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Abstract
The FungiCLEF2025 challenge pioneers few-shot fungi species classification through multimodal observational
data integration, specifically targeting the critical bottleneck of identifying rare and under documented taxa
in practical biodiversity conservation scenarios. In this work, we present a novel two-stage framework that
synergizes: (1) feature space optimization via Dynamic Weighting Contrastive Loss (DWCL), and (2) cross-modal
fusion of visual characteristics with ecological metadata to achieve joint representation of environmental context
and fine-grained morphological patterns. Through these technical innovations, the framework ultimately secured
2nd place in the competition leaderboard. The code is publicly available at https://github.com/Looploop555/fungi.
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1. Introduction

Fine grained visual categorization, a cornerstone challenge in computer vision and ecological infor-
matics, holds critical implications for biodiversity monitoring and ecosystem conservation [1]. The
FungiCLEF2025 challenge [2], co-hosted by CVPR-FGVC and LifeCLEF2025 [3], advances research
on few-shot species recognition by leveraging multimodal observational data from real world citizen
science initiatives. The FungiCLEF2025 challenge focuses on identifying fungi species under strictly
limited training samples per class, where each taxon is defined by subtle morphological distinctions.
Participants can integrate heterogeneous inputs, including multi view specimen imagery, geospatial
coordinates, substrate, habitat annotations, and meteorological variables to discern fine-grained visual
patterns critical for taxonomic differentiation. Building on previous FungiCLEF benchmarks [4, 5, 6],
which demonstrated the efficacy of vision language models and metadata fusion techniques, this year’s
iteration introduces two core challenges:

• Few-shot feature learning: Learning discriminative representations from extremely limited
training samples, with each class containing only 1-4 training instances.

• Multimodal data fusion: Jointly modeling specimen photographs with contextual metadata (e.g.,
spatiotemporal conditions, habitat descriptors) to amplify subtle taxonomic distinctions.

While previous FungiCLEF challenges have extensively explored open-set fungi classification
paradigms, the critical challenge of few-shot classification remains notably underexamined. To address
this issue, we investigate few-shot fungi recognition methods and report model performance under the
competition’s limited data conditions. Our framework incorporates two core innovations:

• DynamicWeighting Contrastive Loss (DWCL):We introduce entropy-based uncertaintyweighting
and adaptive positive or negative pair construction, enabling robust intra class clustering and
inter class separation even under few-shot conditions.

• Visual-Text Multimodal Fusion: Utilizing the Vision Transformer architecture [7], we conduct
contrastive learning on DINOv2 [8] derived visual features to extract fine-grained visual patterns
via its multi-head attention mechanism. Structured text generated from specimen metadata are
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encoded using BERT and subsequently fused with visual features through Q-Former [9] based
cross modal interaction.

• Two-Stage Decoupled Pipeline: By separating feature extraction and contrastive learning from
multimodal fusion and final classification, each phase can be optimized independently. The first
stage focuses on crafting highly discriminative visual embeddings, and the second stage integrates
complementary modal signals.

2. Related Work

2.1. Fine-grained classification of Fungi

The participating teams in FungiCLEF2023 [5, 10, 11, 12], primarily employed Transformer-based [13]
architectures for multimodal data processing, effectively combining visual features with metadata
through advanced fusion strategies. To address critical challenges in fungi classification, the solutions
incorporated specialized techniques including customized loss functions (such as Seesaw loss [14] and
poisonous-classification loss) for handling class imbalance and long-tailed distributions.
The methods in FungiCLEF2024 [4, 15, 16, 17], primarily focused on multi-modal fusion of visual
and metadata features using architectures like Swin Transformer V2 [18] and DINOv2, combined
with dynamic MLPs [19] or attention mechanisms for fine-grained species classification. To handle
open-set recognition, teams employed entropy-based rejection or generative adversarial approaches
like OpenGAN [15] to detect unknown species. Safety-critical optimization was emphasized through
poisonous-aware loss functions (e.g., heavily penalizing toxic misclassifications) and post hoc re-ranking
to minimize dangerous errors. Auxiliary supervision (e.g., genus-level losses) and techniques like Seesaw
Loss improved robustness against class imbalance.

