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Abstract

The PlantCLEF 2025 initiative aims to advance ecological research by analyzing vegetation plot inventory
photographs to support standardized sampling, biodiversity monitoring, long-term ecological assessment, and
large-scale remote vegetation surveys. The challenge is framed as a multi-label classification task, requiring the
identification of all visible plant species in high-resolution quadrat images. In this approach, a self-supervised
Vision Transformer (DINOv2) model is employed to address the task. Both the base and fine-tuned variants of
DINOv2 are utilized to extract robust and generalizable feature embeddings, which serve as inputs for training
classifiers capable of predicting multiple plant species present in a single image. To handle high-resolution input
efficiently, the proposed processing framework divides each image into a grid of overlapping tile individually,
performs classification on each tile individually and then aggregates tile-level predictions into a unified set of
probabilities per image. This tiling-based strategy enhances spatial context and improves species detection,
especially in complex and densely populated vegetation plots achieving a macro-averaged F1 score of 0.00106 per
sample on the official test set.
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1. Introduction

The PlantCLEF 2025 challenge [1], organized as part of the LifeCLEF lab [2] under the Conference
and Labs of the Evaluation Forum (CLEF), focuses on the automated identification of plant species in
high-resolution images of vegetation plots. This task is framed as a multi-label classification problem,
where each image can contain multiple co-occurring species. A major challenge introduced in this
edition is the domain shift between the training data—comprised of single-plant images—and the test
data—vegetation plots containing several species within a single frame. This setup reflects real-world
ecological monitoring scenarios, aiming to facilitate standardized biodiversity assessment, long-term
environmental monitoring, and scalable vegetation surveys. The scale and complexity of the dataset,
with over 7,800 species and more than 1.4 million images, make the task computationally demanding
and crucial for automated biodiversity monitoring and ecological research.

2. Background

CEUR-WS.org/Vol-4038/paper_252.pdf

The PlantCLEF challenge series has played a vital role in advancing automated plant species
identification, especially under real-world ecological conditions. The 2025 edition builds upon
the foundation laid in 2024, continuing the focus on multi-label classification of high-resolution
vegetation plot images. While the 2024 task [3] already introduced the challenge of identifying multiple
co-occurring plant species in a single image, the 2025 edition raises the complexity further by increasing
the test set size and emphasizing scalability and robustness of solutions.
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In prior editions of the challenge, top-performing teams explored a variety of innovative strategies to
handle the scale and complexity of the data. Leading approaches included combining multiple tiling
configurations for inference, applying false positive reduction techniques like Segment Anything (SAM),
and aggregating predictions across different temporal views of the same plot [4].Other successful
methods employed ensemble learning techniques, Vision Transformer (ViT) backbones — including
the official pre-trained model ViTD2PC24All, which was fine-tuned on the PlantCLEF 2024 dataset
using supervised learning across all layers — and probabilistic aggregation methods like Bayesian
Model Averaging [5]. Most approaches used tile-wise prediction strategies to extract localized species
predictions from smaller grid patches [6].

These prior works demonstrate that dense tiling, temporal aggregation, and ensemble model-
ing are highly effective in managing the high variability and label density present in plot-level plant
classification. Inspired by these advancements, the present work utilizes a transfer learning approach
based on DINOv2 [7] —a self-supervised Vision Transformer—to extract rich and generalizable visual
embeddings. Images are tiled into overlapping patches, each of which is classified using a linear
classifier trained on DINOv2 embeddings. The predictions are then aggregated to generate final
multi-label outputs for each plot.

2.1. DINOv2 Model Overview

DINOV?2 is a self-supervised Vision Transformer (ViT) model trained on the large-scale LVD-142M
dataset containing 142 million images. Similar to BERT [8] in NLP, it learns general-purpose image
representations without labeled data. Images are divided into fixed-size patches, and each patch is
linearly embedded into vector. A special classification [CLS] token is prepended [9] to the sequence
of patch embeddings. Positional embeddings are added to retain spatial information. The sequence
(patches + [CLS]) is passed through the Transformer encoder. The output corresponding to the [CLS]
token at the final layer serves as a global representation of the image.

