and mitigate
data sparsity. This standardizes input, treating "Organization" and "organization" as identical,
which aids generalization despite potential loss of casing signals.

2. Space Normalization: This involved standardizing whitespace by collapsing multiple consec-
utive spaces into one and removing leading/trailing spaces. This ensures input consistency,
preventing models from learning spurious patterns from irregular spacing.

3. Tokenization: Text was broken down into tokens using the specific tokenizer trained with the
corresponding fine tuned model. This sub-word tokenization handles out-of-vocabulary words
and captures morphological similarities. For NER, entity labels were carefully aligned with tokens,
often assigning the primary label to the first sub-token.

5.3. Data and Training

For both Named Entity Recognition (NER) and Relation Extraction (RE) tasks, we utilized a combination
of Platinum, Gold, and Silver datasets to maximize training coverage and robustness.

The NER model was trained using the GLiNER architecture. Training was conducted for 30 epochs
with a batch size of 8 and a maximum sequence length of 384 tokens. The detailed hyperparameters are
listed in Table 2.

For the RE task, we adopted the ATLOP model. Training was performed over 500 epochs with a batch
size of 4 and a maximum input length of 1024 tokens. The complete configuration is summarized in
Table 3.



Table 3
Hyperparameters for ATLOP (RE task)

Hyperparameter Value

Epochs 500
Batch size 4
Max sequence length 1024
Warmup 6%
Optimizer AdamW
Learning rate 5×10−5

5.4. Evaluation Metrics

To rigorously evaluate system performance across both subtasks, we used the metrics provided by
the task organizers2. The metrics Precision, Recall, and F1-score, computed under both macro- and
micro-averaging schemes. These metrics allow for the assessment of model effectiveness at both the
label level and across the entire label distribution. The evaluation criteria are consistent across all
subtasks, and system outputs are benchmarked against manually annotated ground truth labels.

Let 𝐿 denote the set of target labels:

• For Subtask 6.1, 𝐿 includes all entity labels.
• For Subtask 6.2.1, 𝐿 refers to pairs of (subject label, object label).
• For Subtasks 6.2.2 and 6.2.3, 𝐿 comprises triples of (subject label, predicate, object label).

The macro-average scores compute metric values independently for each label and then average them,
treating all labels equally regardless of their frequency. In contrast, micro-average scores aggregate the
contributions of all classes to compute overall metrics, giving more weight to frequent labels.

The evaluation metrics are formally defined as follows:

𝑃macro =
1

|𝐿|
∑︁
𝑙∈𝐿

𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑃𝑙
, 𝑅macro =

1

|𝐿|
∑︁
𝑙∈𝐿

𝑇𝑃𝑙

𝑇𝑃𝑙 + 𝐹𝑁𝑙
,

𝐹1macro = 2 · 𝑃macro ·𝑅macro

𝑃macro +𝑅macro
, 𝑃micro =

∑︀
𝑙∈𝐿 𝑇𝑃𝑙∑︀

𝑙∈𝐿(𝑇𝑃𝑙 + 𝐹𝑃𝑙)
,

𝑅micro =

∑︀
𝑙∈𝐿 𝑇𝑃𝑙∑︀

𝑙∈𝐿(𝑇𝑃𝑙 + 𝐹𝑁𝑙)
, 𝐹1micro = 2 · 𝑃micro ·𝑅micro

𝑃micro +𝑅micro
.

The primary leaderboard metric for ranking participating systems is the micro-averaged F1-score, as it
more effectively captures model performance in the presence of class imbalance, a common characteristic
of real-world relation extraction tasks. Nonetheless, macro-averaged scores and per-relation metrics
are also reported to provide a comprehensive performance profile, including sensitivity to rare and
long-tail classes.

6. Results

6.1. Participation Overview

The shared task comprised four subtasks. Subtask 6.1 (NER) saw 16 teams submit at least one run,
ranging from the organizer’s baseline to ensemble and transformer-based systems. Subtask 6.2.1 (Binary
Tag-Based RE) included 11 teams, with top systems leveraging both rule-based and deep-learning
approaches. Subtask 6.2.2 (Ternary Tag-Based RE) attracted 12 teams, many extending their binary-tag
RE pipelines to support a neutral relation label. Subtask 6.2.3 (Ternary Mention-Based RE) saw 12 teams
tackling mention-level relation extraction with three labels, including several strong neural-model
submissions.
2https://hereditary.dei.unipd.it/challenges/gutbrainie/2025/#five
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Table 4
Results for BIU-ONLP submissions across all subtasks.