2.2. Contrastive Learning

In the field of fine-grained classification, contrastive learning loss functions demonstrate unique advan-
tages. Triplet Loss [20] constructs anchor-positive-negative triplets to enforce the distance between
the anchor and the positive example to be smaller than that between the anchor and the negative
example plus a margin. It aims to bring samples of the same class closer while pushing apart those
of different classes, but its sampling efficiency is constrained by negative sample selection strategies.
N-pair Loss [21] extends Triplet Loss by innovatively adopting a multi-negative parallel optimization
mechanism, establishing a ”1-positive-N-negative” contrast relationship within a single batch. However,
when certain fungi categories have too few samples, their contribution as negative samples diminishes.
Supervised Contrastive Loss [22] leverages supervised information to treat multiple samples from the
same class as positives and those from different classes as negatives. It pulls same class samples closer
in the embedding space while pushing apart different-class samples through contrastive learning. This
approach is particularly suitable for supervised learning scenarios, excelling especially in few-shot
learning and fine-grained classification tasks.

3. Method

We propose a two‑stage framework for fine‑grained fungi classification. In the first stage, foundational
visual embeddings are extracted via DINOv2 and refined through a single layer Transformer encoder,
then optimized with our Dynamic Weighting Contrastive, which incorporates entropy-based sample
weighting and adaptive positive or negative pair construction to enhance intra class compactness and
inter class separation even under scarce data regimes. In the second stage, we generate structured text
from each specimen’s metadata, encode themwith BERT, and fuse the resulting text embeddings with the
refined visual features using a Q‑Former with a set of learnable queries q. This multimodal representation
is trained with cross‑entropy loss to produce habitat aware classification outputs, achieving competitive
performance in FungiCLEF2025.
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Figure 1: Overview of our method. Our framework employs a two-stage approach: first, DINOv2 extracts visual
features optimized via Dynamic Weighting Contrastive Loss; then, BERT encoded metadata descriptions interact
with visual features through Q-Former for cross modal fusion, ultimately producing classification predictions
through a classifier.

3.1. Model Architecture

In the first stage, we extract initial visual features from each fungi image using DINOv2 and feed them
into a Transformer based contrastive learning framework. This framework operates on pre-extracted
features from a standard ViT and employs a single layer Transformer encoder with a 16 heads self
attention mechanism to build a high dimensional attention space, effectively capturing fine‑grained
visual cues. In the second stage, for every fungi image, we construct a structured textual description
template from its observation metadata-year, month, day, habitat, and substrate as follows:

“This fungi specimen was collected on [year]–[month]–[day] in a [habitat] area, growing
on a [substrate] substrate.”

We design a two‑stage model as shown in Figure 1. In the first stage, we concentrate on extracting
and refining visual features; in the second stage, we carry out multimodal fusion and classification.

Subsequently, we employ BERT to encode the descriptions, then the generated text embeddings and
the first stage visual features are jointly fed into the Q-Former module as input. Q-Former serves as
the core component for cross modal fusion, establishing semantic relationships between image and
ecological text descriptors. A set of learnable query tokens q. is introduced to facilitate cross modal
interaction between textual and visual features. Through iterative updates via multi-head self attention,
the Q-Former generates query representations that fuse habitat semantics with visual information.
These representations are then projected through a classification head and optimized using cross-entropy
loss to produce the final species classification results.

3.2. Training Strategy

In the first stage, we designed the Dynamic Weighting Contrastive Loss, an enhanced supervised
contrastive loss function [22], which incorporates an entropy-based uncertainty weighting sampling
mechanism to prioritize hard examples for optimized model training. Notably, our improvements
to the standard loss function are as follows: First, uncertainty aware weighting: In loss calculation,



samples with higher prediction uncertainty are assigned greater weights, ensuring the model focuses
on ambiguous instances critical for fine-grained discrimination. Second, adaptive pair construction:
Positive pairs are formed by randomly sampling up to 4 instances per category, with a strict requirement
of at least 2 samples per category to form valid pairs. For categories with fewer than 2 samples, new
instances are generated via data augmentation to meet this constraint. Negative pairs are generated
across distinct categories using a uniform class sampling strategy to avoid model bias. This design
stabilizes the contrastive learning process by balancing positive and negative pairs while dynamically
emphasizing samples that contribute most to reducing model uncertainty.