DINOV?2 is available in various sizes (from small to giant), the proposed work utilizing the ViT-B/14
(distilled) variant, which offers a balance between performance and efficiency. This model produces a
fixed output of shape 257 x 768, comprising 256 patch embeddings and one [CLS] token embedding [10].
The challenge organizers provided two pretrained ViT-B/14 DINOv2 models: one with a frozen backbone,
and another fine-tuned end-to-end [11]. The fine-tuned model is used to extract [CLS] embeddings
from each image, leveraging its stronger feature representations for the multi-label classification task

3. System Overview

3.1. Dataset Overview

The dataset used in the PlantCLEF 2024 challenge consists of two main components: a large single-plant
training set and an unlabeled test set of vegetation plot images. The training metadata, provided in
PlantCLEF2024_single_plant_training_metadata.csv, contains over 1.4 million images associated with
1,408, 033 unique entries. Each entry has the following key attributes:

+ image_name: name of the image file

« species_id: numeric ID representing the plant species

« organ: visible plant part in the image (flower, habit, or other)

- obs_id: identifier for the observation instance

« Metadata: Geo-location (latitude, longitude, altitude) and contributor-related fields (author,
partner, license).

A separate file provides the complete list of 7,800 unique species IDs used for classification.The
test set includes 2, 105 high-resolution images of vegetation plots. Unlike the training set, which



contains single-species images, the test set presents a multi-label setting, where each image may contain
multiple species. This domain shift makes the task significantly more complex, requiring robust feature
extraction and effective aggregation strategies.

3.2. Proposed System

The overall flow diagram of the proposed system is given in Figure 1. It consists of four main stages:
data downloading, preprocessing, modelling, and inference. The input images are first collected from
the PlantCLEF 2025 dataset. These images then undergo preprocessing to standardize the format and
ensure consistency. In the modelling phase, a pretrained DINOv2 ViT-B/14 model is used to extract
features, and a classifier is trained using the [CLS] token representation. During inference, test images
are passed through the trained classifier using two approaches — full image classification and grid-based
classification.
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Figure 1: Overall flow diagram of the proposed solution

3.3. Data Preprocessing

Before training, the images in the single-plant dataset were preprocessed to reduce computational cost
and ensure consistency in input format.

All the input images were cropped to a square and then resized to 128 x 128 pixels. This standardiza-
tion helps maintain focus on the main subject while ensuring compatibility with batch processing and
feature extraction. While this resizing may lead to the loss of fine details and reduce the effectiveness
of advanced data augmentation techniques, it was chosen to reduce computational cost and training
time for this initial exploration.

During the training phase, the preprocessed images are further used by the proposed framework.
During the test phase, the vegetation plot images were divided into smaller square tiles using a grid-
based approach (e.g., 3 x 3 or 8 x 8), and the same preprocessing steps were applied to each tile. Features
were extracted from each tile individually, enabling the model to capture localized plant features within
the high-resolution test plots. The proposed preprocessing pipeline significantly reduced the size of the
dataset and made the training and inference process more efficient without compromising the quality
of visual information.

3.4. Methodology

The overall process of the proposed framework is illustrated in Figure 1.

The proposed framework utilizes the preprocessed images which is of 128x128 pixel size. This helps
standardize the input size for our model and reduces the overall storage and processing time. The
fine-tuned DINOv2 ViT-B/14 model is used to extract image embeddings. This model produces a
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Figure 2: Comparison of original images with 128 x 128 cropped and resized squared images. The original
images have a minimum resolution of 800 pixels on the longest side, allowing for the use of high-resolution
classification models and potentially improving the prediction of small plants in large vegetative plots. Note:
The labels shown represent plant genera, not exact species names.

768-dimensional embedding vector from the special [CLS] token, which summarizes the overall content
of the image. Although the DINOv2 model was trained on 518x518 images, compatibility with our
128x128 inputs was ensured by enabling the dynamic_img_size option from the timm library.