Task Run System Description Macro-P Macro-R Macro-F1 Micro-P Micro-R Micro-F1

T6.1 1 multi_pii-v1 0.4627 0.3687 0.3846 0.4908 0.4721 0.4813
T6.1 2 gliner_medium-v2.1 0.4049 0.3717 0.3864 0.4866 0.4568 0.4712
T6.1 3 gliner_large_bio-v0.1 0.4393 0.3585 0.3711 0.4916 0.4721 0.4816
T6.1 4 gliner_large-v2.1 0.4029 0.3710 0.3842 0.4893 0.4632 0.4759
T6.1 5 gliner_large_bio-v0.2 0.4488 0.3633 0.3775 0.4961 0.4632 0.4791

T6.2.1 1 SapBERT 0.3846 0.3598 0.3545 0.6554 0.5022 0.5686
T6.2.1 2 bert-base-cased 0.4383 0.2912 0.3273 0.7955 0.4545 0.5785
T6.2.1 3 biobert v1.1 0.4309 0.2965 0.3293 0.7519 0.4199 0.5389
T6.2.1 4 roberta large 0.4632 0.3379 0.3713 0.7453 0.5195 0.6122

T6.2.2 1 SapBERT 0.3734 0.3454 0.3430 0.6497 0.4733 0.5476
T6.2.2 2 bert-base-cased 0.4467 0.2799 0.3182 0.7803 0.4239 0.5493
T6.2.2 3 biobert v1.1 0.4134 0.2866 0.3187 0.7519 0.3992 0.5215
T6.2.2 4 roberta large 0.4725 0.3288 0.3630 0.7362 0.4938 0.5911

T6.2.3 1 SapBERT 0.0777 0.0807 0.0765 0.2033 0.1327 0.1606
T6.2.3 2 bert-base-cased 0.1274 0.0777 0.0899 0.2929 0.1166 0.1668
T6.2.3 3 biobert v1.1 0.0935 0.0682 0.0683 0.2459 0.1206 0.1619
T6.2.3 4 roberta large 0.1171 0.0854 0.0879 0.2339 0.1461 0.1799

6.2. System Results

The results for the BIU-ONLP submissions across all subtasks and runs are shown in Table 4. For Subtask
T6.1, the multi pii v1 model achieved the highest Macro-F1 and Micro-F1 scores among all submissions,
indicating strong overall performance on entity recognition. Among the GLiNER variants, gliner large
bio-v0.1 performs best in terms of Micro-F1. For Subtask T6.2.1 and T6.2.2, roberta large consistently
outperforms other models across both macro and micro metrics, demonstrating its robustness in different
settings. Finally, Subtask T6.2.3 shows significantly lower scores overall, reflecting the higher difficulty
of this task, although roberta large still maintains a marginal lead in performance.

6.3. Comparison to Other Participants

Table 5 presents our rank, micro-F1, the best micro-F1, and the organizer’s baseline for each subtask.
We see that our system performed competitively on the Binary and Tag-Based Relation Extraction (RE)
subtasks, ranking mid-field and surpassing the baseline in both cases. In Binary RE (6.2.1), we achieved
a micro-F1 of 0.6122, placing 5th out of 11, and similarly in Tag-Based RE (6.2.2), we ranked 6th out of
12 with a score of 0.5911. However, our performance in the NER (6.1) and Mention-Based RE (6.2.3)
subtasks was substantially lower, with our NER system ranking near the bottom and our Mention-Based
RE system showing the largest performance gap relative to the best and baseline systems.

• NER (Subtask 6.1): Our best micro-F1 (0.4816) places us near the bottom (15th of 16), trailing the
baseline by over 0.31. The large gap to the top system (0.8408) suggests specialized biomedical
NER models or ensembling are crucial.

• Binary Tag-Based RE (Subtask 6.2.1): Ranking 5th of 12 with 0.6122 micro-F1, we outper-
form the baseline by 0.0175. The margin to the best (0.6864) is 0.0742, indicating competitive
performance but room for relation-specific fine-tuning.

• Ternary Tag-Based RE (Subtask 6.2.2): Our 6th place with 0.5911 micro-F1 is above the
baseline by 0.0160. The 0.0955 gap to the top performer highlights challenges in neutral-relation
distinction.