Given a batch of 𝑁 samples, let z𝑖 denote the feature vector of the 𝑖-th sample (including augmented
instances for sparse categories). We first normalize the features:

̂z𝑖 =
z𝑖

‖z𝑖‖2
(1)

The pairwise similarity matrix is computed as:

𝑆𝑖𝑗 = ̂z𝑖 ⋅ ̂z⊤𝑗 (2)

The enhanced loss function is defined as:

ℒ = 1
∑𝑖∈𝒜 𝑤𝑖

∑
𝑖∈𝒜

𝑤𝑖 ⋅
1

|𝑃(𝑖)|
∑
𝑗∈𝑃(𝑖)

− log
exp(𝑆𝑖𝑗/𝜏)

∑𝑘∉ℐ (𝑖) exp(𝑆𝑖𝑘/𝜏)
(3)

where:

• 𝜏 is the temperature parameter.
• 𝑃(𝑖) = {𝑗 ∣ 𝑦𝑗 = 𝑦𝑖, 𝑗 ≠ 𝑖} denotes the set of positive samples for anchor 𝑖, with |𝑃(𝑖)| ≥ 2 (augmented
instances are included for sparse categories).

• ℐ (𝑖) = {𝑖} ∪ {𝑘 ∣ mask𝑘 = 0} represents invalid indices excluded by the triple masking mechanism
(self-similarity and invalid pairs).

• 𝒜 = {𝑖 ∣ |𝑃(𝑖)| ≥ 2} is the set of valid anchors.
• 𝑤𝑖 = 𝜎(𝐻(𝑝𝑖)) is the uncertainty weight for anchor 𝑖, where 𝐻(𝑝𝑖) = −∑𝐶

𝑐=1 𝑝𝑖,𝑐 log 𝑝𝑖,𝑐 (entropy
of predicted probabilities 𝑝𝑖), and 𝜎 is the sigmoid function.

In the second stage, the text embeddings and visual features are integrated and fed into the Q‑Former
module. Meanwhile, the learnable query tokens are initialized as q. Q‑Former performs interactive
fusion between the textual and visual features through multi-head self attention, progressively updating
the query tokens across multiple layers and representation subspaces to capture the fused multimodal
information. The output query representations from Q‑Former are then passed through a classification
head for species prediction, and the final classification results are supervised using a cross-entropy loss
function.

4. Experiment

4.1. Experimental Settings

Dataset. The FungiCLEF2025 challenge dataset is built from fungi observations submitted to the Atlas
of Danish Fungi before the end of 2023, with labels provided by mycologists. It includes not only
multiple photographs of the same specimen but also a wealth of supplementary data such as satellite
imagery, meteorological records, and structured metadata. The vast majority of observations have
been annotated with most of these attributes. As is shown in Table 1, The training set contains 4,293
observations, 7,819 images, and 2,427 classes, while the validation set has 1,099 observations, 2,285
images, and 570 classes. All of the images are also accompanied by tabular metadata and automatically-
generated text descriptions of the images. Each class in the training set has between 1-4 observations.



Table 1
FungiCLEF2025 dataset statistics. The dataset exhibits limited sample sizes per category, with each class
containing only a small number of images.

Subset Observations Species All Images

Training 4293 2427 7819
Validation 1099 570 2285

Figure 2: Example of Fungi Images. The images capture the visual characteristics of fungi along with their
ecological contexts.

As is shown in Figure 2, the images in this dataset primarily exhibit diverse visual characteristics of
fungi and their growth environments, including mushroom close-ups, hyphal microstructures, and
symbiotic surroundings. Most photographs employ tight close-up compositions that emphasize the
spatial relationships between fungi and their substrates like decaying wood or soil. The striking color
contrasts reflect both the complexity of natural field conditions and subtle biological morphological
variations, providing visual data that combines macro-ecological context with micro-morphological
features for fine-grained fungi classification.
Implementation Details. This method is developed based on the PyTorch framework [23]. The
resolution of the input image is 224×224 pixels. We employ a 2048 dimensional embedding space, while
effectively achieving feature disentanglement through a sophisticated 16 heads attention mechanism.
All experiments are run on an H20-NVLink, using the AdamW optimizer [24]with a cosine annealing
learning rate scheduler, and the initial learning rate set to 0.0002 and a batch size of 1024.

4.2. Evaluation Metric

The evaluation metrics for this competition is the standard Top@𝑘 which is defined as the proportion
of instances where the true label is within the top 𝑘 predicted labels:

Top-𝑘 Accuracy =
∑𝑁

𝑖=1 𝟙(𝑦𝑖 ∈ 𝑌̂ 𝑘𝑖 )
𝑁

, (4)

where:

• 𝑁 is the total number of samples.
• 𝑦𝑖 is the true label for the 𝑖-th sample.
• 𝑌̂ 𝑘𝑖 is the set of top 𝑘 predicted labels for the 𝑖-th sample.
• 𝟙(⋅) is the indicator function.

We set 𝑘 = 5 for the main evaluation metric.