All 1.4 million image embeddings from the training dataset were used without applying any indexing
optimizations. Although this increased memory usage and inference time, it remained feasible for our
experimentation. A simple k-NN classifier [12] is used by storing the extracted features to recognize
the plant species. The k-NN approach was chosen because it can effectively identify multiple possible
species in each tile based on similarity to training images. This also improves the chances of detecting
smaller or less dominant plants present in localized regions of the image. A value of k = 5 was used as
per the default setting of the scikit-learn k-NN classifier.

During test phase, each test image is divided into a nn grid of smaller parts. Each part is processed
through the DINOv2 model to get predictions for the top k£ most likely species in that part. Finally,
combine all the probability values from the n tiles by filtering the duplicates of the species ID and the
final list of species for each image have been generated. This final output is submitted for evaluation.

Two distinct approaches such as full-image and grid-based image prediction were employed to
evaluate the performance of the proposed framework as shown in Figure 3. The test dataset is not
cropped and resized to preserve the high quality of multi-label images.

Full-Image Prediction: In this approach, the entire test image is processed in its original dimension.
The fine-tuned ViT model evaluates the image and outputs probabilities for each of the 7806 plant
species classes. Top 20 probabilities was then taken out, representing the most likely species present,
and map these probabilities to their corresponding species IDs.

Grid-based Image Prediction: The test image was divided into an NV x [V grid of tiles, resulting in M
tiles. Each tile is independently processed using the fine-tuned ViT model, which outputs probabilities
for each species class. The top K probabilities (default ' = 10) are mapped to their respective species
classes for each tile. For example, a 3 x 3 grid yields nine tiles, each with ten top probabilities, selecting
the top five species in each tile, totaling 45 species IDs and probability mappings.
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Figure 3: Comparison of full-image prediction and grid-based image prediction. The left plot shows a typical
vegetative plot from the test set. The right plot illustrates the same image divided into a 3 x 3 grid, demonstrating
the grid-based approach for species classification by processing each tile independently.

4. Results

The predictions obtained using the official pretrained DINOv2 model resulted in a macro-averaged F1
score of only 0.00012 per plot, which is relatively low. In contrast, the multi-class full-image inference
method, using a linear classifier trained on fine-tuned DINOv2 embeddings, achieved a macro-F1 score
of 0.00098, representing an 8 x improvement over the base pretrained model. For a more advanced
approach, a grid-based inference method was adopted to enhance multi-label classification performance.
Among the grid-based methods, using the top k species per tile achieved the highest scores across all
metrics.

For inference with the fine-tuned model, a 3 x 3 grid size was found to strike a good balance between
computational efficiency and spatial coverage of species distribution. We also experimented with 2 x 2
and 5 x 5 grid sizes but observed no substantial performance improvements, as shown in Table 1. A
total of 5 species per tile were selected to maximize the macro-averaged F1 score per sample, focusing
on capturing the most represented species in the dataset. Although this approach predicts up to 45
species per image, it was chosen to prioritize recall, even at the cost of lower precision.

Our final submission achieved a macro-averaged F1 score of 0.00106 on 89% of the test dataset, and
0.00293 on the remaining 11% of the dataset.

Table 1
An overview of inference methods and their Macro-F1 performance (averaged per test sample)

Inference Method Prediction Strategy =~ Macro-F1 Score

Full-image Top 5 species 0.00098
5 Top 20 species 0.00078

Top 5 species, 3x3 grid 0.00106

. Top 3 species, 3x3 grid 0.00101
Grid-based Top 5 species, 5x5 grid 0.00083

Top 5 species, 2x2 grid 0.00051




5. Conclusion

This work presents a lightweight multi-label plant species classification approach based on self-
supervised Vision Transformer (DINOv2) models. A scalable solution is proposed for multi-label image
classification utilizing only single-label training data. Future improvements may involve enhancing
model training and inference by incorporating additional data augmentation techniques, experimenting
with various grid sizes, exploring alternative dimensionality reduction methods, and employing loss
functions such as binary cross-entropy and asymmetric loss [13]. Furthermore, the development of
more sophisticated aggregation strategies for multi-label prediction holds potential to further improve
classification performance.
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