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Abstract

The BirdCLEF2025 task aims to train a multi-label classifier to infer the presence probabilities of multiple species
from the audio signals. In this work, we introduce a dual branch architecture to build an end-to-end passive
acoustic monitoring predictor. Specifically, two different types of acoustic features (i.e., Mel-spectrogram and
Mel-Frequency Cepstral Coeflicients) are first extracted from the raw signals. ResNet and ConvNeXt are then
used to learn two-branch features. Afterwards, the features are concatenated and fed into a fully connected layer
to output the prediction probabilities. Finally, we conduct comparative experiments on the competition test data.
Experimental results show that the proposed model achieves 0.751 and 0.771 macro-mean ROC-AUC on the 34%
and 66% test dataset, respectively.
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1. Introduction

The identification of under-studied species via passive acoustic monitoring is less affected by weather
and more detectable in enhancing biodiversity monitoring[1], compared with conventional observer-
based biodiversity surveys[2]. The Bird CLEF2025[3, 4] competition aims to predict the presence of
each of 206 target species in every 5-second segment of audio recordings, which is an important
application scenario of passive acoustic monitoring. Accordingly, researchers have explored various
methods in BirdCLEF2024 towards higher accuracy. For example, the approach in [5] utilizes a transfer
learning method based on pseudo multi-labels, demonstrating the effectiveness of leveraging pre-
trained embeddings for birdcall classification. The method in [6] designs an ensembled model that is a
combination of EfficientNet-B0 and EfficientNet-B1 to leverage the strengths of different models.

Although previous methods have achieved promising results, they overlook the usage of multi-
channel features and the impact of pretrained weights on the feature mapping backbones. To this end,
we in this work propose a dual-branch neural network that uses two types of acoustic features to better
learn the latent meaningful features. The main contributions of this work are outlines are follows.

(1) A dual-branch neural network is proposed to build an end-to-end passive acoustic monitoring
predictor to identify species. Two types of features, including Mel-spectrogram (Mel) and Mel-Frequency
Cepstral Coefficients (MFCC) are extracted from raw audio signals, which are then fed into two typical
pretrained feature representation networks (i.e., ResNet and ConvNeXt).

(2) We conduct comparative experiments to evaluate the effectiveness of the proposed model. Par-
ticularly, we evaluate different ways of initializing the parameters of ResNet and ConvNeXt. Results
show that ResNet backbone with pretrained weights and ConvNeXt with random weights strategy
outperforms others, with scores of 0.751 and 0.771, respectively (Team name: Hathaway Tan, Rank:
1455th).

The structure of this paper is as follows. Section 2 details the proposed model. Section 3 introduces
the datasets, preprocessing steps and presents experimental results, followed by the conclusion section.
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2. Methodology

Figure 1 presents the end-to-end species identification model via passive acoustic monitoring. It mainly
consists of the training phase and test phase. During the training stage, different types of acoustic
features are extracted from the raw signals. Then, the two types of features are fed into two powerful
feature mapping networks. Afterwards, the learned features are concatenated and sent to a fully
connected layers to generate prediction probabilities. During the test stage, test data is predicted with
the model and output prediction probabilities.
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Figure 1: The proposed dual-branch species identification model

2.1. Feature extraction

Considering the synthetic effect of different types of acoustic features in analyzing signals[7], we in
this work explore two types of features (Mel-spectrogram and Mel-Frequency Cepstral Coefficients) to
take advantage of multi-channel feature representation.

2.2. Pretrained weight analysis

Recent studies indicate that pretrained models in the context of feature mapping have been widely used
because of its effectiveness in accelerating training[8], yet they tend to suffer from limited accuracy due to
the small size of the fine-tuning dataset in the downstream task[9]. Hence, we also conduct comparative
experiments to evaluate the impact of pretrained weights on the feature mapping backbones.

3. Experimental setup and results

3.1. Dataset

The BirdCLEF2025 training audio dataset consists of a total of 28,564 audios, covering 206 unique species
across four major taxonomic classes. Each audio recording has a duration ranging from 0.54s to 1774s.
Table 1 presents the summary of dataset and Figure 2 displays the top 20 species by training audios.

3.2. Experimental setup

To increase the number of samples for training, we use the sliding window without overlapping to
segment the raw audio data into 10 seconds slices, where zero padding is applied to extend the data
length if the original audio data is shorter than 10s. Finally, we get 78,579 segments in total. Figure 3
shows an example of data segment from an audio file in training dataset.