4.3. Fungi Dataset Experiments

As detailed in Table 2, when using only DINOv2 pretrained visual features, the model demonstrates
relatively low Top5 accuracy, demonstrating that global visual features alone are insufficient for distin-
guishing morphologically similar fungi species. The incorporation of the Transformer encoder led to a
significant improvement in accuracy, primarily attributed to the self-attention mechanism’s dynamic
focus on locally discriminative features. Further integration of habitat metadata boosted the model’s
accuracy to 76.991%, as the metadata provided complementary ecological information constraints to
the visual features.

Table 2
When using only DINOv2 pretrained features, the Top5 accuracy reaches 37.128%, demonstrating that visual
features alone are insufficient for capturing fine-grained distinctions among fungi specie. After incorporating a
single layer Transformer encoder, the accuracy significantly improves to 70.892%, validating the effectiveness of
self attention mechanisms in modeling local feature interactions. Further integration of habitat metadata yields
an accuracy of 76.991%. The ecological prior knowledge provided by metadata synergizes with visual features,
making the classification boundaries more distinct.

Method Top5 Accuracy (%)

Only DINOv2 37.128
+Transformer 70.892

+Transformer+Metadata 76.991

Table 3
Impact of The Loss Function. Our proposed enhanced supervised contrastive loss DWCL achieves better
performance. This is because the proposed DWCL enables the model to prioritize learning hard samples with
ambiguous decision boundaries, thereby enhancing its capability to recognize challenging cases.

Loss Function Top5 Accuracy (%)

Standard Contrastive Loss Function 74.778
Our(DWCL) 76.991

As detailed in Table 3, our enhanced loss function ensuring numerical robustness during training
and delivering optimal performance in fine-grained fungi classification tasks. The Dynamic Weighted
Contrastive Loss enhances the model’s discriminative capability by focusing on challenging samples
near decision boundaries, thereby improving classification performance for ambiguous cases.

Table 4
Ablation Study: Effects of ViT Depth, Number of Heads, and Training Epochs on Top‑5 Accuracy. Our experiments
reveal: (1) For the depth, a single layer architecture achieved optimal performance, as deeper models exhibited
overfitting on the small-scale fungi dataset; (2) The 16 heads configuration outperformed 32 heads, demonstrating
that moderate multi-head attention best captures fungi morphological subtleties; (3) The model achieves peak
validation performance at epoch 100, while extending training to 150 epochs leads to a performance degradation,
highlighting the necessity of early stopping strategies.

Experiment Setting Top5 Accuracy (%)

Depth
1 76.991
2 72.566

Num Heads
16 76.991
32 69.026

Epochs
50 75.221
100 76.991
150 75.663



As shown in Table 4, when training on small-scale datasets, excessively deep architectures may
lead to overfitting, thereby reducing test set performance. The multi-head attention mechanism, as a
core component of Transformer, captures richer feature information by simultaneously attending to
different segments of the input sequence across multiple representation subspaces. In our experiments,
the 16 heads configuration demonstrated superior performance compared to the 32 heads setup. The
experimental results in Table 4 show that the model achieved high scores at 50, 100, and 150 training
epochs. Building upon these three optimal results, we adopted a weighted voting ensemble approach
[25] to integrate predictions from these top-performing models as our final competition submission.
The aggregated final score reached 78.137%.

Table 5
Public leaderboard of FungiCLEF2025 competition(Partial). The proposed method ranks 2nd place.

Rank Team Top5 Accuracy (%)

1 Jack Etheredge 78.913
2 hard_work 78.137
3 aixiaodeyanjing 76.584
4 hahahahahal 76.196
5 skhhhh 75.291

The proposed two-stage framework, incorporating Dynamic Weighting Contrastive Loss for con-
trastive learning training and a multimodal data fusion strategy, achieved 2nd place on the official test
set in the FungiCLEF2025 fine-grained few-shot fungi classification competition, as detailed in Table 5.

5. Conclusion

The proposed two-stage framework secured 2nd place in the FungiCLEF2025 competition. This achieve-
ment was accomplished through the integration of pretrained DINOv2 feature embeddings, a customized
Transformer architecture, Dynamic Weighting Contrastive Loss, and metadata fusion strategies. Future
research will focus on exploring satellite data augmentation and explainable attention mechanisms to
facilitate practical field applications.

6. Declaration on Generative AI

During the preparation of this work, we did not use generative AI tools or services for writing assistance,
figure generation, or data analysis. All text, figures, and results were produced solely by the authors.
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