• Ternary Mention-Based RE (Subtask 6.2.3): Our performance (0.1799) is well below both
baseline and top, reflecting the challenge of mention-level extraction. Low recall suggests the
mention detection module needs enhancement via joint modeling.



Table 5
BIU-ONLP micro-F1 ranking versus top and baseline systems.

Task Our Rank Our micro-F1 Best micro-F1 Baseline micro-F1

NER (6.1) 15/16 0.4816 0.8408 0.7927
Binary RE (6.2.1) 5/11 0.6122 0.6864 0.5947
Tag-Based RE (6.2.2) 6/12 0.5911 0.6866 0.5751
Mention-Based RE (6.2.3) 11/12 0.1799 0.4635 0.3288

7. Discussion and Conclusions

Our participation in the CLEF 2025 biomedical shared task focused on four challenging subtasks,
including named entity recognition (NER) and multiple forms of relation extraction (RE). The evaluation
of our systems yields several important insights into model performance, dataset complexity, and
directions for future research.

The strongest results were obtained using large pretrained transformer architectures, such as roberta
large. These models demonstrated particularly robust performance in the RE subtasks, achieving a
micro-F1 score of 0.6122 in Binary RE and 0.5911 in Ternary tag based RE. These outcomes highlight
the value of contextualized representations in modeling biomedical relations, especially under limited
supervision.

In contrast, the NER subtask proved significantly more difficult in our settings. Our best-performing
NER model achieved a micro-F1 score of 0.4816. This performance gap underscores the challenges posed
by the dataset, including the presence of fine-grained and domain-specific entity types that are often
rare or absent in general pretraining corpora. The resulting domain shift and data sparsity hindered
generalization, particularly in recognizing low-frequency entities. Broadening the training dataset to
include a wider range of annotated entities across related domains could enhance the model’s ability to
generalize to rare or unseen entity types.

In stark contrast to the RE tasks, our performance on the NER subtask (6.1) was unexpectedly poor,
with our best system ranking 15th out of 16 participants. This result fell significantly short of our
expectations, as our Micro-F1 score (0.4816) trailed the official baseline (0.7927) by a substantial margin.
This wide gap suggests that our chosen models were ill-suited for the specific challenges of this dataset.
While we initially hypothesized a domain shift, the scale of the underperformance indicates a more
fundamental mismatch. The top-performing systems and the baseline likely leveraged models with
extensive pre-training on biomedical corpora (e.g., biobert v1.1 pubmed, PubMedBERT), giving them
a decisive advantage in recognizing the domain-specific entity types that our more general models
struggled with.

A particularly noteworthy and surprising finding from this subtask was the relative performance
of our GLiNER model variants. Counterintuitively, gliner medium v2.1 achieved a Macro-F1 score
(0.3864) that was not only comparable but slightly superior to its larger counterparts, gliner large v2.1
(0.3842) and gliner large bio v0.1 (0.3711). This outcome was somewhat unexpected. While larger models
usually outperform smaller ones due to their greater capacity, in this case, gliner medium v2.1 may
have benefited from better regularization or simply a more favorable initialization. Alternatively, the
performance convergence may indicate that the available training data was insufficient for the larger
models to fully realize their capacity, leading to overfitting or unstable learning. This points to the
importance of model-data fit, particularly in low-resource domains such as biomedical NER.

The low recall in Ternary Mention-Based RE (macro-F1 < 0.09) points to limitations in current pipeline
architectures for span detection and relation classification. It might be that the low reults in our NER
module created a cascade of errors, as relations cannot be correctly identified if the constituent entities
are missed. This confirms that for complex, mention-based RE, a pipeline architecture is suboptimal. We
suggest that future systems may benefit from joint models that integrate entity and relation extraction
into a unified framework. Second, while large transformer models excel in high-resource conditions,
they are prone to overfitting when applied to tasks with limited annotated data. Addressing this requires



exploring lightweight alternatives such as domain-specific data augmentation to enhance generalization.
Moreover, error patterns in both NER and RE indicate confusion between semantically similar entity

types and fine-grained relation labels. These ambiguities suggest that leveraging external knowledge
bases to better disambiguate closely related entities and relations.

In conclusion, while our models achieved competitive performance in several subtasks, the CLEF
2025 dataset exposes persistent challenges in biomedical information extraction. Progress in this field
will require not only more sophisticated architectures but also greater emphasis on domain adaptation,
structured knowledge integration, and robust learning from sparse data.
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