Table 1
Summary of training dataset

Taxonomic  Number

Aves 27648
Amphibia 583
Mammalia 178

Insecta 155
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Figure 2: Top 20 species by training audios
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Figure 3: A 10-second segment from audio file 1139490-CSA36385



We then extract the MFCC and Mel features from each of the segments. Specifically, the MFCC
features consist of the 13-dimensional MFCCs, first-order and second-order derivatives. For Mel-
spectrogram features, we extract 128 Mel frequency bands per frame, resulting in a 128-dimensional
feature vector. We set the FFT window size to 1024 and the hop length to 512. These parameters define
the time-frequency resolution when computing the MFCC and Mel. We normalize the MFCCs and
Mels sample by sample using Z-Score approach. The MFCCs and Mels are finally reshaped to 224 x 224
pixels.

For the training procedure, we utilize ResNet50.a1_inlk pretrained on ImageNet-1k dataset[10, 11],
and use ConvNeXtv2_pico.fcmae[12]. The loss function is BCEWithLogitsLoss. The model totally runs
30 epochs with an early-stop strategy avoiding overfitting. We fine-tune the end-to-end model with the
AdamW optimizer. An initial learning rate 0.001 is used and a cosine annealing learning rate scheduler
is utilized, which adjusts the learning rate following a cosine curve from the initial value down to 1e-6.

As for the performance metric, a version of macro-averaged ROC-AUC that skips classes which have
no true positive labels is used. We employ 3-fold stratified cross-validation for training. During training,
the model achieving the highest average AUC on the validation set in each fold is saved.

During the test stage, prediction is conducted on the hidden test set, which transforms the model’s
outputs to multi-class probabilities and calculates AUC scores using predictions and real multi-class
labels. The submission format requires that the length of each test audio segment is 5 second, so we
concatenate the 5 second segment with itself to create a 10 second slice. We opt not to train directly
on 5-second segments due to the limited acoustic context they offer, which can negatively impact
classification performance.

3.3. Experimental results

Tables 2 and 3 present the results of different weight-using strategies on 34% and 66% test data respec-
tively. In the table, “fine-tuned” means the feature mapping networks are equipped with pretrained
weights; “from scratch” indicates that the parameters of feature mapping networks are randomly
initialized.

The experimental results presented in Tables 2 and 3 show the AUC scores of various model combi-
nations on two different test datasets (34% and 66%). Across both datasets, the model ResNet_ft(fine-
tuned)+ConvNeXt_fs(from scratch) consistently achieves the highest AUC scores — 0.751 on the
34% test set and 0.771 on the 66% test set — indicating superior performance. In contrast, the model
ResNet_fs(from scratch)+ConvNeXt_ft(fine-tuned) performs the worst. Interestingly, the combina-
tion ResNet_fs(from scratch)+ConvNeXt_ft(fine-tuned) performs worse than using ConvNeXt_fs(from
scratch), which may imply that the feature in ConvNeXt has a less significant or even slightly detrimental
effect when ResNet is not enhanced.

Table 2
Experimental results on the 34% test data
Model ROC-AUC score
ResNet_ft(fine-tuned)+ConvNeXt_ft(fine-tuned) 0.738
ResNet_ft(fine-tuned)+ConvNeXt_fs(from scratch) 0.751
ResNet_fs(from scratch)+ConvNeXt_ft(fine-tuned) 0.722
ResNet_fs(from scratch)+ConvNeXt_fs(from scratch) 0.732

3.4. Discussion

Our study reveals the following performance ordering: ResNet pretrained only > both pretrained
> no pretraining > ConvNeXt pretrained only. These findings shows that visual pretrained models
transfer well to spectrogram’s low-level texture and edge features but require close alignment between
input representation and pretrained domain. Based on our findings, we recommend using pretrained



Table 3
Experimental results on the 66% test data

Model ROC-AUC score
ResNet_ft(fine-tuned)+ConvNeXt_ft(fine-tuned) 0.763
ResNet_ft(fine-tuned)+ConvNeXt_fs(from scratch) 0.771
ResNet_fs(from scratch)+ConvNeXt_ft(fine-tuned) 0.726
ResNet_fs(from scratch)+ConvNeXt_fs(from scratch) 0.731

ImageNet weights only when the input representation retains visual-like structures, such as Mel
spectrograms, which benefit from learned low-level convolutional filters. On the contrary, for more
abstract representations like MFCC, we advise against using pretrained visual weights.

4. Conclusion

In this work, we proposed a dual-branch architecture that leverages both Mel-spectrogram and MFCC
features, processed through ResNet and ConvNeXt backbones, for passive acoustic monitoring in the
BirdCLEF2025 task. Comparative experiments on the competition’s test datasets demonstrate the
effectiveness of our design, with the model achieving macro-mean ROC-AUC scores of 0.751 on the 34%
test set and 0.771 on the 66% test set. These results confirm that the proposed end-to-end framework
can effectively capture complementary acoustic information and deliver robust multi-label bird species
classification performance.
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